51
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
52
|
MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: a report from the children's oncology group. Oncotarget 2017; 9:6416-6432. [PMID: 29464082 PMCID: PMC5814222 DOI: 10.18632/oncotarget.23740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Neuroblastomas with a high mitosis-karyorrhexis index (High-MKI) are often associated with MYCN amplification, MYCN protein overexpression and adverse clinical outcome. However, the prognostic effect of MYC-family protein expression on these neuroblastomas is less understood, especially when MYCN is not amplified. To address this, MYCN and MYC protein expression in High-MKI cases (120 MYCN amplified and 121 non-MYCN amplified) was examined by immunohistochemistry. The majority (101) of MYCN-amplified High-MKI tumors were MYCN(+), leaving one MYC(+), 2 both(+), and 16 both(−)/(+/−), whereas non-MYCN-amplified cases appeared heterogeneous, including 7 MYCN(+), 36 MYC(+), 3 both(+), and 75 both(−)/(+/−) tumors. These MYC-family proteins(+), or MYC-family driven tumors, were most likely to have prominent nucleolar (PN) formation (indicative of augmented rRNA synthesis). High-MKI neuroblastoma patients showed a poor survival irrespective of MYCN amplification. However, patients with MYC-family driven High-MKI neuroblastomas had significantly lower survival than those with non-MYC-family driven tumors. MYCN(+), MYC-family protein(+), PN(+), and clinical stage independently predicted poor survival. Specific inhibition of hyperactive rRNA synthesis and protein translation was shown to be an effective way to suppress MYC/MYCN protein expression and neuroblastoma growth. Together, MYC-family protein overexpression and PN formation should be included in new neuroblastoma risk stratification and considered for potential therapeutic targets.
Collapse
|
53
|
Fancello L, Kampen KR, Hofman IJF, Verbeeck J, De Keersmaecker K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 2017; 8:14462-14478. [PMID: 28147343 PMCID: PMC5362418 DOI: 10.18632/oncotarget.14895] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/21/2023] Open
Abstract
For many years, defects in the ribosome have been associated to cancer. Recently, somatic mutations and deletions affecting ribosomal protein genes were identified in a few leukemias and solid tumor types. However, systematic analysis of all 81 known ribosomal protein genes across cancer types is lacking. We screened mutation and copy number data of respectively 4926 and 7322 samples from 16 cancer types and identified six altered genes (RPL5, RPL11, RPL23A, RPS5, RPS20 and RPSA). RPL5 was located at a significant peak of heterozygous deletion or mutated in 11% of glioblastoma, 28% of melanoma and 34% of breast cancer samples. Moreover, patients with low RPL5 expression displayed worse overall survival in glioblastoma and in one breast cancer cohort. RPL5 knockdown in breast cancer cell lines enhanced G2/M cell cycle progression and accelerated tumor progression in a xenograft mouse model. Interestingly, our data suggest that the tumor suppressor role of RPL5 is not only mediated by its known function as TP53 or c-MYC regulator. In conclusion, RPL5 heterozygous inactivation occurs at high incidence (11-34%) in multiple tumor types, currently representing the most common somatic ribosomal protein defect in cancer, and we demonstrate a tumor suppressor role for RPL5 in breast cancer.
Collapse
Affiliation(s)
- Laura Fancello
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Kim R Kampen
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Jelle Verbeeck
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
54
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
55
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
56
|
The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease. Biochem Soc Trans 2017; 44:1086-90. [PMID: 27528756 PMCID: PMC4984446 DOI: 10.1042/bst20160106] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Ribosomes are abundant, large RNA–protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease.
Collapse
|
57
|
Lee HC, Wang H, Baladandayuthapani V, Lin H, He J, Jones RJ, Kuiatse I, Gu D, Wang Z, Ma W, Lim J, O'Brien S, Keats J, Yang J, Davis RE, Orlowski RZ. RNA Polymerase I Inhibition with CX-5461 as a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma. Br J Haematol 2017; 177:80-94. [PMID: 28369725 DOI: 10.1111/bjh.14525] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Dysregulation of MYC is frequently implicated in both early and late myeloma progression events, yet its therapeutic targeting has remained a challenge. Among key MYC downstream targets is ribosomal biogenesis, enabling increases in protein translational capacity necessary to support the growth and self-renewal programmes of malignant cells. We therefore explored the selective targeting of ribosomal biogenesis with the small molecule RNA polymerase (pol) I inhibitor CX-5461 in myeloma. CX-5461 induced significant growth inhibition in wild-type (WT) and mutant TP53 myeloma cell lines and primary samples, in association with increases in downstream markers of apoptosis. Moreover, Pol I inhibition overcame adhesion-mediated drug resistance and resistance to conventional and novel agents. To probe the TP53-independent mechanisms of CX-5461, gene expression profiling was performed on isogenic TP53 WT and knockout cell lines and revealed reduction of MYC downstream targets. Mechanistic studies confirmed that CX-5461 rapidly suppressed both MYC protein and MYC mRNA levels. The latter was associated with an increased binding of the RNA-induced silencing complex (RISC) subunits TARBP2 and AGO2, the ribosomal protein RPL5, and MYC mRNA, resulting in increased MYC transcript degradation. Collectively, these studies provide a rationale for the clinical translation of CX-5461 as a novel therapeutic approach to target MYC in myeloma.
Collapse
Affiliation(s)
- Hans C Lee
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Wang
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Heather Lin
- The Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin He
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard J Jones
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isere Kuiatse
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dongmin Gu
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiqiang Wang
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wencai Ma
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Lim
- Senhwa Biosciences, Inc., San Diego, CA, USA
| | | | - Jonathan Keats
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jing Yang
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Davis
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Z Orlowski
- The Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
58
|
Zhu J, Hao P, Lu C, Ma Y, Feng Y, Yu X. Expression and RNA Interference of Ribosomal Protein L5 Gene in Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3832884. [PMID: 28973571 PMCID: PMC5538327 DOI: 10.1093/jisesa/iex047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Indexed: 05/05/2023]
Abstract
The ribosomal proteins play important roles in the growth and development of organisms. This study aimed to explore the function of NlRPL5 (GenBank KX379234), a ribosomal protein L5 gene, in the brown planthopper Nilaparvata lugens. The open reading frame of NlRPL5 was cloned from N. lugens based on a previous transcriptome analysis. The results revealed that the open reading frame of NlRPL5 is of 900 bp, encoding 299 amino acid residues. The reverse transcription quantitative PCR results suggested that the expression of NlRPL5 gene was stronger in gravid females, but was relatively low in nymphs, males, and newly emerged females. The expression level of NlRPL5 in the ovary was about twofolds of that in the head, thorax, or fat body. RNAi of dsNlRPL5 resulted in a significant reduction of mRNA levels, ∼50% decrease in comparison with the dsGFP control at day 6. Treatment of dsNlRPL5 significantly restricted the ovarian development, and decreased the number of eggs laid on the rice (Oryza sativa) plants. This study provided a new clue for further study on the function and regulation mechanism of NlRPL5 in N. lugens.
Collapse
Affiliation(s)
- Jiajun Zhu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
- Corresponding author, e-mail:
| | - Chaofeng Lu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
| | - Yan Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China (; ; ; ; ; )
| |
Collapse
|
59
|
Zhang W, Tong D, Liu F, Li D, Li J, Cheng X, Wang Z. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis. Oncotarget 2016; 7:5800-14. [PMID: 26735579 PMCID: PMC4868722 DOI: 10.18632/oncotarget.6807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022] Open
Abstract
Ribosomal protein S7 (RPS7) acts as a tumor suppressor in primary tumorigenesis but its role in cancer metabolism remains unclear. In this study, we demonstrate that RPS7 inhibits the colorectal cancer (CRC) cell glycolysis by suppressing the expression of hypoxia-inducible transcription factor-1α (HIF-1α) and the metabolic promoting proteins glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB). Further study found that the enhanced expression of HIF-1α abrogates the overexpression effects of RPS7 on CRC. In vivo assays also demonstrate that RPS7 suppresses colorectal cancer tumorigenesis and glycolysis. Clinically, the tissue microarray (TMA) analysis discloses the negative regulatory association between RPS7 and HIF-1α in colorectal cancer. Meanwhile, overexpression of RPS7 in colorectal cancer tissues predicts good overall survival and progression-free survival, but high expression level of HIF-1α indicates poor overall survival and progression-free survival. Overall, we reveal that RPS7 inhibits colorectal cancer glycolysis through HIF-1α-associated signaling and may be a promising biomarker for prognosis prediction and a potential target for therapeutic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Duo Tong
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Liu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiajia Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziliang Wang
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
60
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
61
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
62
|
Jung JH, Kim MJ, Lee H, Lee J, Kim J, Lee HJ, Shin EA, Kim YH, Kim B, Shim BS, Kim SH. Farnesiferol c induces apoptosis via regulation of L11 and c-Myc with combinational potential with anticancer drugs in non-small-cell lung cancers. Sci Rep 2016; 6:26844. [PMID: 27231235 PMCID: PMC4882547 DOI: 10.1038/srep26844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
Though Farnesiferol c (FC) has been reported to have anti-angiogenic and antitumor activity, the underlying antitumor mechanism of FC still remains unclear. Thus, in the present study, we investigated the apoptotic mechanism of FC in human H1299 and H596 non-small lung cancer cells (NSCLCs). FC significantly showed cytotoxicity, increased sub-G1 accumulation, and attenuated the expression of Bcl-2, Bcl-xL, Survivin and procaspase 3 in H1299 and H596 cells. Furthermore, FC effectively suppressed the mRNA expression of G1 arrest related genes such as Cyclin D1, E2F1 transcription factor and CDC25A by RT-PCR. Interestingly, FC inhibited the expression of c-Myc, ribosomal protein L11 (L11) and nucleolin (NCL) in H1299 and H596 cells. Of note, silencing of L11 by siRNA transfection enhanced the expression of c-Myc through a negative feedback mechanism, while c-Myc knockdown downregulated L11 in H1299 cells. Additionally, combined treatment of FC and puromycin/doxorubicin promoted the activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 in H1299 cells compared to single treatment. Taken together, our findings suggest that FC induces apoptosis and G1 arrest via regulation of ribosomal protein L11 and c-Myc and also enhances antitumor effect of puromycin or doxorubicin in NSCLCs.
Collapse
Affiliation(s)
- Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Moon Joon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyemin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jihyun Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jaekwang Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyun Joo Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yoon Hyeon Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
63
|
Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 2016; 6:12587-602. [PMID: 25869206 PMCID: PMC4494960 DOI: 10.18632/oncotarget.3494] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/07/2015] [Indexed: 11/25/2022] Open
Abstract
The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
Collapse
|
64
|
Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, Xiong J, Flemington E, Lu H. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep 2016; 6:23542. [PMID: 27005522 PMCID: PMC4804275 DOI: 10.1038/srep23542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor p53 transcriptionally regulates hundreds of genes involved in various cellular functions. However, the detailed mechanisms underlying the selection of p53 targets in response to different stresses are still elusive. Here, we identify TFIIS.h, a transcription elongation factor, as a new transcriptional target of p53, and also show that it can enhance the efficiency of transcription elongation of apoptosis-associated bax gene, but not cell cycle-associated p21 (CDKN1A) gene. TFIIS.h is revealed as a p53 target through microarray analysis of RNAs extracted from cells treated with or without inauhzin (INZ), a p53 activator, and further confirmed by RT-q-PCR, western blot, luciferase reporter, and ChIP assays. Interestingly, knocking down TFIIS.h impairs, but overexpressing TFIIS.h promotes, induction of bax, but not other p53 targets including p21, by p53 activation. In addition, overexpression of TFIIS.h induces cell death in a bax- dependent fashion. These findings reveal a mechanism by which p53 utilizes TFIIS.h to selectively promote the transcriptional elongation of the bax gene, upsurging cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jun Deng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Michael Strong
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Shelya Zeng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Erik Flemington
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| |
Collapse
|
65
|
Jung JH, Liao JM, Zhang Q, Zeng S, Nguyen D, Hao Q, Zhou X, Cao B, Kim SH, Lu H. Inauhzin(c) inactivates c-Myc independently of p53. Cancer Biol Ther 2016; 16:412-9. [PMID: 25692307 DOI: 10.1080/15384047.2014.1002698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncogene MYC is deregulated in many human cancers, especially in lymphoma. Previously, we showed that inauhzin (INZ) activates p53 and inhibits tumor growth. However, whether INZ could suppress cancer cell growth independently of p53 activity is still elusive. Here, we report that INZ(c), a second generation of INZ, suppresses c-Myc activity and thus inhibits growth of human lymphoma cells in a p53-independent manner. INZ(c) treatment decreased c-Myc expression at both mRNA and protein level, and suppressed c-Myc transcriptional activity in human Burkitt's lymphoma Raji cells with mutant p53. Also, we showed that overexpressing ectopic c-Myc rescues the inhibition of cell proliferation by INZ(c) in Raji cells, implicating c-Myc activity is targeted by INZ(c). Interestingly, the effect of INZ(c) on c-Myc expression was impaired by disrupting the targeting of c-Myc mRNA by miRNAs via knockdown of ribosomal protein (RP) L5, RPL11, or Ago2, a subunit of RISC complex, indicating that INZ(c) targets c-Myc via miRNA pathways. These results reveal a new mechanism that INZ
Collapse
Key Words
- Dox, doxorubicin
- FACS, Fluorescence-activated cell sorting
- GTP, guanosine triphosphate
- INZ, inauhzin
- Inauhzin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, Phosphate Buffered Saline
- PI, propidium iodide
- RISC, RNA-induced silencing complex
- RP, ribosomal protein
- RPL11
- RPL5
- UTR, untranslated region
- c-Myc
- lymphoma
- microRNA
- q-RT-PCR, Real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Ji Hoon Jung
- a Department of Biochemistry & Molecular Biology and Cancer Center ; Tulane University School of Medicine ; New Orleans , LA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|
67
|
Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol 2015; 3:24. [PMID: 25918701 PMCID: PMC4394695 DOI: 10.3389/fcell.2015.00024] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis.
Collapse
Affiliation(s)
- William J Davis
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Peter Z Lehmann
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Weimin Li
- College of Medical Sciences, Washington State University Spokane, WA, USA
| |
Collapse
|
68
|
Meng X, Carlson NR, Dong J, Zhang Y. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways. Oncogene 2015; 34:5709-17. [PMID: 25823025 DOI: 10.1038/onc.2015.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023]
Abstract
The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf-Mdm2-p53 and the ribosomal protein (RP)-Mdm2-p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2(C305F) mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 pathways might be a single p19Arf-RP-Mdm2-p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2(C305F) mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2(C305F) mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2(C305F) mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2(C305F) mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 are non-redundant pathways possessing similar capabilities to activate p53 upon c-Myc overexpression.
Collapse
Affiliation(s)
- X Meng
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| | - N R Carlson
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - J Dong
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| | - Y Zhang
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
69
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
70
|
Zhou X, Hao Q, Zhang Q, Liao JM, Ke JW, Liao P, Cao B, Lu H. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ 2014; 22:755-66. [PMID: 25301064 DOI: 10.1038/cdd.2014.167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023] Open
Abstract
Over the past decade, a number of ribosomal proteins (RPs) have been found to have a role in activating the tumor suppressor p53 by directly binding to MDM2 and impeding its activity toward p53. Herein, we report that RPL5 and RPL11 can also enhance the transcriptional activity of a p53 homolog TAp73, but through a distinct mechanism. Interestingly, even though RPL5 and RPL11 were not shown to bind to p53, they were able to directly associate with the transactivation domain of TAp73 independently of MDM2 in response to RS. This association led to perturbation of the MDM2-TAp73 interaction, consequently preventing MDM2 from its association with TAp73 target gene promoters. Furthermore, ectopic expression of RPL5 or RPL11 markedly induced TAp73 transcriptional activity by antagonizing MDM2 suppression. Conversely, ablation of either of the RPs compromised TAp73 transcriptional activity, as evident by the reduction of p21 and Puma expression, in response to 5-fluorouracil (5-FU). Consistently, overexpression of RPL5 or RPL11 enhanced, but knockdown of either of them hampered, TAp73-mediated apoptosis. Intriguingly, simultaneous knockdown of TAp73 and either of the RPs was required for rescuing the 5-FU-triggered S-phase arrest of p53-null tumor cells. These results demonstrate a novel mechanism underlying the inhibition of tumor cell proliferation and growth by these two RPs via TAp73 activation.
Collapse
Affiliation(s)
- X Zhou
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - Q Hao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - Q Zhang
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - J-M Liao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - J-W Ke
- 1] Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA [2] Department of Laboratory Medicine; Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - P Liao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - B Cao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - H Lu
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| |
Collapse
|