51
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
52
|
Zhao W, Wang M, Wang C, Liu Y, Liu H, Luo S. RACGAP1 is transcriptionally regulated by E2F3, and its depletion leads to mitotic catastrophe in esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:950. [PMID: 32953750 PMCID: PMC7475413 DOI: 10.21037/atm-20-2901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background RACGAP1 has significant involvement in tumorigenesis of cancers, including liver cancer, stomach cancer, and colon cancer. However, the role and the exact mechanism of RACGAP1 in esophageal squamous cell carcinoma (ESCC) has not been explored. Methods QPCR and Western blots analysis was performed to analyze the expression of RACGAP1 in ESCC. MTT assays and colony formation assays were performed to explore the functional role of RACGAP1 in ESCC. Cell cycle analysis and immunofluorescence assays were used to investigate the function of RACGAP1 involvement in mitotic catastrophe. At last, we conducted the public datasets mining to explore the expression status and prognosis value of RACGAP1 as well as the correlation between RACGAP1 and E2F3 in various cancers. Results The high abnormal expression of RACGAP1 is observed in ESCC and associated with worse clinical outcomes of patients with ESCC. RACGAP1, a novel cell cycle associated gene regulated by E2F3, acts as an oncogenic driver in ESCC cell lines. Notably, for the first time, RACGAP1 depletion induced severe mitotic catastrophe, followed by massive cell death. Conclusions Our findings showed the essential role of RACGAP1 in ESCC cancer cell survival and the therapeutic potential of RACGAP1 as a molecular target for ESCC.
Collapse
Affiliation(s)
- Weifeng Zhao
- Department of Medical Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengyao Wang
- Radiation Oncology Department, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Chaojie Wang
- Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yingjun Liu
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huimin Liu
- Department of Oncology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, the Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
53
|
Synthesis and evaluation of 7-azaindole derivatives bearing benzocycloalkanone motifs as protein kinase inhibitors. Bioorg Med Chem 2020; 28:115468. [DOI: 10.1016/j.bmc.2020.115468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
|
54
|
Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02560-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Chen Y, Fu D, Zhao H, Cheng W, Xu F. GSG2 (Haspin) promotes development and progression of bladder cancer through targeting KIF15 (Kinase-12). Aging (Albany NY) 2020; 12:8858-8879. [PMID: 32439830 PMCID: PMC7288960 DOI: 10.18632/aging.103005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Bladder cancer is the most commonly diagnosed malignant tumor in urological system worldwide. The relationship between GSG2 and bladder cancer has not been demonstrated and remains unclear. In this study, it was demonstrated that GSG2 was up-regulated in bladder cancer tissues compared with the normal tissues and its high expression was correlated with more advanced malignant grade and lower survival rate. Further investigations indicated that the overexpression/knockdown of GSG2 could promote/inhibit proliferation, colony formation and migration of bladder cancer cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of GSG2 could also suppress tumorigenicity of bladder cancer cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of GSG2 and identified KIF15 as the potential target. Furthermore, our study revealed that knockdown of KIF15 could inhibit development of bladder cancer in vitro, and alleviate the GSG2 overexpression induced promotion of bladder cancer. In conclusion, our study showed, as the first time, GSG2 as a prognostic indicator and tumor promotor for bladder cancer, whose function was carried out probably through the regulation of KIF15.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Dian Fu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Hai Zhao
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
56
|
Warda K, Klimaszewska-Wiśniewska A, Grzanka A, Grzanka D. Mechanism of mitotic catastrophe and its role in anticancer therapy. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The definition of mitotic catastrophe has been the subject of scientific discussion for over a decade. Initially, it was thought that mitotic catastrophe is one of the types of cell death occurring during aberrant mitosis. A number of studies carried out in recent years allowed for a better understanding of the function of this process. According to the definition proposed by the Nomenclature Committee on Cell Death in 2018, mitotic catastrophe is an oncosuppressive mechanism that inhibits the proliferation and/or survival of cells that are unable to complete mitosis by inducing cell death or initiating cellular senescence. Mitotic catastrophe is recognized based on unique nuclear changes, the presence of abnormal mitotic figures and several molecular alterations. It is believed that avoiding mitotic catastrophe by genetically unstable cells promotes their unlimited growth, which can lead to cancer transformation. Therefore, the induction of mitotic catastrophe seems to be a promising strategy for the prevention and treatment of cancer. However, despite the significant role of this process, the molecular events between aberrant mitosis and cell death are still not well understood. It can be assumed that a thorough understanding of signaling pathways linking mitotic catastrophe with cell death will enable the effective use of known inducers of mitotic catastrophe in the treatment of cancer and provide new therapeutic targets. The aim of this review is to present a morphological and functional definition of mitotic catastrophe and its potential role in anticancer therapy.
Collapse
Affiliation(s)
- Karolina Warda
- Katedra Histologii i Embriologii, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Anna Klimaszewska-Wiśniewska
- Katedra Patomorfologii Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Alina Grzanka
- Katedra Histologii i Embriologii, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| | - Dariusz Grzanka
- Katedra Patomorfologii Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
| |
Collapse
|
57
|
Feizbakhsh O, Pontheaux F, Glippa V, Morales J, Ruchaud S, Cormier P, Roch F. A Peak of H3T3 Phosphorylation Occurs in Synchrony with Mitosis in Sea Urchin Early Embryos. Cells 2020; 9:cells9040898. [PMID: 32272587 PMCID: PMC7226724 DOI: 10.3390/cells9040898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
The sea urchin embryo provides a valuable system to analyse the molecular mechanisms orchestrating cell cycle progression and mitosis in a developmental context. However, although it is known that the regulation of histone activity by post-translational modification plays an important role during cell division, the dynamics and the impact of these modifications have not been characterised in detail in a developing embryo. Using different immuno-detection techniques, we show that the levels of Histone 3 phosphorylation at Threonine 3 oscillate in synchrony with mitosis in Sphaerechinus granularis early embryos. We present, in addition, the results of a pharmacological study aimed at analysing the role of this key histone post-translational modification during sea urchin early development.
Collapse
|
58
|
Zhu D, Gu X, Lin Z, Yu D, Wang J, Li L. HASPIN is involved in the progression of gallbladder carcinoma. Exp Cell Res 2020; 390:111863. [PMID: 31987787 DOI: 10.1016/j.yexcr.2020.111863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is a common malignant tumor of the biliary system, but the current treatment of GBC is unsatisfactory. Therefore, new treatment targets and strategies are urgently needed. METHODS The expression of HASPIN in GBC was detected by immunohistochemical staining. HASPIN knockdown cell model was constructed by lentivirus infection, and the infection efficiency of lentivirus and knockdown efficiency of shHASPIN were verified by fluorescence immunoassay, qRT-PCR and Western blot. The effects of HASPIN knockdown on cell proliferation, clone-formation ability and apoptosis were determined by MTT, clone formation assay, flow cytometry and Human Apoptosis Antibody Array in vitro. Besides, the effect of HASPIN knockdown on the growth of GBC solid tumors was demonstrated in vivo. RESULTS The expression of HASPIN in GBC was up-regulated and positively correlated with the pathological grade of GBC. ShHASPIN significantly down-regulated the mRNA and protein levels of HASPIN, suggesting that HASPIN knockdown cell model was successfully constructed in vitro. After HASPIN knockdown, the proliferation and clone-formation ability of GBC cells were observably inhibited, the apoptotic levels were markedly increased, and the expression of Caspase 3, IGFBP-5, p21 and sTNF-R1 related to apoptotic pathway was up-regulated. Furthermore, HASPIN knockdown inhibited the growth of GBC in vivo. CONCLUSION HASPIN was up-regulated in GBC and played an important role in promoting the progress of GBC.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma/therapy
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clone Cells
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Female
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/metabolism
- Gallbladder Neoplasms/pathology
- Gallbladder Neoplasms/therapy
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor Binding Protein 5/genetics
- Insulin-Like Growth Factor Binding Protein 5/metabolism
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Middle Aged
- Protein Array Analysis
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dawei Zhu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China
| | - Xing Gu
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Li Li
- Department of Gynaecology and Obstetrics, Daping Hospital, Army Medical University, China.
| |
Collapse
|
59
|
Ozyerli-Goknar E, Sur-Erdem I, Seker F, Cingöz A, Kayabolen A, Kahya-Yesil Z, Uyulur F, Gezen M, Tolay N, Erman B, Gönen M, Dunford J, Oppermann U, Bagci-Onder T. The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death Dis 2019; 10:894. [PMID: 31772153 PMCID: PMC6879621 DOI: 10.1038/s41419-019-2107-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 01/19/2023]
Abstract
Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clinical application of TRAIL therapeutics inefficient. In this study, we undertook a chemical screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone methyl transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Ilknur Sur-Erdem
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Fidan Seker
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Ahmet Cingöz
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Zeynep Kahya-Yesil
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Fırat Uyulur
- Department of Computational Biology, Koç University, 34450, Istanbul, Turkey
| | - Melike Gezen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Nazife Tolay
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Turkey
| | - James Dunford
- Botnar Research Centre, NIHR Biomedical Research Centre Oxford, University of Oxford, Oxford, OX3 7LD, UK
| | - Udo Oppermann
- Botnar Research Centre, NIHR Biomedical Research Centre Oxford, University of Oxford, Oxford, OX3 7LD, UK
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
- FRIAS, Freiburg Institute of Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey.
| |
Collapse
|
60
|
Bastea LI, Hollant LMA, Döppler HR, Reid EM, Storz P. Sangivamycin and its derivatives inhibit Haspin-Histone H3-survivin signaling and induce pancreatic cancer cell death. Sci Rep 2019; 9:16588. [PMID: 31719634 PMCID: PMC6851150 DOI: 10.1038/s41598-019-53223-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current treatment options for patients with pancreatic cancer are suboptimal, resulting in a five year survival rate of about 9%. Difficulties with treatment are due to an immunosuppressive, fibrotic tumor microenvironment that prevents drugs from reaching tumor cells, but also to the limited efficacy of existing FDA-approved chemotherapeutic compounds. We here show that the nucleoside analog Sangivamycin and its closely-related compound Toyocamycin target PDA cell lines, and are significantly more efficient than Gemcitabine. Using KINOMEscan screening, we identified the kinase Haspin, which is overexpressed in PDA cell lines and human PDA samples, as a main target for both compounds. Inhibition of Haspin leads to a decrease in Histone H3 phosphorylation and prevents Histone H3 binding to survivin, thus providing mechanistic insight of how Sangivamycin targets cell proliferation, mitosis and induces apoptotic cell death. In orthotopically implanted tumors in mice, Sangivamycin was efficient in decreasing the growth of established tumors. In summary, we show that Sangivamycin and derivatives can be an efficient new option for treatment of PDA.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Laeticia M A Hollant
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Heike R Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Elizabeth M Reid
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
61
|
Wang P, Hua X, Bryner YH, Liu S, Gitter CB, Dai J. Haspin inhibition delays cell cycle progression through interphase in cancer cells. J Cell Physiol 2019; 235:4508-4519. [PMID: 31625162 DOI: 10.1002/jcp.29328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023]
Abstract
Haspin (Haploid Germ Cell-Specific Nuclear Protein Kinase) is a serine/threonine kinase pertinent to normal mitosis progression and mitotic phosphorylation of histone H3 at threonine 3 in mammalian cells. Different classes of small molecule inhibitors of haspin have been developed and utilized to investigate its mitotic functions. We report herein that applying haspin inhibitor CHR-6494 or 5-ITu at the G1/S boundary could delay mitotic entry in synchronized HeLa and U2OS cells, respectively, following an extended G2 or the S phase. Moreover, late application of haspin inhibitors at S/G2 boundary is sufficient to delay mitotic onset in both cell lines, thereby, indicating a direct effect of haspin on G2/M transition. A prolonged interphase duration is also observed with knockdown of haspin expression in synchronized and asynchronous cells. These results suggest that haspin can regulate cell cycle progression at multiple stages at both interphase and mitosis.
Collapse
Affiliation(s)
- Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Xiangmei Hua
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Yuge Han Bryner
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Sijing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Christopher B Gitter
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
62
|
Han X, Kuang T, Ren Y, Lu Z, Liao Q, Chen W. Haspin knockdown can inhibit progression and development of pancreatic cancer in vitro and vivo. Exp Cell Res 2019; 385:111605. [PMID: 31493385 DOI: 10.1016/j.yexcr.2019.111605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive and lethal malignancies and it is the eighth most common cause of death from cancer worldwide. The purpose of this study was to investigate the role of GSG2 (HASPIN) in the development and progression of pancreatic cancer. MATERIAL AND METHODS GSG2 expression was detected by immunohistochemistry in tumor tissue samples, and by qRT-PCR and Western blot assay in human pancreatic cancer cell lines. Cell proliferation was evaluated by MTT assay. Giemsa staining was used for analyzing colony formation. Cell cycle and cell apoptosis were determined using Fluorescence activated Cells Sorting. Wound healing assay and transwell assay were applied for examining cell migration. The molecular mechanism was investigated by human apoptosis antibody array. Tumor-bearing animal model was constructed to verify the effects of GSG2 on pancreatic cancer in vivo. RESULTS GSG2 expression was upregulated in pancreatic cancer tissues and human pancreatic cancer cell lines: PANC-1 and SW1990. Higher expression of GSG2 in tumor samples was associated with poorer prognosis. GSG2 knockdown suppressed cell proliferation, colony formation, metastasis and promoted cell apoptosis, which was also verified in vivo. In addition, GSG2 knockdown blocked the cell cycle in G2. It was also found that downregulation of GSG2 inhibited Bcl-2, Bcl-w, cIAP, HSP60 and Livin expression as well as promoted IGFBP-6 expression. CONCLUSION This study revealed that GSG2 upregulation was associated with pancreatic cancer progression. GSG2 knockdown inhibited cell proliferation, colony formation and migration, blocked cell cycle at G2 phase, and induced cell apoptosis. Therefore, GSG2 might serve as a potential therapeutic target for pancreatic cancer therapy and a market for prognosis.
Collapse
Affiliation(s)
- Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yun Ren
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhufeng Lu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Chen
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Department of Anesthesia, Qingpu Branch of Zhongshan Hospital, Fudan University, No. 1158 Gongyuan East Road, Shanghai, 201700, China.
| |
Collapse
|
63
|
Bernacki DT, Bryce SM, Bemis JC, Dertinger SD. Aneugen Molecular Mechanism Assay: Proof-of-Concept With 27 Reference Chemicals. Toxicol Sci 2019; 170:382-393. [PMID: 31132080 PMCID: PMC6657583 DOI: 10.1093/toxsci/kfz123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A tiered bioassay and data analysis scheme is described for elucidating the most common molecular targets responsible for chemical-induced in vitro aneugenicity: tubulin destabilization, tubulin stabilization, and inhibition of mitotic kinase(s). To evaluate this strategy, TK6 cells were first exposed to each of 27 presumed aneugens over a range of concentrations. After 4 and 24 h of treatment, γH2AX, p53, phospho-histone H3 (p-H3), and polyploidization biomarkers were evaluated using the MultiFlow DNA Damage Assay Kit. The assay identified 27 of 27 chemicals as genotoxic, with 25 exhibiting aneugenic signatures, 1 aneugenic and clastogenic, and 1 clastogenic. Subsequently, a newly described follow-up assay was employed to investigate the aneugenic agents' molecular targets. For these experiments, TK6 cells were exposed to each of 26 chemicals in the presence of 488 Taxol. After 4 h, cells were lysed and the liberated nuclei and mitotic chromosomes were stained with a nucleic acid dye and labeled with fluorescent antibodies against p-H3 and Ki-67. Flow cytometric analyses revealed that alterations to 488 Taxol-associated fluorescence were only observed with tubulin binders-increases in the case of tubulin stabilizers, decreases with destabilizers. Mitotic kinase inhibitors with known Aurora kinase B inhibiting activity were the only aneugens that dramatically decreased the ratio of p-H3-positive to Ki-67-positive nuclei. Unsupervised hierarchical clustering based on 488 Taxol fluorescence and p-H3: Ki-67 ratios clearly distinguished compounds with these disparate molecular mechanisms. Furthermore, a classification algorithm based on an artificial neural network was found to effectively predict molecular target, as leave-one-out cross-validation resulted in 25/26 agreement with a priori expectations. These results are encouraging, as they suggest that an adequate number of training set chemicals, in conjunction with a machine learning algorithm based on 488 Taxol, p-H3, and Ki-67 responses, can reliably elucidate the most commonly encountered aneugenic molecular targets.
Collapse
|
64
|
Pérez-Salvia M, Aldaba E, Vara Y, Fabre M, Ferrer C, Masdeu C, Zubia A, Sebastian ES, Otaegui D, Llinàs-Arias P, Rosselló-Tortella M, Berdasco M, Moutinho C, Setien F, Villanueva A, González-Barca E, Muncunill J, Navarro JT, Piris MA, Cossio FP, Esteller M. In vitro and in vivo activity of a new small-molecule inhibitor of HDAC6 in mantle cell lymphoma. Haematologica 2018; 103:e537-e540. [PMID: 29880608 DOI: 10.3324/haematol.2018.189241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Montserrat Pérez-Salvia
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | | | | | | | | | - Carme Masdeu
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), San Sebastián
| | - Aizpea Zubia
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), San Sebastián
| | - Eider San Sebastian
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), San Sebastián
| | | | - Pere Llinàs-Arias
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | - Margalida Rosselló-Tortella
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia
| | - Alberto Villanueva
- Laboratory of Translational Research, Catalan Institute of Oncology (ICO), IDIBELL L'Hospitalet, Barcelona, Catalonia
| | - Eva González-Barca
- Department of Hematology, ICO-Hospital Duran i Reynals, IDIBELL, University of Barcelona, L'Hospitalet, Barcelona, Catalonia
| | - Josep Muncunill
- Department of Hematology, ICO-Hospital Universitari Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Catalonia
| | - José-Tomás Navarro
- Department of Hematology, ICO-Hospital Universitari Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Catalonia
| | | | - Fernando P Cossio
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), San Sebastián
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Catalonia .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet, Catalonia.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
65
|
Abstract
Mitosis belongs to the most appealing cellular processes. Yet, the highly dynamic and complex nature of mitosis represents a major challenge when it comes to the functional dissection of mitotic proteins. Due to their fast and often reversible mode of action, small molecules have proven themselves as invaluable tools to dissect mitotic processes. In this chapter, we provide a broad overview of available compounds affecting mitosis. We discuss the different application fields of small molecules and important aspects that have to be considered when using them. Finally, we provide two detailed protocols for the application of small molecules to study mitosis in tissue culture cells.
Collapse
Affiliation(s)
- Franziska Teusel
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Lars Henschke
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Thomas U Mayer
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
66
|
3H-pyrazolo[4,3-f]quinoline haspin kinase inhibitors and anticancer properties. Bioorg Chem 2018; 78:418-426. [PMID: 29698892 DOI: 10.1016/j.bioorg.2018.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 11/27/2022]
Abstract
Histone modification, a post-translational modification of histones and involving various covalent tags, such as methyl, phosphate and acetate groups, affects gene expression and hence modulates various cellular events, including growth and proliferation. Consequently histone-modifying proteins have become targets for the development of anticancer agents. Thus far, compounds that inhibit the methylation or acetylation of histones have advanced in the clinic, but inhibitors of histone phosphorylation have lagged behind. Haspin is a kinase that phosphorylates histone H3 and is a promising anticancer target. Thus far only a handful of haspin inhibitors have been reported. Using a one-flask Doebner/Povarov reaction, we synthesized a library of compounds that potently inhibit haspin with IC50 values as low as 14 nM. Some of these compounds also inhibited the proliferation of cancer cell lines HCT116, HeLa and A375. The ease of synthesis of the new haspin inhibitors, coupled with their anticancer activities make these compounds interesting leads to develop into therapeutics.
Collapse
|
67
|
Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep 2017; 7:14571. [PMID: 29109414 PMCID: PMC5674033 DOI: 10.1038/s41598-017-14901-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Evading cell death is a major driving force for tumor progression that is one of the main problems in current cancer research. Mitotic catastrophe (MC) represents attractive platform compromising tumor resistance to current therapeutic modalities. MC appeared as onco-suppressive mechanism and is defined as a stage driving the cell to an irreversible destiny, i.e. cell death via apoptosis or necrosis. Our study highlights that MC induction in colorectal carcinoma cell lines ultimately leads to the autophagy followed by apoptosis. We show that autophagy suppression in Atg 13 knockout non-small cell lung carcinoma cells lead to the dramatic decrease of MC rate. Furthermore, mitochondria-linked anti-apoptotic proteins Mcl-1 and Bcl-xL play a crucial role in the duration of MC and a cross-talk between autophagy and apoptosis. Thus, the suppression of apoptosis by overexpression of Mcl-1 or Bcl-xL affected MC and lead to a significant induction of autophagy in HCT116 wt and HCT116 14-3-3σ-/- cells. Our data demonstrate that MC induction is a critical stage, in which a cell decides how to die, while mitochondria are responsible for the maintaining the balance between MC - autophagy - apoptosis.
Collapse
|
68
|
Coumestrol Epigenetically Suppresses Cancer Cell Proliferation: Coumestrol Is a Natural Haspin Kinase Inhibitor. Int J Mol Sci 2017; 18:ijms18102228. [PMID: 29064398 PMCID: PMC5666907 DOI: 10.3390/ijms18102228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 01/06/2023] Open
Abstract
Targeting epigenetic changes in gene expression in cancer cells may offer new strategies for the development of selective cancer therapies. In the present study, we investigated coumestrol, a natural compound exhibiting broad anti-cancer effects against skin melanoma, lung cancer and colon cancer cell growth. Haspin kinase was identified as a direct target protein of coumestrol using kinase profiling analysis. Histone H3 is a direct substrate of haspin kinase. We observed haspin kinase overexpression as well as greater phosphorylation of histone H3 at threonine 3 (Thr-3) in the cancer cells compared to normal cells. Computer modeling using the Schrödinger Suite program identified the binding interface within the ATP binding site. These findings suggest that the anti-cancer effect of coumestrol is due to the direct targeting of haspin kinase. Coumestrol has considerable potential for further development as a novel anti-cancer agent.
Collapse
|
69
|
Amoussou NG, Bigot A, Roussakis C, Robert JMH. Haspin: a promising target for the design of inhibitors as potent anticancer drugs. Drug Discov Today 2017; 23:409-415. [PMID: 29031622 DOI: 10.1016/j.drudis.2017.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Protein kinases constitute a large group of enzymes in eukaryotes and have an important role in many cellular processes. Several of these proteins are active kinases, such as haploid germ cell-specific nuclear protein kinase (Haspin), an atypical eukaryotic protein kinase that lacks sequence similarity with other eukaryotic protein kinases. Haspin is a serine/threonine kinase that associates with chromosome and phosphorylates threonine 3 of histone 3 during mitosis. Haspin overexpression or deletion results in defective mitosis. It has been shown that Haspin inhibitors have potent anti-tumoral effects. Given that the only Haspin substrate is threonine 3 of histone 3, inhibition of Haspin might have fewer adverse effects compared with other anticancer agents. Here, we highlight the chemical structures and actions of currently known Haspin inhibitors.
Collapse
Affiliation(s)
- Nathalie Gisèle Amoussou
- Université de Nantes, Nantes Atlantique Universités, Cibles et Médicaments du Cancer et de l'Immunité IICiMed-AE1155, Institut de Recherche en Santé 2, 22, rue Bénoni-Goulin, F-44000 Nantes, France; Université d'Abomey-Calavi, Faculté des Sciences de la Santé, Laboratoire de Chimie Pharmaceutique Organique, 01 BP 188 Cotonou, Benin
| | - André Bigot
- Université d'Abomey-Calavi, Faculté des Sciences de la Santé, Unité d'Enseignement et de Recherche en Immunologie, 01 BP 188 Cotonou, Benin
| | - Christos Roussakis
- Université de Nantes, Nantes Atlantique Universités, Cibles et Médicaments du Cancer et de l'Immunité IICiMed-AE1155, Institut de Recherche en Santé 2, 22, rue Bénoni-Goulin, F-44000 Nantes, France
| | - Jean-Michel H Robert
- Université de Nantes, Nantes Atlantique Universités, Cibles et Médicaments du Cancer et de l'Immunité IICiMed-AE1155, Institut de Recherche en Santé 2, 22, rue Bénoni-Goulin, F-44000 Nantes, France.
| |
Collapse
|
70
|
Han L, Wang P, Sun Y, Liu S, Dai J. Anti-Melanoma Activities of Haspin Inhibitor CHR-6494 Deployed as a Single Agent or in a Synergistic Combination with MEK Inhibitor. J Cancer 2017; 8:2933-2943. [PMID: 28928884 PMCID: PMC5604444 DOI: 10.7150/jca.20319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Melanoma is a heterogeneous malignancy that presents an immense challenge in therapeutic development. Recent approaches targeting the oncogenic MAP kinase pathways have shown tremendous improvement in the overall survival of patients with advanced melanoma. However, there is still an urgent need for identification of new strategies to overcome drug resistances and to improve therapeutic efficacy. Haspin (Haploid Germ Cell-Specific Nuclear Protein Kinase) belongs to a selected group of mitotic kinases and is required for normal mitosis progression. In contrast to inhibitors of other mitotic kinases, anti-tumor potential of haspin inhibitors has not been well explored. Herein, we aim to examine effects of CHR-6494, a small molecule inhibitor of haspin, in melanoma cells. Methods: Anti-tumor activities of the haspin inhibitor CHR-6494 were tested in a number of melanoma cell lines either as a single agent or in combination with the MEK inhibitor Trametinib (GSK1120212). Experiments are based on: 1) Cell viability determined by the crystal violet staining assay; 2) apoptotic responses measured by the caspase 3/7 activity assay and western blot analysis for the level of cleaved PARP (Poly ADP-Ribose Polymerase); 3) cell cycle analysis conducted using flow cytometry; and 4) cell migratory ability assessed by the scratch assay and the transwell migration assay. Results: We have found that CHR-6494 alone elicits a dose dependent inhibitory effect on the viability of several melanoma cell lines. This growth inhibition is accompanied by an increase in apoptotic responses. More importantly, CHR-6494 appears to synergize with the MEK inhibitor Trametinib in suppressing cell growth and enhancing apoptosis in both wild type and BRAFV600E mutant melanoma cell lines. Administering of these two small molecules as a combination is also capable of suppressing cell migration to a greater extent than the individual agent. Conclusion: These results suggest that haspin can be considered as a viable anti-melanoma target, and that concomitant inhibition of haspin and MEK activities with small molecules could represent a novel therapeutic strategy with improved efficacy for treatment of melanoma.
Collapse
Affiliation(s)
- Lili Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Peiling Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Yang Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Sijing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China
| | - Jun Dai
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072 P. R. China.,Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705 USA.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|
71
|
Pérez-Salvia M, Simó-Riudalbas L, Llinàs-Arias P, Roa L, Setien F, Soler M, de Moura MC, Bradner JE, Gonzalez-Suarez E, Moutinho C, Esteller M. Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget 2017; 8:51621-51629. [PMID: 28881673 PMCID: PMC5584274 DOI: 10.18632/oncotarget.18255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 01/25/2023] Open
Abstract
BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Laia Simó-Riudalbas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Laura Roa
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manuel Castro de Moura
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - James E Bradner
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
72
|
Koch H, Wilhelm M, Ruprecht B, Beck S, Frejno M, Klaeger S, Kuster B. Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells. J Proteome Res 2016; 15:4490-4504. [PMID: 27794612 DOI: 10.1021/acs.jproteome.6b00621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although substantial progress has been made regarding the use of molecularly targeted cancer therapies, resistance almost invariably develops and presents a major clinical challenge. The tumor microenvironment can rescue cancer cells from kinase inhibitors by growth-factor-mediated induction of pro-survival pathways. Here we show that epidermal growth factor receptor (EGFR) inhibition by Gefitinib is counteracted by growth factors, notably FGF2, and we assessed the global molecular consequences of this resistance at the proteome and phosphoproteome level in A431 cells. Tandem mass tag peptide labeling and quantitative mass spectrometry allowed the identification and quantification of 22 000 phosphopeptides and 8800 proteins in biological triplicates without missing values. The data show that FGF2 protects the cells from the antiproliferative effect of Gefitinib and largely prevents reprogramming of the proteome and phosphoproteome. Simultaneous EGFR/FGFR or EGFR/GSG2 (Haspin) inhibition overcomes this resistance, and the phosphoproteomic experiments further prioritized the RAS/MEK/ERK as well as the PI3K/mTOR axis for combination treatment. Consequently, the MEK inhibitor Trametinib prevented FGF2-mediated survival of EGFR inhibitor-resistant cells when used in combination with Gefitinib. Surprisingly, the PI3K/mTOR inhibitor Omipalisib reversed resistance mediated by all four growth factors tested, making it an interesting candidate for mitigating the effects of the tumor microenvironment.
Collapse
Affiliation(s)
- Heiner Koch
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - Mathias Wilhelm
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany
| | - Benjamin Ruprecht
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| | - Scarlet Beck
- Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , 82152 Martinsried, Germany
| | - Martin Frejno
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,Department of Oncology, University of Oxford , OX3 7DQ Oxford, United Kingdom
| | - Susan Klaeger
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany
| | - Bernhard Kuster
- Chair for Proteomics and Bioanalytics, Technical University of Munich , 85354 Freising, Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ) , 69120 Heidelberg, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München , 85354 Freising, Germany
| |
Collapse
|
73
|
Ghatalia P, Yang ES, Lasseigne BN, Ramaker RC, Cooper SJ, Chen D, Sudarshan S, Wei S, Guru AS, Zhao A, Cooper T, Della Manna DL, Naik G, Myers RM, Sonpavde G. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets. PLoS One 2016; 11:e0160924. [PMID: 27574806 PMCID: PMC5004806 DOI: 10.1371/journal.pone.0160924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 01/05/2023] Open
Abstract
Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.
Collapse
Affiliation(s)
- Pooja Ghatalia
- Department of Internal Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, United States of America
| | - Eddy S. Yang
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | | | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Genetics, UAB, Birmingham, AL, United States of America
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Dongquan Chen
- UAB Department of Preventive Medicine, Birmingham, AL, United States of America
| | - Sunil Sudarshan
- UAB Department of Urology, Birmingham, AL, United States of America
| | - Shi Wei
- UAB Department of Urologic Pathology, Birmingham, AL, United States of America
| | - Arjun S. Guru
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | - Amy Zhao
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | - Tiffiny Cooper
- Department of Radiation Oncology, UAB, Birmingham, AL, United States of America
| | | | - Gurudatta Naik
- UAB Department of Medicine, Section of Hematology-Oncology and the UAB Comprehensive Cancer Center, Birmingham, AL, United States of America
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Guru Sonpavde
- UAB Department of Medicine, Section of Hematology-Oncology and the UAB Comprehensive Cancer Center, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
74
|
Lavogina D, Kestav K, Chaikuad A, Heroven C, Knapp S, Uri A. Co-crystal structures of the protein kinase haspin with bisubstrate inhibitors. Acta Crystallogr F Struct Biol Commun 2016; 72:339-45. [PMID: 27139824 PMCID: PMC4854560 DOI: 10.1107/s2053230x16004611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
Haspin is a mitotic protein kinase that is responsible for the phosphorylation of Thr3 of histone H3, thereby creating a recognition motif for docking of the chromosomal passenger complex that is crucial for the progression of cell division. Here, two high-resolution models of haspin with previously reported inhibitors consisting of an ATP analogue and a histone H3(1-7) peptide analogue are presented. The structures of the complexes confirm the bisubstrate character of the inhibitors by revealing the signature binding modes of the moieties targeting the ATP-binding site and the protein substrate-binding site of the kinase. This is the first structural model of a bisubstrate inhibitor targeting haspin. The presented structural data represent a model for the future development of more specific haspin inhibitors.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Katrin Kestav
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England
| | - Christina Heroven
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Asko Uri
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
75
|
Gatchalian J, Gallardo CM, Shinsky SA, Ospina RR, Liendo AM, Krajewski K, Klein BJ, Andrews FH, Strahl BD, M van Wely KH, Kutateladze TG. Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Res 2016; 44:6102-12. [PMID: 27016734 PMCID: PMC5291243 DOI: 10.1093/nar/gkw193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
Abstract
Histone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription. We detail the molecular mechanisms by which H3T3ph/K4me3/T6ph switches mediate activities of H3K4me3-binding proteins, including those containing plant homeodomain (PHD) and double Tudor reader domains. Our results derived from nuclear magnetic resonance chemical shift perturbation analysis, orthogonal binding assays and cell fluorescence microscopy studies reveal a strong anti-correlation between histone H3T3/T6 phosphorylation and retention of PHD finger proteins in chromatin during mitosis. Together, our findings uncover the mechanistic rules of chromatin engagement for H3K4me3-specific readers during cell division.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Carmen Mora Gallardo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Stephen A Shinsky
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruben Rosas Ospina
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrea Mansilla Liendo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Krzysztof Krajewski
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Forest H Andrews
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Karel H M van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
76
|
Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW. Targeting Mitosis in Cancer: Emerging Strategies. Mol Cell 2016; 60:524-36. [PMID: 26590712 DOI: 10.1016/j.molcel.2015.11.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic. This review briefly examines past cell-cycle-targeted therapeutics and outlines how experience with these agents has provided valuable insight to refine and improve anti-mitotic strategies. An overview of emerging anti-mitotic approaches with promising pre-clinical results is provided, and the concept of exploiting the genomic instability of tumor cells through therapeutic inhibition of mitotic checkpoints is discussed. We believe this strategy has a high likelihood of success given its potential to enhance therapeutic index by targeting tumor-specific vulnerabilities. This reasoning stimulated our development of novel inhibitors targeting the critical regulators of genomic stability and the mitotic checkpoint: AURKA, PLK4, and Mps1/TTK.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Kelsie L Thu
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Jacqueline M Mason
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Heiko Blaser
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Mark R Bray
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
77
|
Perez-Salvia M, Simó-Riudalbas L, Ausió J, Esteller M. Barcelona Conference on Epigenetics and Cancer: 50 years of histone acetylation. Epigenetics 2016; 10:446-51. [PMID: 25942103 DOI: 10.1080/15592294.2015.1039222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The Barcelona Conference on Epigenetics and Cancer (BCEC) was held in Barcelona, Spain, on October 1(st) and 2(nd), 2014. The meeting was co-organized by the Cancer Epigenetics and Biology Program (PEBC-IDIBELL) and B·Debate, an initiative of Biocat, with the support of "la Caixa" Foundation. The scientific committee was comprised of leading scientists in the field of epigenetics: Dr. Manel Esteller, director of PEBC-IDIBELL, Dr. Alejandro Vaquero and Dr. Esteban Ballestar, from PEBC-IDIBELL, Juan Ausió from the University of Victoria (Canada), and Marcus Buschbeck, from the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), as BCEC series coordinator. This meeting was the second edition of the BCEC series, which was launched by 5 leading Barcelonan institutes to bring together leading investigators in the fields of epigenetics and chromatin research. The topics discussed during the meeting included the current challenges, opportunities, and perspectives surrounding the study of histone modifications (focusing in acetylation), chromatin structure and gene expression, and the involvement of histone acetylation in physiology and diseases, such as cancer or neurological diseases.
Collapse
Affiliation(s)
- Montserrat Perez-Salvia
- a Cancer Epigenetics Group; Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute (IDIBELL) ; Barcelona , Catalonia , Spain
| | | | | | | |
Collapse
|
78
|
Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist Updat 2015; 24:1-12. [PMID: 26830311 DOI: 10.1016/j.drup.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.
Collapse
|
79
|
78495111110.1016/j.molcel.2015.11.006" />
|
80
|
Rajendran R, Liang J, Tang MYA, Henry B, Chuang KH. Optimization of arterial spin labeling MRI for quantitative tumor perfusion in a mouse xenograft model. NMR IN BIOMEDICINE 2015; 28:988-997. [PMID: 26104980 DOI: 10.1002/nbm.3330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/18/2015] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Perfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow-sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor. To assess the sensitivity and reliability for measuring low perfusion, the lumbar muscle was used as a reference region. By optimizing the number of averages and inversion times, muscle perfusion as low as 32.4 ± 4.8 (mean ± standard deviation) ml/100 g/min could be measured in 20 min at 7 T with a quantification error of 14.4 ± 9.1%. Applying the optimized protocol, heterogeneous perfusion ranging from 49.5 to 211.2 ml/100 g/min in a renal carcinoma was observed. To understand the relationship with tumor pathology, global and regional tumor perfusion was compared with histological staining of blood vessels (CD34), hypoxia (CAIX) and apoptosis (TUNEL). No correlation was observed when the global tumor perfusion was compared with these pathological parameters. Regional analysis shows that areas of high perfusion had low microvessel density, which was due to larger vessel area compared with areas of low perfusion. Nonetheless, these were not correlated with hypoxia or apoptosis. The results suggest that tumor perfusion may reflect certain aspect of angiogenesis, but its relationship with other pathologies needs further investigation.
Collapse
Affiliation(s)
- Reshmi Rajendran
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Jieming Liang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Mei Yee Annie Tang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Brian Henry
- Translational Medicine Research Centre, MSD, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
- Clinical Imaging Research Centre, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
81
|
Rüben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS One 2015; 10:e0132453. [PMID: 26192590 PMCID: PMC4508061 DOI: 10.1371/journal.pone.0132453] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A) with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau) without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.
Collapse
Affiliation(s)
- Katharina Rüben
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Anne Wurzlbauer
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Agnes Walte
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Franz Bracher
- Department of Pharmacy—Center for Drug Research, Ludwig Maximilian University, Munich, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
82
|
Kang H, Park YS, Cho DH, Kim JS, Oh JS. Dynamics of histone H3 phosphorylation at threonine 3 during meiotic maturation in mouse oocytes. Biochem Biophys Res Commun 2015; 458:280-6. [PMID: 25645018 DOI: 10.1016/j.bbrc.2015.01.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
Abstract
Various histone residues are post-translationally modified during the cell cycle. Among these, histone H3 phosphorylation at threonine 3 (H3T3ph) is newly characterized and has been considered to be crucial for chromosome dynamics during mitosis. However, little is known about the role of H3T3ph during mouse oocyte maturation. In the present study, we examined H3T3ph expression and localization during oocyte meiosis. Our results showed that H3T3ph was tightly associated with condensed chromosomes during meiotic maturation. H3T3ph along the chromosome arms was dissociated at anaphase/telophase I, but centromeric H3T3ph remained intact. Moreover, the inhibition of H3T3ph with the small molecule inhibitors CHR-6494 and 5-Itu impaired segregation of homologous chromosomes during meiosis. Partial inhibition of H3T3ph revealed that centromeric Aurora B/C kinase is sufficient to complete meiosis I, but Aurora B/C kinase along the chromosome arms is required to ensure accurate homologous chromosome segregation. Therefore, our results demonstrate that H3T3ph is a universal regulator of chromosome dynamics during oocyte meiosis and mitosis.
Collapse
Affiliation(s)
- Hyoeun Kang
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Yong Seok Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
83
|
Rozek LS, Dolinoy DC, Sartor MA, Omenn GS. Epigenetics: relevance and implications for public health. Annu Rev Public Health 2014; 35:105-22. [PMID: 24641556 DOI: 10.1146/annurev-publhealth-032013-182513] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.
Collapse
|
84
|
Nguyen AL, Gentilello AS, Balboula AZ, Shrivastava V, Ohring J, Schindler K. Phosphorylation of threonine 3 on histone H3 by haspin kinase is required for meiosis I in mouse oocytes. J Cell Sci 2014; 127:5066-78. [PMID: 25315835 DOI: 10.1242/jcs.158840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Meiosis I (MI), the division that generates haploids, is prone to errors that lead to aneuploidy in females. Haspin is a kinase that phosphorylates histone H3 on threonine 3, thereby recruiting Aurora kinase B (AURKB) and the chromosomal passenger complex (CPC) to kinetochores to regulate mitosis. Haspin and AURKC, an AURKB homolog, are enriched in germ cells, yet their significance in regulating MI is not fully understood. Using inhibitors and overexpression approaches, we show a role for haspin during MI in mouse oocytes. Haspin-perturbed oocytes display abnormalities in chromosome morphology and alignment, improper kinetochore-microtubule attachments at metaphase I and aneuploidy at metaphase II. Unlike in mitosis, kinetochore localization remained intact, whereas the distribution of the CPC along chromosomes was absent. The meiotic defects following haspin inhibition were similar to those observed in oocytes where AURKC was inhibited, suggesting that the correction of microtubule attachments during MI requires AURKC along chromosome arms rather than at kinetochores. Our data implicate haspin as a regulator of the CPC and chromosome segregation during MI, while highlighting important differences in how chromosome segregation is regulated between MI and mitosis.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amanda S Gentilello
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmed Z Balboula
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vibha Shrivastava
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jacob Ohring
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
85
|
AKT kinase pathway: a leading target in cancer research. ScientificWorldJournal 2013; 2013:756134. [PMID: 24327805 PMCID: PMC3845396 DOI: 10.1155/2013/756134] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/23/2023] Open
Abstract
AKT1, a serine/threonine-protein kinase also known as AKT kinase, is involved in the regulation of various signalling downstream pathways including metabolism, cell proliferation, survival, growth, and angiogenesis. The AKT kinases pathway stands among the most important components of cell proliferation mechanism. Several approaches have been implemented to design an efficient drug molecule to target AKT kinases, although the promising results have not been confirmed. In this paper we have documented the detailed molecular insight of AKT kinase protein and proposed a probable doxorubicin based approach in inhibiting miR-21 based cancer cell proliferation. Moreover, the inhibition of miR-21 activation by raising the FOXO3A concentration seems promising in reducing miR-21 mediated cancer activation in cell. Furthermore, the use of next generation sequencing and computational drug design approaches will greatly assist in designing a potent drug molecule against the associated cancer cases.
Collapse
|
86
|
Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 2013; 123:25-42. [PMID: 24091645 PMCID: PMC3967068 DOI: 10.1007/s00412-013-0437-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022]
Abstract
The ultimate goal of cell division is equal transmission of the duplicated genome to two new daughter cells. Multiple surveillance systems exist that monitor proper execution of the cell division program and as such ensure stability of our genome. One widely studied protein complex essential for proper chromosome segregation and execution of cytoplasmic division (cytokinesis) is the chromosomal passenger complex (CPC). This highly conserved complex consists of Borealin, Survivin, INCENP, and Aurora B kinase, and has a dynamic localization pattern during mitosis and cytokinesis. Not surprisingly, it also performs various functions during these phases of the cell cycle. In this review, we will give an overview of the latest insights into the regulation of CPC localization and discuss if and how specific localization impacts its diverse functions in the dividing cell.
Collapse
|
87
|
Marzo I, Naval J. Antimitotic drugs in cancer chemotherapy: promises and pitfalls. Biochem Pharmacol 2013; 86:703-10. [PMID: 23886991 DOI: 10.1016/j.bcp.2013.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
Abstract
Cancer cells usually display higher proliferation rates than normal cells. Some currently used antitumor drugs, such as vinca alkaloids and taxanes, act by targeting microtubules and inhibiting mitosis. In the last years, different mitotic regulators have been proposed as drug target candidates for antitumor therapies. In particular, inhibitors of Cdks, Chks, Aurora kinase and Polo-like kinase have been synthesized and evaluated in vitro and in animal models and some of them have reached clinical trials. However, to date, none of these inhibitors has been still approved for use in chemotherapy regimes. We will discuss here the most recent preclinical information on those new antimitotic drugs, as well as the possible molecular bases underlying their lack of clinical efficiency. Also, advances in the identification of other mitosis-related targets will be also summarized.
Collapse
Affiliation(s)
- Isabel Marzo
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain.
| | | |
Collapse
|
88
|
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J 2013; 451:313-28. [PMID: 23398362 DOI: 10.1042/bj20121418] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the development of a number of efficacious kinase inhibitors, the strategies for rational design of these compounds have been limited by target promiscuity. In an effort to better understand the nature of kinase inhibition across the kinome, especially as it relates to off-target effects, we screened a well-defined collection of kinase inhibitors using biochemical assays for inhibitory activity against 234 active human kinases and kinase complexes, representing all branches of the kinome tree. For our study we employed 158 small molecules initially identified in the literature as potent and specific inhibitors of kinases important as therapeutic targets and/or signal transduction regulators. Hierarchical clustering of these benchmark kinase inhibitors on the basis of their kinome activity profiles illustrates how they relate to chemical structure similarities and provides new insights into inhibitor specificity and potential applications for probing new targets. Using this broad dataset, we provide a framework for assessing polypharmacology. We not only discover likely off-target inhibitor activities and recommend specific inhibitors for existing targets, but also identify potential new uses for known small molecules.
Collapse
|
89
|
Muñoz-Pinedo C, González-Suárez E, Portela A, Gentilella A, Esteller M. Exploiting tumor vulnerabilities: epigenetics, cancer metabolism and the mTOR pathway in the era of personalized medicine. Cancer Res 2013; 73:4185-9. [PMID: 23687347 DOI: 10.1158/0008-5472.can-13-0512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patient stratification according to drug responses, together with the discovery of novel antitumor targets, is leading to a new era of personalized cancer treatments. With the aim of identifying emerging pathways and the challenges faced by clinicians during clinical trials, the IDIBELL Cancer Conference on Personalized Cancer Medicine took place in Barcelona on December 3-4, 2012. This conference brought together speakers working in different areas of cancer research (epigenetics, metabolism and the mTOR pathway, cell death and the immune system, clinical oncology) to discuss the latest developments in personalized cancer medicine.
Collapse
Affiliation(s)
- Cristina Muñoz-Pinedo
- Cell Death Regulation Group, School of Medicine, University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
90
|
Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 2013; 17:361-8. [PMID: 23647984 DOI: 10.1016/j.cbpa.2013.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
Protein phosphatase-1 (PP1) has long been neglected as a potential drug target owing to its misinterpreted unselective nature. However, growing evidence demonstrates that PP1 is highly selective in complex with regulatory proteins at the holoenzyme level, each of which is involved in different essential cellular signaling events. Here we summarize promising approaches to specifically activate or inhibit PP1 activity, and discuss remaining challenges and potential solutions. The summarized chemical tools pave the way for a better understanding of PP1's role in signaling networks, and the effects resulting from their application suggest their potential as future therapeutic candidates.
Collapse
|
91
|
Abstract
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.
Collapse
Affiliation(s)
- Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research; Newcastle University, Newcastle upon Tyne, England.
| |
Collapse
|
92
|
Cancer epigenetics: new therapies and new challenges. JOURNAL OF DRUG DELIVERY 2013; 2013:529312. [PMID: 23533770 PMCID: PMC3600296 DOI: 10.1155/2013/529312] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/20/2013] [Indexed: 12/31/2022]
Abstract
Cancer is nowadays considered to be both a genetic and an epigenetic disease. The most well studied epigenetic modification in humans is DNA methylation; however it becomes increasingly acknowledged that DNA methylation does not work alone, but rather is linked to other modifications, such as histone modifications. Epigenetic abnormalities are reversible and as a result novel therapies that work by reversing epigenetic effects are being increasingly explored. The biggest clinical impact of epigenetic modifying agents in neoplastic disorders thus far has been in haematological malignancies, and the efficacy of DNMT inhibitors and HDAC inhibitors in blood cancers clearly attests to the principle that therapeutic modification of the cancer cell epigenome can produce clinical benefit. This paper will discuss the most well studied epigenetic modifications and how these are linked to cancer, will give a brief overview of the clinical use of epigenetics as biomarkers, and will focus in more detail on epigenetic drugs and their use in solid and blood cancers.
Collapse
|
93
|
Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:828143. [PMID: 23533526 PMCID: PMC3595678 DOI: 10.1155/2013/828143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.
Collapse
|
94
|
De Antoni A, Maffini S, Knapp S, Musacchio A, Santaguida S. A small-molecule inhibitor of Haspin alters the kinetochore functions of Aurora B. ACTA ACUST UNITED AC 2013; 199:269-84. [PMID: 23071153 PMCID: PMC3471222 DOI: 10.1083/jcb.201205119] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chemical biology study characterizes the role of Haspin kinase in centromere recruitment of the chromosome passenger complex and in spindle assembly checkpoint function. By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B.
Collapse
Affiliation(s)
- Anna De Antoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
95
|
Wang F, Ulyanova NP, Daum JR, Patnaik D, Kateneva AV, Gorbsky GJ, Higgins JM. Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J Cell Biol 2012; 199:251-68. [PMID: 23071152 PMCID: PMC3471242 DOI: 10.1083/jcb.201205106] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/18/2012] [Indexed: 01/14/2023] Open
Abstract
Haspin phosphorylates histone H3 at threonine-3 (H3T3ph), providing a docking site for the Aurora B complex at centromeres. Aurora B functions to correct improper kinetochore-microtubule attachments and alert the spindle checkpoint to the presence of misaligned chromosomes. We show that Haspin inhibitors decreased H3T3ph, resulting in loss of centromeric Aurora B and reduced phosphorylation of centromere and kinetochore Aurora B substrates. Consequently, metaphase chromosome alignment and spindle checkpoint signaling were compromised. These effects were phenocopied by microinjection of anti-H3T3ph antibodies. Retargeting Aurora B to centromeres partially restored checkpoint signaling and Aurora B-dependent phosphorylation at centromeres and kinetochores, bypassing the need for Haspin activity. Haspin inhibitors did not obviously affect phosphorylation of histone H3 at serine-10 (H3S10ph) by Aurora B on chromosome arms but, in Aurora B reactivation assays, recovery of H3S10ph was delayed. Haspin inhibitors did not block Aurora B localization to the spindle midzone in anaphase or Aurora B function in cytokinesis. Thus, Haspin inhibitors reveal centromeric roles of Aurora B in chromosome movement and spindle checkpoint signaling.
Collapse
Affiliation(s)
- Fangwei Wang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Natalia P. Ulyanova
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - John R. Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Debasis Patnaik
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Anna V. Kateneva
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Gary J. Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jonathan M.G. Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
96
|
Chatterjee J, Beullens M, Sukackaite R, Qian J, Lesage B, Hart DJ, Bollen M, Köhn M. Development of a peptide that selectively activates protein phosphatase-1 in living cells. Angew Chem Int Ed Engl 2012; 51:10054-9. [PMID: 22962028 PMCID: PMC3531619 DOI: 10.1002/anie.201204308] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Indexed: 11/29/2022]
Abstract
The first cell-penetrating peptide that activates protein phosphatase-1 (PP1) by disrupting a subset of PP1 complexes in living cells has been developed. Activated PP1 rapidly dephosphorylates its substrates, counteracting kinase activity inside cells. Activation of PP1 can thus be a novel approach to study PP1 function and to counteract Ser/Thr kinase activity under pathologically increased kinase signaling.
Collapse
Affiliation(s)
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit LeuvenLeuven (Belgium)
| | - Rasa Sukackaite
- EMBL Grenoble Outstation and Unit of Virus Host-Cell InteractionsUMI3265 UFJ-EMBL-CNRS, Grenoble (France)
| | - Junbin Qian
- Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit LeuvenLeuven (Belgium)
| | - Bart Lesage
- Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit LeuvenLeuven (Belgium)
| | - Darren J Hart
- EMBL Grenoble Outstation and Unit of Virus Host-Cell InteractionsUMI3265 UFJ-EMBL-CNRS, Grenoble (France)
| | | | - Maja Köhn
- Genome Biology UnitEMBL, Meyerhofstrasse 1, 69117 Heidelberg (Germany)
| |
Collapse
|
97
|
Chatterjee J, Beullens M, Sukackaite R, Qian J, Lesage B, Hart DJ, Bollen M, Köhn M. Entwicklung eines Peptids zur selektiven Aktivierung von Proteinphosphatase-1 in lebenden Zellen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
98
|
Vidal A, Muñoz C, Guillén MJ, Moretó J, Puertas S, Martínez-Iniesta M, Figueras A, Padullés L, García-Rodriguez FJ, Berdiel-Acer M, Pujana MA, Salazar R, Gil-Martin M, Martí L, Ponce J, Molleví DG, Capella G, Condom E, Viñals F, Huertas D, Cuevas C, Esteller M, Avilés P, Villanueva A. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin Cancer Res 2012; 18:5399-411. [PMID: 22896654 DOI: 10.1158/1078-0432.ccr-12-1513] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is the fifth leading cause of death in women diagnosed with gynecologic malignancies. The low survival rate is because of its advanced-stage diagnosis and either intrinsic or acquired resistance to standard platinum-based chemotherapy. So, the development of effective innovative therapeutic strategies to overcome cisplatin resistance remains a high priority. EXPERIMENTAL DESIGN To investigate new treatments in in vivo models reproducing EOCs tumor growth, we generated a preclinical model of ovarian cancer after orthotopic implantation of a primary serous tumor in nude mice. Further, matched model of acquired cisplatin-resistant tumor version was successfully derived in mice. Effectiveness of lurbinectedin (PM01183) treatment, a novel marine-derived DNA minor groove covalent binder, was assessed in both preclinical models as a single and a combined-cisplatin agent. RESULTS Orthotopically perpetuated tumor grafts mimic the histopathological characteristics of primary patients' tumors and they also recapitulate in mice characteristic features of tumor response to cisplatin treatments. We showed that single lurbinectedin or cisplatin-combined therapies were effective in treating cisplatin-sensitive and cisplatin-resistant preclinical ovarian tumor models. Furthermore, the strongest in vivo synergistic effect was observed for combined treatments, especially in cisplatin-resistant tumors. Lurbinectedin tumor growth inhibition was associated with reduced proliferation, increased rate of aberrant mitosis, and subsequent induced apoptosis. CONCLUSIONS Taken together, preclinical orthotopic ovarian tumor grafts are useful tools for drug development, providing hard evidence that lurbinectedin might be a useful therapy in the treatment of EOC by overcoming cisplatin resistance.
Collapse
Affiliation(s)
- August Vidal
- Department of Pathology, Hospital Universitari de Bellvitge, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Huyck L, Ampe C, Van Troys M. The XTT cell proliferation assay applied to cell layers embedded in three-dimensional matrix. Assay Drug Dev Technol 2012; 10:382-92. [PMID: 22574651 DOI: 10.1089/adt.2011.391] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell proliferation, a main target in cancer therapy, is influenced by the surrounding three-dimensional (3D) extracellular matrix (ECM). In vitro drug screening is, thus, optimally performed under conditions in which cells are grown (embedded or trapped) in dense 3D matrices, as these most closely mimic the adhesive and mechanical properties of natural ECM. Measuring cell proliferation under these conditions is, however, technically more challenging compared with two-dimensional (2D) culture and other "3D culture conditions," such as growth on top of a matrix (pseudo-3D) or in spongy scaffolds with large pore sizes. Consequently, such measurements are only slowly applied on a wider scale. To advance this, we report on the equal quality (dynamic range, background, linearity) of measuring the proliferation of cell layers embedded in dense 3D matrices (collagen, Matrigel) compared with cells in 2D culture using the easy (one-step) and in 2D well-validated, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-assay. The comparison stresses the differences in proliferation kinetics and drug sensitivity of matrix-embedded cells versus 2D culture. Using the specific cell-layer-embedded 3D matrix setup, quantitative measurements of cell proliferation and cell invasion are shown to be possible in similar assay conditions, and cytostatic, cytotoxic, and anti-invasive drug effects can thus be reliably determined and compared in physiologically relevant settings. This approach in the 3D matrix holds promise for improving early-stage, high-throughput drug screening, targeting either highly invasive or highly proliferative subpopulations of cancers or both.
Collapse
Affiliation(s)
- Lynn Huyck
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
100
|
Cuny GD, Ulyanova NP, Patnaik D, Liu JF, Lin X, Auerbach K, Ray SS, Xian J, Glicksman MA, Stein RL, Higgins JMG. Structure-activity relationship study of beta-carboline derivatives as haspin kinase inhibitors. Bioorg Med Chem Lett 2012; 22:2015-9. [PMID: 22335895 PMCID: PMC3288743 DOI: 10.1016/j.bmcl.2012.01.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Abstract
Haspin is a serine/threonine kinase that phosphorylates Thr-3 of histone H3 in mitosis that has emerged as a possible cancer therapeutic target. High throughput screening of approximately 140,000 compounds identified the beta-carbolines harmine and harmol as moderately potent haspin kinase inhibitors. Based on information obtained from a structure-activity relationship study previously conducted for an acridine series of haspin inhibitors in conjunction with in silico docking using a recently disclosed crystal structure of the kinase, harmine analogs were designed that resulted in significantly increased haspin kinase inhibitory potency. The harmine derivatives also demonstrated less activity towards DYRK2 compared to the acridine series. In vitro mouse liver microsome stability and kinase profiling of a representative member of the harmine series (42, LDN-211898) are also presented.
Collapse
Affiliation(s)
- Gregory D Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|