51
|
Adaptive landscape flattening allows the design of both enzyme: Substrate binding and catalytic power. PLoS Comput Biol 2020; 16:e1007600. [PMID: 31917825 PMCID: PMC7041857 DOI: 10.1371/journal.pcbi.1007600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/25/2020] [Accepted: 12/11/2019] [Indexed: 01/30/2023] Open
Abstract
Designed enzymes are of fundamental and technological interest. Experimental directed evolution still has significant limitations, and computational approaches are a complementary route. A designed enzyme should satisfy multiple criteria: stability, substrate binding, transition state binding. Such multi-objective design is computationally challenging. Two recent studies used adaptive importance sampling Monte Carlo to redesign proteins for ligand binding. By first flattening the energy landscape of the apo protein, they obtained positive design for the bound state and negative design for the unbound. We have now extended the method to design an enzyme for specific transition state binding, i.e., for its catalytic power. We considered methionyl-tRNA synthetase (MetRS), which attaches methionine (Met) to its cognate tRNA, establishing codon identity. Previously, MetRS and other synthetases have been redesigned by experimental directed evolution to accept noncanonical amino acids as substrates, leading to genetic code expansion. Here, we have redesigned MetRS computationally to bind several ligands: the Met analog azidonorleucine, methionyl-adenylate (MetAMP), and the activated ligands that form the transition state for MetAMP production. Enzyme mutants known to have azidonorleucine activity were recovered by the design calculations, and 17 mutants predicted to bind MetAMP were characterized experimentally and all found to be active. Mutants predicted to have low activation free energies for MetAMP production were found to be active and the predicted reaction rates agreed well with the experimental values. We suggest the present method should become the paradigm for computational enzyme design. Designed enzymes are of major interest. Experimental directed evolution still has significant limitations, and computational approaches are another route. Enzymes must be stable, bind substrates, and be powerful catalysts. It is challenging to design for all these properties. A method to design substrate binding was proposed recently. It used an adaptive Monte Carlo method to explore mutations of a few amino acids near the substrate. A bias energy was gradually “learned” such that, in the absence of the ligand, the simulation visited most of the possible protein mutations with comparable probabilities. Remarkably, a simulation of the protein:ligand complex, including the bias, will then preferentially sample tight-binding sequences. We generalized the method to design binding specificity. We tested it for the methionyl-tRNA synthetase enzyme, which has been engineered in order to expand the genetic code. We redesigned the enzyme to obtain variants with low activation free energies for the catalytic step. The variants proposed by the simulations were shown experimentally to be active, and the predicted activation free energies were in reasonable agreement with the experimental values. We expect the new method will become the paradigm for computational enzyme design.
Collapse
|
52
|
Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31347051 DOI: 10.1007/978-3-030-15950-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Covalent modification of proteins is extensively used in research and industry for biosensing, medical diagnostics, targeted drug delivery, and many other practical applications. The conventional method for production of protein conjugates has changed little in the last 20 years mostly relying on reactions of side chains of cysteine and lysine residues. Due to the presence of large numbers of similar reactive amino acid residues in proteins, common synthetic methods generally produce complex mixtures of products, which are difficult to separate. An emerging alternative technology for covalent modification of proteins involves formation of a covalent bond with a hexahistidine affinity tag present in a majority of recombinant proteins without interfering with other amino acid residues. The approach is based on formation of a ternary complex of the hexahistidine sequence with a bivalent metal cation chelated by ligand bearing an electrophilic Baylis-Hillman ester group capable of subsequent formation of a covalent bond with one of the histidine residues of the tag. The reaction proceeds under mild reaction conditions in neutral aqueous solutions under high dilutions (10-5 to 10-4 M) providing a stable covalent bond between the label and an imidazole residue in a hexahistidine tag at either C- or N-terminus. Because hexahistidine affinity tag methodology is a de-facto standard for preparation of recombinant proteins our approach can be easily implemented for selective derivatization of these proteins with fluorescent groups, alkynyl groups for "click" reactions, or biotinylation.
Collapse
|
53
|
Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci Rep 2019; 9:12468. [PMID: 31462646 PMCID: PMC6713743 DOI: 10.1038/s41598-019-47574-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023] Open
Abstract
Life uses a common set of 20 coded amino acids (CAAs) to construct proteins. This set was likely canonicalized during early evolution; before this, smaller amino acid sets were gradually expanded as new synthetic, proofreading and coding mechanisms became biologically available. Many possible subsets of the modern CAAs or other presently uncoded amino acids could have comprised the earlier sets. We explore the hypothesis that the CAAs were selectively fixed due to their unique adaptive chemical properties, which facilitate folding, catalysis, and solubility of proteins, and gave adaptive value to organisms able to encode them. Specifically, we studied in silico hypothetical CAA sets of 3–19 amino acids comprised of 1913 structurally diverse α-amino acids, exploring the adaptive value of their combined physicochemical properties relative to those of the modern CAA set. We find that even hypothetical sets containing modern CAA members are especially adaptive; it is difficult to find sets even among a large choice of alternatives that cover the chemical property space more amply. These results suggest that each time a CAA was discovered and embedded during evolution, it provided an adaptive value unusual among many alternatives, and each selective step may have helped bootstrap the developing set to include still more CAAs.
Collapse
|
54
|
Inoue N, Onoda A, Hayashi T. Site-Specific Modification of Proteins through N-Terminal Azide Labeling and a Chelation-Assisted CuAAC Reaction. Bioconjug Chem 2019; 30:2427-2434. [DOI: 10.1021/acs.bioconjchem.9b00515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nozomu Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
55
|
Engineering a Polyspecific Pyrrolysyl-tRNA Synthetase by a High Throughput FACS Screen. Sci Rep 2019; 9:11971. [PMID: 31427620 PMCID: PMC6700097 DOI: 10.1038/s41598-019-48357-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
The Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl are extensively used to add non-canonical amino acids (ncAAs) to the genetic code of bacterial and eukaryotic cells. However, new ncAAs often require a cumbersome de novo engineering process to generate an appropriate PylRS/tRNAPyl pair. We here report a strategy to predict a PylRS variant with novel properties. The designed polyspecific PylRS variant HpRS catalyzes the aminoacylation of 31 structurally diverse ncAAs bearing clickable, fluorinated, fluorescent, and for the first time biotinylated entities. Moreover, we demonstrated a site-specific and copper-free conjugation strategy of a nanobody by the incorporation of biotin. The design of polyspecific PylRS variants offers an attractive alternative to existing screening approaches and provides insights into the complex PylRS-substrate interactions.
Collapse
|
56
|
Smolskaya S, Andreev YA. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement. Biomolecules 2019; 9:biom9070255. [PMID: 31261745 PMCID: PMC6681230 DOI: 10.3390/biom9070255] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.
Collapse
Affiliation(s)
- Sviatlana Smolskaya
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
| | - Yaroslav A Andreev
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
57
|
Li JC, Nastertorabi F, Xuan W, Han GW, Stevens RC, Schultz PG. A Single Reactive Noncanonical Amino Acid Is Able to Dramatically Stabilize Protein Structure. ACS Chem Biol 2019; 14:1150-1153. [PMID: 31181898 DOI: 10.1021/acschembio.9b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A p-isothiocyanate phenylalanine mutant of the homodimeric protein homoserine o-succinyltransferase (MetA) was isolated in a temperature dependent selection from a library of metA mutants containing noncanonical amino acids. This mutant protein has a dramatic increase of 24 °C in thermal stability compared to the wild type protein. Peptide mapping experiments revealed that the isothiocyanate group forms a thiourea cross-link to the N terminal proline of the other monomer, despite the two positions being >30 Å apart in the X-ray crystal structure of the wild type protein. These results show that an expanded set of building blocks beyond the canonical 20 amino acids can lead to significant changes in the properties of proteins.
Collapse
Affiliation(s)
- Jack C. Li
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Fariborz Nastertorabi
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Weimin Xuan
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gye Won Han
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Peter G. Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
58
|
Gao W, Cho E, Liu Y, Lu Y. Advances and Challenges in Cell-Free Incorporation of Unnatural Amino Acids Into Proteins. Front Pharmacol 2019; 10:611. [PMID: 31191324 PMCID: PMC6549004 DOI: 10.3389/fphar.2019.00611] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Incorporation of unnatural amino acids (UNAAs) into proteins currently is an active biological research area for various fundamental and applied science. In this context, cell-free synthetic biology (CFSB) has been developed and recognized as a robust testing and biomanufacturing platform for highly efficient UNAA incorporation. It enables the orchestration of unnatural biological machinery toward an exclusive user-defined objective of unnatural protein synthesis. This review aims to overview the principles of cell-free unnatural protein synthesis (CFUPS) systems, their advantages, different UNAA incorporation approaches, and recent achievements. These have catalyzed cutting-edge research and diverse emerging applications. Especially, present challenges and future trends are focused and discussed. With the development of CFSB and the fusion with other advanced next-generation technologies, CFUPS systems would explicitly deliver their values for biopharmaceutical applications.
Collapse
Affiliation(s)
- Wei Gao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Eunhee Cho
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yingying Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
59
|
Garcia A, Roy G, Kiefer C, Wilson S, Marelli M. qPCR assays to quantitate tRNApyl and pylRS expression in engineered cell lines. PLoS One 2019; 14:e0216356. [PMID: 31071154 PMCID: PMC6508675 DOI: 10.1371/journal.pone.0216356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/18/2019] [Indexed: 11/18/2022] Open
Abstract
Non-natural amino acids (nnAA) contain unique functional moieties that greatly expand the available tool set for protein engineering. But incorporation of nnAAs requires the function of an orthogonal aminoacyl tRNA synthetase/tRNA pair. Stable cell lines expressing these components have been shown capable of producing gram per liter levels of antibodies with nnAAs. However, little has been reported on the genetic makeup of these cells. To gain a better understanding of the minimal requirements for efficient nnAA incorporation we developed qPCR methods for the quantitation of the key components. Here we describe the development of qPCR assays for the quantification of tRNApyl and pylRS. qPCR was chosen because it provides a large dynamic range, has high specificity for its target, and is a non-radioactive method used routinely for cell line characterization. Designing assays for tRNAs present challenges due to their short length (~72 nucleotides) and high secondary structure. These tRNA assays have a ≥ 5 log dynamic range with the tRNApyl assays being able to discern the mature and unprocessed forms of the tRNApyl. Cell line analysis showed tRNApyl was expressed at higher levels than the CHO-K1 endogenous Met and Phe tRNAs and that >88% of tRNApyl was the mature form.
Collapse
Affiliation(s)
- Andrew Garcia
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, MD, United States of America
| | - Gargi Roy
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, MD, United States of America
| | - Christine Kiefer
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, MD, United States of America
| | - Susan Wilson
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, MD, United States of America
| | - Marcello Marelli
- Department of Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, MD, United States of America
- * E-mail:
| |
Collapse
|
60
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
61
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
62
|
Many alternative and theoretical genetic codes are more robust to amino acid replacements than the standard genetic code. J Theor Biol 2019; 464:21-32. [DOI: 10.1016/j.jtbi.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
|
63
|
|
64
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
65
|
Purcell O, Wang J, Siuti P, Lu TK. Encryption and steganography of synthetic gene circuits. Nat Commun 2018; 9:4942. [PMID: 30467337 PMCID: PMC6250736 DOI: 10.1038/s41467-018-07144-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Synthetic biologists use artificial gene circuits to control and engineer living cells. As engineered cells become increasingly commercialized, it will be desirable to protect the intellectual property contained in these circuits. Here, we introduce strategies to hide the design of synthetic gene circuits, making it more difficult for an unauthorized third party to determine circuit structure and function. We present two different approaches: the first uses encryption by overlapping uni-directional recombinase sites to scramble circuit topology and the second uses steganography by adding genes and interconnections to obscure circuit topology. We also discuss a third approach: to use synthetic genetic codes to mask the function of synthetic circuits. For each approach, we discuss relative strengths, weaknesses, and practicality of implementation, with the goal to inspire further research into this important and emerging area.
Collapse
Affiliation(s)
- Oliver Purcell
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Jerry Wang
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Piro Siuti
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
66
|
Li JC, Liu T, Wang Y, Mehta AP, Schultz PG. Enhancing Protein Stability with Genetically Encoded Noncanonical Amino Acids. J Am Chem Soc 2018; 140:15997-16000. [PMID: 30433771 DOI: 10.1021/jacs.8b07157] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to add noncanonical amino acids to the genetic code may allow one to evolve proteins with new or enhanced properties using a larger set of building blocks. To this end, we have been able to select mutant proteins with enhanced thermal properties from a library of E. coli homoserine O-succinyltransferase ( metA) mutants containing randomly incorporated noncanonical amino acids. Here, we show that substitution of Phe 21 with ( p-benzoylphenyl)alanine (pBzF), increases the melting temperature of E. coli metA by 21 °C. This dramatic increase in thermal stability, arising from a single mutation, likely results from a covalent adduct between Cys 90 and the keto group of pBzF that stabilizes the dimeric form of the enzyme. These experiments show that an expanded genetic code can provide unique solutions to the evolution of proteins with enhanced properties.
Collapse
Affiliation(s)
- Jack C Li
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Tao Liu
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Yan Wang
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Angad P Mehta
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Peter G Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
67
|
Dexl S, Reichelt R, Kraatz K, Schulz S, Grohmann D, Bartlett M, Thomm M. Displacement of the transcription factor B reader domain during transcription initiation. Nucleic Acids Res 2018; 46:10066-10081. [PMID: 30102372 PMCID: PMC6212726 DOI: 10.1093/nar/gky699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023] Open
Abstract
Transcription initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAP II requires the general transcription factor (TF) B/ IIB. Structural analyses of eukaryotic transcription initiation complexes locate the B-reader domain of TFIIB in close proximity to the active site of RNAP II. Here, we present the first crosslinking mapping data that describe the dynamic transitions of an archaeal TFB to provide evidence for structural rearrangements within the transcription complex during transition from initiation to early elongation phase of transcription. Using a highly specific UV-inducible crosslinking system based on the unnatural amino acid para-benzoyl-phenylalanine allowed us to analyze contacts of the Pyrococcus furiosus TFB B-reader domain with site-specific radiolabeled DNA templates in preinitiation and initially transcribing complexes. Crosslink reactions at different initiation steps demonstrate interactions of TFB with DNA at registers +6 to +14, and reduced contacts at +15, with structural transitions of the B-reader domain detected at register +10. Our data suggest that the B-reader domain of TFB interacts with nascent RNA at register +6 and +8 and it is displaced from the transcribed-strand during the transition from +9 to +10, followed by the collapse of the transcription bubble and release of TFB from register +15 onwards.
Collapse
Affiliation(s)
- Stefan Dexl
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Robert Reichelt
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Katharina Kraatz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Schulz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Bartlett
- Department of Biology, Portland State University, Portland, OR 972707-0751, USA
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
68
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
69
|
Genetically encoded fluorescent indicators for live cell pH imaging. Biochim Biophys Acta Gen Subj 2018; 1862:2924-2939. [PMID: 30279147 DOI: 10.1016/j.bbagen.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intracellular pH underlies most cellular processes. There is emerging evidence of a pH-signaling role in plant cells and microorganisms. Dysregulation of pH is associated with human diseases, such as cancer and Alzheimer's disease. SCOPE OF REVIEW In this review, we attempt to provide a summary of the progress that has been made in the field during the past two decades. First, we present an overview of the current state of the design and applications of fluorescent protein (FP)-based pH indicators. Then, we turn our attention to the development and applications of hybrid pH sensors that combine the capabilities of non-GFP fluorophores with the advantages of genetically encoded tags. Finally, we discuss recent advances in multicolor pH imaging and the applications of genetically encoded pH sensors in multiparameter imaging. MAJOR CONCLUSIONS Genetically encoded pH sensors have proven to be indispensable noninvasive tools for selective targeting to different cellular locations. Although a variety of genetically encoded pH sensors have been designed and applied at the single cell level, there is still much room for improvements and future developments of novel powerful tools for pH imaging. Among the most pressing challenges in this area is the design of brighter redshifted sensors for tissue research and whole animal experiments. GENERAL SIGNIFICANCE The design of precise pH measuring instruments is one of the important goals in cell biochemistry and may give rise to the development of new powerful diagnostic tools for various diseases.
Collapse
|
70
|
Martos-Maldonado MC, Hjuler CT, Sørensen KK, Thygesen MB, Rasmussen JE, Villadsen K, Midtgaard SR, Kol S, Schoffelen S, Jensen KJ. Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence. Nat Commun 2018; 9:3307. [PMID: 30120230 PMCID: PMC6098153 DOI: 10.1038/s41467-018-05695-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/17/2018] [Indexed: 02/08/2023] Open
Abstract
Methods for site-selective chemistry on proteins are in high demand for the synthesis of chemically modified biopharmaceuticals, as well as for applications in chemical biology, biosensors and more. Inadvertent N-terminal gluconoylation has been reported during expression of proteins with an N-terminal His tag. Here we report the development of this side-reaction into a general method for highly selective N-terminal acylation of proteins to introduce functional groups. We identify an optimized N-terminal sequence, GHHHn- for the reaction with gluconolactone and 4-methoxyphenyl esters as acylating agents, facilitating the introduction of functionalities in a highly selective and efficient manner. Azides, biotin or a fluorophore are introduced at the N-termini of four unrelated proteins by effective and selective acylation with the 4-methoxyphenyl esters. This Gly-Hisn tag adds the unique capability for highly selective N-terminal chemical acylation of expressed proteins. We anticipate that it can find wide application in chemical biology and for biopharmaceuticals.
Collapse
Affiliation(s)
- Manuel C Martos-Maldonado
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Christian T Hjuler
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jakob E Rasmussen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Klaus Villadsen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Søren R Midtgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark. .,Center for Evolutionary Chemical Biology, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark. .,Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
71
|
Chen H, Venkat S, McGuire P, Gan Q, Fan C. Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules 2018; 23:E1662. [PMID: 29986538 PMCID: PMC6100177 DOI: 10.3390/molecules23071662] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nowadays advanced mass spectrometry techniques make the identification of protein posttranslational modifications (PTMs) much easier than ever before. A series of proteomic studies have demonstrated that large numbers of proteins in cells are modified by phosphorylation, acetylation and many other types of PTMs. However, only limited studies have been performed to validate or characterize those identified modification targets, mostly because PTMs are very dynamic, undergoing large changes in different growth stages or conditions. To overcome this issue, the genetic code expansion strategy has been introduced into PTM studies to genetically incorporate modified amino acids directly into desired positions of target proteins. Without using modifying enzymes, the genetic code expansion strategy could generate homogeneously modified proteins, thus providing powerful tools for PTM studies. In this review, we summarized recent development of genetic code expansion in PTM studies for research groups in this field.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
72
|
Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0122] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
73
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
74
|
Zhang W, Hamouri F, Feng Z, Aujard I, Ducos B, Ye S, Weiss S, Volovitch M, Vriz S, Jullien L, Bensimon D. Control of Protein Activity and Gene Expression by Cyclofen-OH Uncaging. Chembiochem 2018; 19:1232-1238. [PMID: 29341391 DOI: 10.1002/cbic.201700630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/06/2022]
Abstract
The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.
Collapse
Affiliation(s)
- Weiting Zhang
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Fatima Hamouri
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isabelle Aujard
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Shixin Ye
- Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Biology, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR 7241, INSERM U1050, 11 place Marcellin Berthelot, 75005, Paris, France.,Department of Life Sciences, Paris-Diderot University, Sorbonne-Paris-Cité, 5 rue Thomas Mann, 75013, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, UPMC Univ Paris 06, CNRS, PSL Research University, 75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, École Normale Supérieure, CNRS, PASTEUR, 75005, Paris, France
| | - David Bensimon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 24 rue Lhomond, 75005, Paris, France.,IBENS, CNRS-UMR8197, INSERM-U1024, PSL Research University, 46 rue d'Ulm, 75005, Paris, France.,Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
75
|
Chatkewitz LE, Halonski JF, Padilla MS, Young DD. Investigation of copper-free alkyne/azide 1,3-dipolar cycloadditions using microwave irradiation. Bioorg Med Chem Lett 2018; 28:81-84. [PMID: 29248298 PMCID: PMC5761740 DOI: 10.1016/j.bmcl.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
Abstract
The prevalence of 1,3-dipolar cycloadditions of azides and alkynes within both biology and chemistry highlights the utility of these reactions. However, the use of a copper catalyst can be prohibitive to some applications. Consequently, we have optimized a copper-free microwave-assisted reaction to alleviate the necessity for the copper catalyst. A small array of triazoles was prepared to examine the scope of this approach, and the methodology was translated to a protein context through the use of unnatural amino acids to demonstrate one of the first microwave-mediated bioconjugations involving a full length protein.
Collapse
Affiliation(s)
- Lindsay E Chatkewitz
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187 USA
| | - John F Halonski
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187 USA
| | - Marshall S Padilla
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187 USA
| | - Douglas D Young
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187 USA.
| |
Collapse
|
76
|
Freedy A, Matos MJ, Boutureira O, Corzana F, Guerreiro A, Akkapeddi P, Somovilla VJ, Rodrigues T, Nicholls K, Xie B, Jiménez-Osés G, Brindle KM, Neves AA, Bernardes GJL. Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation. J Am Chem Soc 2017; 139:18365-18375. [PMID: 29206031 PMCID: PMC5799870 DOI: 10.1021/jacs.7b10702] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/30/2022]
Abstract
Chemical modification of proteins is essential for a variety of important diagnostic and therapeutic applications. Many strategies developed to date lack chemo- and regioselectivity as well as result in non-native linkages that may suffer from instability in vivo and adversely affect the protein's structure and function. We describe here the reaction of N-nucleophiles with the amino acid dehydroalanine (Dha) in a protein context. When Dha is chemically installed in proteins, the addition of a wide-range N-nucleophiles enables the rapid formation of amine linkages (secondary and tertiary) in a chemoselective manner under mild, biocompatible conditions. These new linkages are stable at a wide range of pH values (pH 2.8 to 12.8), under reducing conditions (biological thiols such as glutathione) and in human plasma. This method is demonstrated for three proteins and is shown to be fully compatible with disulfide bridges, as evidenced by the selective modification of recombinant albumin that displays 17 structurally relevant disulfides. The practicability and utility of our approach is further demonstrated by the construction of a chemically modified C2A domain of Synaptotagmin-I protein that retains its ability to preferentially bind to apoptotic cells at a level comparable to the native protein. Importantly, the method was useful for building a homogeneous antibody-drug conjugate with a precise drug-to-antibody ratio of 2. The kinase inhibitor crizotinib was directly conjugated to Dha through its piperidine motif, and its antibody-mediated intracellular delivery results in 10-fold improvement of its cancer cell-killing efficacy. The simplicity and exquisite site-selectivity of the aza-Michael ligation described herein allows the construction of stable secondary and tertiary amine-linked protein conjugates without affecting the structure and function of biologically relevant proteins.
Collapse
Affiliation(s)
- Allyson
M. Freedy
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Maria J. Matos
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Omar Boutureira
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Francisco Corzana
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Ana Guerreiro
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Víctor J. Somovilla
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Tiago Rodrigues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Karl Nicholls
- Albumedix
Ltd., Castle Court, 59
Castle Boulevard, NG7 1FD Nottingham, U.K.
| | - Bangwen Xie
- Li
Ka Shing Centre, Cancer Research UK Cambridge
Institute, Robinson Way, CB2 0RE Cambridge, U.K.
| | - Gonzalo Jiménez-Osés
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Kevin M. Brindle
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
- Li
Ka Shing Centre, Cancer Research UK Cambridge
Institute, Robinson Way, CB2 0RE Cambridge, U.K.
| | - André A. Neves
- Li
Ka Shing Centre, Cancer Research UK Cambridge
Institute, Robinson Way, CB2 0RE Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
77
|
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Artem S. Novozhilov
- Department of Mathematics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
78
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
79
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
80
|
Schmidt C, Urlaub H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 2017; 46:157-168. [DOI: 10.1016/j.sbi.2017.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
|
81
|
Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code. Life (Basel) 2017; 7:life7020022. [PMID: 28545255 PMCID: PMC5492144 DOI: 10.3390/life7020022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022] Open
Abstract
Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick’s hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.
Collapse
|
82
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
83
|
Hu C, Yu Y, Wang J. Improving artificial metalloenzymes' activity by optimizing electron transfer. Chem Commun (Camb) 2017; 53:4173-4186. [DOI: 10.1039/c6cc09921a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This feature article discusses the strategies to optimize electron transfer efficiency, towards enhancing the activity of artificial metalloenzymes.
Collapse
Affiliation(s)
- Cheng Hu
- Laboratory of RNA Biology
- Institute of Biophysics
- Chinese Academy of Sciences
- Chaoyang District
- China
| | - Yang Yu
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
- China
| | - Jiangyun Wang
- Laboratory of RNA Biology
- Institute of Biophysics
- Chinese Academy of Sciences
- Chaoyang District
- China
| |
Collapse
|
84
|
Jeon MH, Mathew BP, Kuram MR, Myung K, Hong SY. A palladium and gold catalytic system enables direct access to O- and S-linked non-natural glyco-conjugates. Org Biomol Chem 2016; 14:11518-11524. [PMID: 27886320 DOI: 10.1039/c6ob02437h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a straightforward cross-coupling method for the synthesis of non-natural glycoamino acids from alkyne-bearing monosaccharides and p-iodophenylalanine. Pd/Au-catalyzed Sonogashira coupling is tolerant to both O- and S-glycosides without any epimerization. In addition, no racemization of the amino acid was observed allowing direct access to the homogeneous glyco-conjugate in a single step. Notably, this Pd/Au catalytic system presents enhanced catalytic activity than conventional Pd/Cu and Pd-only platforms, and it further enables the convergent synthesis of glycodipeptides.
Collapse
Affiliation(s)
- Min Ho Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| | | | | | | | | |
Collapse
|
85
|
Gan Q, Lehman BP, Bobik TA, Fan C. Expanding the genetic code of Salmonella with non-canonical amino acids. Sci Rep 2016; 6:39920. [PMID: 28008993 PMCID: PMC5180212 DOI: 10.1038/srep39920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
The diversity of non-canonical amino acids (ncAAs) endows proteins with new features for a variety of biological studies and biotechnological applications. The genetic code expansion strategy, which co-translationally incorporates ncAAs into specific sites of target proteins, has been applied in many organisms. However, there have been only few studies on pathogens using genetic code expansion. Here, we introduce this technique into the human pathogen Salmonella by incorporating p-azido-phenylalanine, benzoyl-phenylalanine, acetyl-lysine, and phosphoserine into selected Salmonella proteins including a microcompartment shell protein (PduA), a type III secretion effector protein (SteA), and a metabolic enzyme (malate dehydrogenase), and demonstrate practical applications of genetic code expansion in protein labeling, photocrosslinking, and post-translational modification studies in Salmonella. This work will provide powerful tools for a wide range of studies on Salmonella.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Brent P Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
86
|
Probing the stereospecificity of tyrosyl- and glutaminyl-tRNA synthetase with molecular dynamics. J Mol Graph Model 2016; 71:192-199. [PMID: 27939931 DOI: 10.1016/j.jmgm.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/28/2022]
Abstract
The stereospecificity of aminoacyl-tRNA synthetases helps exclude d-amino acids from protein synthesis and could perhaps be engineered to allow controlled d-amino acylation of tRNA. We use molecular dynamics simulations to probe the stereospecificity of the class I tyrosyl- and glutaminyl-tRNA synthetases (TyrRS, GlnRS), including wildtype enzymes and three point mutants suggested by three different protein design methods. l/d binding free energy differences are obtained by alchemically and reversibly transforming the ligand from L to D in simulations of the protein-ligand complex. The D81Q mutation in Escherichia coli TyrRS is homologous to the D81R mutant shown earlier to have inverted stereospecificity. D81Q is predicted to lead to a rotated ligand backbone and an increased, not a decreased l-Tyr preference. The E36Q mutation in Methanococcus jannaschii TyrRS has a predicted l/d binding free energy difference ΔΔG of just 0.5±0.9kcal/mol, compared to 3.1±0.8kcal/mol for the wildtype enzyme (favoring l-Tyr). The ligand ammonium position is preserved in the d-Tyr complex, while the carboxylate is shifted. Wildtype GlnRS has a similar preference for l-glutaminyl adenylate; the R260Q mutant has an increased preference, even though Arg260 makes a large contribution to the wildtype ΔΔG value.
Collapse
|
87
|
Maza JC, Howard CA, Vipani MA, Travis CR, Young DD. Utilization of alkyne bioconjugations to modulate protein function. Bioorg Med Chem Lett 2016; 27:30-33. [PMID: 27894869 DOI: 10.1016/j.bmcl.2016.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
The ability to introduce or modify protein function has widespread application to multiple scientific disciplines. The introduction of unique unnatural amino acids represents an excellent mechanism to incorporate new functionality; however, this approach is limited by ability of the translational machinery to recognize and incorporate the chemical moiety. To overcome this potential limitation, we aimed to exploit the functionality of existing unnatural amino acids to perform bioorthogonal reactions to introduce the desired protein modification, altering its function. Specifically, via the introduction of a terminal alkyne containing unnatural amino acid, we demonstrated chemically programmable protein modification through the Glaser-Hay coupling to other terminal alkynes, altering the function of a protein. In a proof-of-concept experiment, this approach has been utilized to modify the fluorescence spectrum of green fluorescent protein.
Collapse
Affiliation(s)
- Johnathan C Maza
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Christina A Howard
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Megha A Vipani
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Christopher R Travis
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Douglas D Young
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA.
| |
Collapse
|
88
|
Padilla MS, Farley CA, Chatkewitz LE, Young DD. Synthesis and incorporation of a caged tyrosine amino acid possessing a bioorthogonal handle. Tetrahedron Lett 2016; 57:4709-4712. [PMID: 28533567 PMCID: PMC5438197 DOI: 10.1016/j.tetlet.2016.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reversing a bioconjugation in a spatial and temporal fashion has widespread applications, especially toward targeted drug delivery. We report the synthesis and incorporation of an unnatural amino acid with an alkyne modified dimethoxy-ortho-nitrobenzyl caging group. This unnatural amino acid can be utilized in a Glaser-Hay conjugation to generate a bioconjugate, but also is able to disrupt the bioconjugate when irradiated with light. These combined features allow for the preparation of bioconjugates with a high degree of site-specificity and allow for the separation of the two components if necessary.
Collapse
Affiliation(s)
- Marshall S Padilla
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Christopher A Farley
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Lindsay E Chatkewitz
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | - Douglas D Young
- Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| |
Collapse
|
89
|
Cao Y, Nguyen GKT, Chuah S, Tam JP, Liu CF. Butelase-Mediated Ligation as an Efficient Bioconjugation Method for the Synthesis of Peptide Dendrimers. Bioconjug Chem 2016; 27:2592-2596. [DOI: 10.1021/acs.bioconjchem.6b00538] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan Cao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Giang K. T. Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Samuel Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
90
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
91
|
Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M, Taylor Murphy S, O'Neil JP, Seo Y, Francis MB. Biodistribution of Antibody-MS2 Viral Capsid Conjugates in Breast Cancer Models. Mol Pharm 2016; 13:3764-3772. [PMID: 27611245 DOI: 10.1021/acs.molpharmaceut.6b00566] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A variety of nanoscale scaffolds, including virus-like particles (VLPs), are being developed for biomedical applications; however, little information is available about their in vivo behavior. Targeted nanoparticles are particularly valuable as diagnostic and therapeutic carriers because they can increase the signal-to-background ratio of imaging agents, improve the efficacy of drugs, and reduce adverse effects by concentrating the therapeutic molecule in the region of interest. The genome-free capsid of bacteriophage MS2 has several features that make it well-suited for use in delivery applications, such as facile production and modification, the ability to display multiple copies of targeting ligands, and the capacity to deliver large payloads. Anti-EGFR antibodies were conjugated to MS2 capsids to construct nanoparticles targeted toward receptors overexpressed on breast cancer cells. The MS2 agents showed good stability in physiological conditions up to 2 days and specific binding to the targeted receptors in in vitro experiments. Capsids radiolabeled with 64Cu isotopes were injected into mice possessing tumor xenografts, and both positron emission tomography-computed tomography (PET/CT) and scintillation counting of the organs ex vivo were used to determine the localization of the agents. The capsids exhibit surprisingly long circulation times (10-15% ID/g in blood at 24 h) and moderate tumor uptake (2-5% ID/g). However, the targeting antibodies did not lead to increased uptake in vivo despite in vitro enhancements, suggesting that extravasation is a limiting factor for delivery to tumors by these particles.
Collapse
Affiliation(s)
- Ioana L Aanei
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| | - Adel M ElSohly
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Michelle E Farkas
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Chawita Netirojjanakul
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Melanie Regan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - Stephanie Taylor Murphy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - James P O'Neil
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco , San Francisco, California 94143, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories , Berkeley, California 94720, United States
| |
Collapse
|
92
|
Long-Acting Injections and Implants. Drug Deliv 2016. [DOI: 10.1201/9781315382579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
93
|
Lee Y, Jeong J, Lee G, Moon JH, Lee MK. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli. Anal Chem 2016; 88:9503-9509. [DOI: 10.1021/acs.analchem.6b02071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yeolin Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiyun Jeong
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gabi Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung Kyu Lee
- Hazards Monitoring Bionano Research
Center, ‡Disease Target Structure Research
Center, Korea Research Institute of Bioscience and Biotechnology, and §Department of
Nanobiotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
94
|
Kölbel K, Warnke S, Seo J, von Helden G, Moretti R, Meiler J, Pagel K, Sinz A. Conformational Shift of a β-Hairpin Peptide upon Complex Formation with an Oligo-proline Peptide Studied by Mass Spectrometry. ChemistrySelect 2016; 1:3651-3656. [PMID: 30547079 DOI: 10.1002/slct.201600934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So-called super-secondary structures such as the β-hairpin, studied here, form an intermediate hierarchy between secondary and tertiary structures of proteins. Their sequence-derived 'pure' peptide backbone conformation is combined with 'remote' interstrand or interresidue contacts reminiscent of the 3D-structure of full-length proteins. This renders them ideally suited for studying potential nucleation sites of protein folding reactions as well as intermolecular interactions. But β-hairpins do not merely serve as model systems; their unique structure characteristics warrant a central role in structural studies on their own. In this study we applied photo cross-linking in combination with high-resolution mass spectrometry and computational modeling as well as with ion mobility-mass spectrometry to elucidate these structural properties. Using variants of a known β-hairpin representative, the so-called trpzip peptide and its ligands, we found evidence for a conformational transition of the β-hairpin and its impact on ligand binding.
Collapse
Affiliation(s)
- Knut Kölbel
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute for Pharmacy, Martin-Luther-Universit t Halle-Wittenberg W.-Langenbeck-Straße 4, 06120 Halle (Germany).,Chemistry Department Universiteit Antwerpen Campus Groenenborger, Groenenborgerlaan 171 G.V. 416, 2020 Antwer-pen (Belgi)
| | - Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Jongcheol Seo
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany)
| | - Rocco Moretti
- Department of Chemistry and the Center for Structural Biology Vanderbilt University 465 21Ave South BIOSCi/MRBIII Nashville TN (USA)
| | - Jens Meiler
- Department of Chemistry and the Center for Structural Biology Vanderbilt University 465 21Ave South BIOSCi/MRBIII Nashville TN (USA)
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-614195 Berlin (Germany).,Freie Universit t Berlin Institute of Chemistry and Biochemistry Takustraße 3 14195 Berlin (Germany)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute for Pharmacy, Martin-Luther-Universit t Halle-Wittenberg W.-Langenbeck-Straße 4, 06120 Halle (Germany)
| |
Collapse
|
95
|
Faustino H, Silva MJSA, Veiros LF, Bernardes GJL, Gois PMP. Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation. Chem Sci 2016; 7:5052-5058. [PMID: 30155155 PMCID: PMC6018717 DOI: 10.1039/c6sc01520d] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022] Open
Abstract
We show that formyl benzeno boronic acids (2FBBA) selectively react with N-terminal cysteines to yield a boronated thiazolidine featuring a B-N bond. The reaction exhibits a very rapid constant rate (2.38 ± 0.23 × 102 M-1 s-1) under mild aqueous conditions (pH 7.4, 23 °C) and tolerates different amino acids at the position adjacent to the N-cysteine. DFT calculations highlighted the diastereoselective nature of this ligation reaction and support the involvement of the proximal boronic acid in the activation of the imine functionality and the stabilisation of the boronated thiazolidine through a chelate effect. The 2FBBA reagent allowed the effective functionalisation of model peptides (C-ovalbumin and a laminin fragment) and the boronated thiazolidine construct was shown to be stable over time, though the reaction was reversible in the presence of benzyl hydroxylamine. The reaction proved to be highly chemoselective, and 2FBBA was used to functionalize the N-terminal cysteine of calcitonin in the presence of a potentially competing in-chain thiol group. This exquisite selectivity profile enabled the dual functionalisation of calcitonin and the interactive orthogonal modification of this peptide when 2FBBA was combined with conventional maleimide chemistry. These results highlight the potential of this methodology to construct complex and well-defined bioconjugates.
Collapse
Affiliation(s)
- Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Luís F Veiros
- Centro de Química Estrutural , Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais 1 , 1049-001 Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 , Lisboa , Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| |
Collapse
|
96
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
97
|
Akkapeddi P, Azizi SA, Freedy AM, Cal PMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci 2016; 7:2954-2963. [PMID: 29997785 PMCID: PMC6005007 DOI: 10.1039/c6sc00170j] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Systemic chemotherapy, the current standard of care for the treatment of cancer, is rarely curative and is often accompanied by debilitating side effects. Targeted drug delivery stands as an alternative to chemotherapy, with the potential to improve upon its low efficacy and systemic toxicity. Among targeted therapeutic options, antibody-drug conjugates (ADCs) have emerged as the most promising. These conjugates represent a new class of biopharmaceuticals that selectively deliver potent cytotoxic drugs to cancer cells, sparing healthy tissue throughout the body. Despite this promise, early heterogenous ADCs suffered from stability, pharmacokinetic, and efficacy issues that hindered clinical development. Recent advances in antibody engineering, linkers for drug-release, and chemical site-selective antibody conjugation have led to the creation of homogenous ADCs that have proven to be more efficacious than their heterogeneous predecessors both in vitro and in vivo. In this minireview, we focus on and discuss recent advances in chemical site-selective modification strategies for the conjugation of drugs to antibodies and the resulting potential for the development of a new generation of homogenous ADCs.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Saara-Anne Azizi
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Allyson M Freedy
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Pedro M S D Cal
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| |
Collapse
|
98
|
Schwarz R, Tänzler D, Ihling CH, Sinz A. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding. PLoS One 2016; 11:e0151412. [PMID: 26992147 PMCID: PMC4798536 DOI: 10.1371/journal.pone.0151412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors.
Collapse
Affiliation(s)
- Rico Schwarz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Dirk Tänzler
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120, Halle/Saale, Germany
- * E-mail:
| |
Collapse
|
99
|
Simonson T, Ye-Lehmann S, Palmai Z, Amara N, Wydau-Dematteis S, Bigan E, Druart K, Moch C, Plateau P. Redesigning the stereospecificity of tyrosyl-tRNA synthetase. Proteins 2016; 84:240-53. [PMID: 26676967 DOI: 10.1002/prot.24972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | | - Zoltan Palmai
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Najette Amara
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Sandra Wydau-Dematteis
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Erwan Bigan
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Karen Druart
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Clara Moch
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Pierre Plateau
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
100
|
Dippel AB, Olenginski GM, Maurici N, Liskov MT, Brewer SH, Phillips-Piro CM. Probing the effectiveness of spectroscopic reporter unnatural amino acids: a structural study. Acta Crystallogr D Struct Biol 2016; 72:121-30. [PMID: 26894540 PMCID: PMC4756619 DOI: 10.1107/s2059798315022858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 11/10/2022] Open
Abstract
The X-ray crystal structures of superfolder green fluorescent protein (sfGFP) containing the spectroscopic reporter unnatural amino acids (UAAs) 4-cyano-L-phenylalanine (pCNF) or 4-ethynyl-L-phenylalanine (pCCF) at two unique sites in the protein have been determined. These UAAs were genetically incorporated into sfGFP in a solvent-exposed loop region and/or a partially buried site on the β-barrel of the protein. The crystal structures containing the UAAs at these two sites permit the structural implications of UAA incorporation for the native protein structure to be assessed with high resolution and permit a direct correlation between the structure and spectroscopic data to be made. The structural implications were quantified by comparing the root-mean-square deviation (r.m.s.d.) between the crystal structure of wild-type sfGFP and the protein constructs containing either pCNF or pCCF in the local environment around the UAAs and in the overall protein structure. The results suggest that the selective placement of these spectroscopic reporter UAAs permits local protein environments to be studied in a relatively nonperturbative fashion with site-specificity.
Collapse
Affiliation(s)
- Andrew B. Dippel
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Gregory M. Olenginski
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Nicole Maurici
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Melanie T. Liskov
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | | |
Collapse
|