51
|
Yeramian A, García V, Bergadà L, Domingo M, Santacana M, Valls J, Martinez-Alonso M, Carceller JA, Cussac AL, Dolcet X, Matias-Guiu X. Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer. Mol Imaging Biol 2017; 18:545-56. [PMID: 26604096 DOI: 10.1007/s11307-015-0907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we first aimed to evaluate the effects in vitro and in vivo, of the Hsp90 inhibitor NVP-AUY922, in endometrial cancer (EC). We also aimed to track nuclear factor kappa B (NF-κB) signalling, a key pathway involved in endometrial carcinogenesis and to check whether NVP-AUY922 treatment modulates it both in vitro and in vivo. PROCEDURES I n vitro effects of NVP-AUY922 on EC cell growth and the signalling pathways were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic assays, Western Blot and luciferase assay. NVP-AUY922 effect on Ishikawa (IK) xenograft growth was evaluated in vivo, and NF-κB activity was monitored using bioluminescence imaging. RESULTS NVP-AUY922 inhibited the growth of three endometrial cell lines tested in vitro. In vivo, NVP-AUY922 reduced tumour growth of 47 % (p = 0.042) compared to control condition. Moreover, the bioluminescence signal of the tumours harbouring IK NF-κB-LUC cells was significantly reduced in NVP-AUY922-treated animals compared to untreated ones. CONCLUSIONS NVP-AUY922 reduced EC tumour growth and NF-κB signalling both in vitro and in vivo. As therapeutic resistance of EC remains a challenge for oncologists nowadays, we think that NVP-AUY922 represents a valid alternative to conventional chemotherapy, and we believe that this approach for assessing and tracking the activation of NF-κB pathway may be of therapeutic benefit.
Collapse
Affiliation(s)
- Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain.
| | - Virginia García
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Laura Bergadà
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Mónica Domingo
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Joan Valls
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Montserrat Martinez-Alonso
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - José-Antonio Carceller
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Antonio Llombart Cussac
- Department of Oncology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| |
Collapse
|
52
|
Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep 2017; 37:BSR20170036. [PMID: 28246353 PMCID: PMC5408653 DOI: 10.1042/bsr20170036] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM) and is the leading cause of vision loss globally. However, the pathogenic mechanism and clinical therapy still needs further improvement. The biologic significance of myocardial infarction associated transcript (MIAT) in DR remains unknown. Here, we aim to explore the mechanism between MIAT and DR, which is essential for RD. Streptozotocin (STZ) was used to induce DM mice and high glucose was used to stimulate cells. ChIP was used to detect the binding activity between nuclear factor κB (NF-κB) and the promoter of the MIAT gene, luciferase activity assay was used to detect the target-specific selectivity between miR-29b and MIAT. The expressions of MIAT and p-p65 were increased in STZ-induced DM mice and high glucose stimulated rat retinal Müller cells (rMC-1) cells. ChIP results revealed that high glucose promoted the binding activity between NF-κB and MIAT, while Bay11-7082 acted as an inhibitor for NF-κB that suppressed the binding activity. miR-29b controled MIAT to regulate its expression and MIAT overexpression suppressed miR-29b, but promoted Sp1. High glucose stimulation increased the cell apoptosis and decreased the cell activity, while MIAT suppression reversed the effect induced by high glucose, however, miR-29b knockdown reversed the effects induced by MIAT suppression. Our results provided evidence that the mechanism of cell apoptosis in DR might be associated with the regulation of MIAT, however, miR-29b acted as a biomarker that was regulated by MIAT and further regulated cell apoptosis in DR.
Collapse
|
53
|
ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers (Basel) 2017; 9:cancers9040033. [PMID: 28417948 PMCID: PMC5406708 DOI: 10.3390/cancers9040033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.
Collapse
|
54
|
Verma G, Vishnoi K, Tyagi A, Jadli M, Singh T, Goel A, Sharma A, Agarwal K, Prasad SC, Pandey D, Sharma S, Mehrotra R, Singh SM, Bharti AC. Characterization of key transcription factors as molecular signatures of HPV-positive and HPV-negative oral cancers. Cancer Med 2017; 6:591-604. [PMID: 28155253 PMCID: PMC5345654 DOI: 10.1002/cam4.983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Prior studies established constitutively active AP-1, NF-κB, and STAT3 signaling in oral cancer. Differential expression/activation of specific members of these transcription factors has been documented in HPV-positive oral lesions that respond better to therapy. We performed a comprehensive analysis of differentially expressed, transcriptionally active members of these pivotal signaling mediators to develop specific signatures of HPV-positive and HPV-negative oral lesions by immunohistochemical method that is applicable in low-resource settings. We examined a total of 31 prospective and 30 formalin-fixed, paraffin-embedded tissues from treatment-naïve, histopathologically and clinically confirmed cases diagnosed as oral or oropharyngeal squamous cell carcinoma (OSCC/OPSCC). Following determination of their HPV status by GP5 + /GP6 + PCR, the sequential sections of the tissues were evaluated for expression of JunB, JunD, c-Fos, p50, p65, STAT3, and pSTAT3(Y705), along with two key regulatory proteins pEGFR and p16 by IHC. Independent analysis of JunB and p65 showed direct correlation with HPV positivity, whereas STAT3 and pSTAT3 were inversely correlated. A combined analysis of transcription factors revealed a more restrictive combination, characterized by the presence of AP-1 and NF-κB lacking involvement of STAT3 that strongly correlated with HPV-positive tumors. Presence of STAT3/pSTAT3 with NF-κB irrespective of the presence or absence of AP-1 members was present in HPV-negative lesions. Expression of pSTAT3 strongly correlated with all the AP-1/NF-κB members (except JunD), its upstream activator pEGFRY1092 , and HPV infection-related negative regulator p16. Overall, we show a simple combination of AP-1, NF-κB, and STAT3 members' expression that may serve as molecular signature of HPV-positive lesions or more broadly the tumors that show better prognosis.
Collapse
Affiliation(s)
- Gaurav Verma
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
- School of BiotechnologyBanaras Hindu UniversityVaranasiUttar PradeshIndia
- Molecular Oncology LaboratoryDepartment of ZoologyUniversity of DelhiDelhiIndia
| | - Kanchan Vishnoi
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
- School of BiotechnologyBanaras Hindu UniversityVaranasiUttar PradeshIndia
- Molecular Oncology LaboratoryDepartment of ZoologyUniversity of DelhiDelhiIndia
| | - Abhishek Tyagi
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
| | - Mohit Jadli
- Molecular Oncology LaboratoryDepartment of ZoologyUniversity of DelhiDelhiIndia
| | - Tejveer Singh
- Molecular Oncology LaboratoryDepartment of ZoologyUniversity of DelhiDelhiIndia
| | - Ankit Goel
- Subharti Dental CollegeMeerutUttar PradeshIndia
| | | | | | - Subhash Chandra Prasad
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
| | - Durgatosh Pandey
- Department of OncosurgeryDr. Bheem Rao Ambedkar Institute‐Rotary Cancer HospitalAll India Institute Of Medical SciencesNew DelhiIndia
| | - Shashi Sharma
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
| | - Ravi Mehrotra
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
| | | | - Alok Chandra Bharti
- Division of Molecular OncologyInstitute of Cytology & Preventive Oncology (ICMR)NoidaUttar PradeshIndia
- Molecular Oncology LaboratoryDepartment of ZoologyUniversity of DelhiDelhiIndia
| |
Collapse
|
55
|
Tan ZH, Zhang Y, Tian Y, Tan W, Li YH. IκB kinase b Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16 + Cervical Cancer Cells. Chin Med J (Engl) 2017; 129:2703-2707. [PMID: 27824003 PMCID: PMC5126162 DOI: 10.4103/0366-6999.193463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Methods: Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16− (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. Results: The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16− (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. Conclusions: IKKβ may mediate the downregulation of p53 and p21 by LPS in HPV16+ cervical cancer cells.
Collapse
Affiliation(s)
- Zhi-Hui Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Yan Tian
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Wei Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ying-Hua Li
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
56
|
Vageli DP, Prasad ML, Sasaki CT. Gastro-duodenal fluid induced nuclear factor-κappaB activation and early pre-malignant alterations in murine hypopharyngeal mucosa. Oncotarget 2016; 7:5892-908. [PMID: 26745676 PMCID: PMC4868729 DOI: 10.18632/oncotarget.6824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/24/2015] [Indexed: 01/01/2023] Open
Abstract
We recently described the role of gastro-duodenal fluids (GDFs) in generating changes consistent with hypopharyngeal neoplasia through activation of NF-κB pathway, using an in vitro model of human hypopharyngeal normal keratinocytes. Here, we further provide evidence that gastro-duodenal reflux is a risk factor for early pre-malignant alterations in hypopharyngeal mucosa (HM) related to an activated NF-κB oncogenic pathway, using both an in vitro and a novel in vivo model of C57Bl/6J mice. Histological, immunohistochemical and automated quantitative analysis documents significant NF-κB activation and early pre-malignant alterations in HM topically exposed to GDFs, compared to acid alone and other controls. Early pre-malignant histologic lesions exhibited increased Ki67, CK14 and ΔNp63, cell proliferation markers, changes of cell adhesion molecules, E-Cadherin and β-catenin, and STAT3 activation. The in vivo effect of NF-κB activation is positively correlated with p-STAT3, Ki67, CK14 or β-catenin expression, while GDFs induce significant transcriptional activation of RELA(p65), bcl-2, TNF-α, STAT3, EGFR and wnt5A, in vivo. Our in vivo model demonstrates selectively activated NF-κB in response to topically administrated GDFs, leading to early pre-malignant events in HM.
Collapse
Affiliation(s)
- Dimitra P Vageli
- Department of Surgery,Yale Larynx Laboratory Section of Otolaryngology, Yale School of Medicine, New Haven, CT, USA
| | - Manju L Prasad
- Pathology and of Surgery (Otolaryngology), Yale School of Medicine, New Haven, CT, USA
| | - Clarence T Sasaki
- Department of Surgery,Yale Larynx Laboratory Section of Otolaryngology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
57
|
Si H, Lu H, Yang X, Mattox A, Jang M, Bian Y, Sano E, Viadiu H, Yan B, Yau C, Ng S, Lee SK, Romano RA, Davis S, Walker RL, Xiao W, Sun H, Wei L, Sinha S, Benz CC, Stuart JM, Meltzer PS, Van Waes C, Chen Z. TNF-α modulates genome-wide redistribution of ΔNp63α/TAp73 and NF-κB cREL interactive binding on TP53 and AP-1 motifs to promote an oncogenic gene program in squamous cancer. Oncogene 2016; 35:5781-5794. [PMID: 27132513 PMCID: PMC5093089 DOI: 10.1038/onc.2016.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/11/2022]
Abstract
The Cancer Genome Atlas (TCGA) network study of 12 cancer types (PanCancer 12) revealed frequent mutation of TP53, and amplification and expression of related TP63 isoform ΔNp63 in squamous cancers. Further, aberrant expression of inflammatory genes and TP53/p63/p73 targets were detected in the PanCancer 12 project, reminiscent of gene programs comodulated by cREL/ΔNp63/TAp73 transcription factors we uncovered in head and neck squamous cell carcinomas (HNSCCs). However, how inflammatory gene signatures and cREL/p63/p73 targets are comodulated genome wide is unclear. Here, we examined how the inflammatory factor tumor necrosis factor-α (TNF-α) broadly modulates redistribution of cREL with ΔNp63α/TAp73 complexes and signatures genome wide in the HNSCC model UM-SCC46 using chromatin immunoprecipitation sequencing (ChIP-seq). TNF-α enhanced genome-wide co-occupancy of cREL with ΔNp63α on TP53/p63 sites, while unexpectedly promoting redistribution of TAp73 from TP53 to activator protein-1 (AP-1) sites. cREL, ΔNp63α and TAp73 binding and oligomerization on NF-κB-, TP53- or AP-1-specific sequences were independently validated by ChIP-qPCR (quantitative PCR), oligonucleotide-binding assays and analytical ultracentrifugation. Function of the binding activity was confirmed using TP53-, AP-1- and NF-κB-specific REs or p21, SERPINE1 and IL-6 promoter luciferase reporter activities. Concurrently, TNF-α regulated a broad gene network with cobinding activities for cREL, ΔNp63α and TAp73 observed upon array profiling and reverse transcription-PCR. Overlapping target gene signatures were observed in squamous cancer subsets and in inflamed skin of transgenic mice overexpressing ΔNp63α. Furthermore, multiple target genes identified in this study were linked to TP63 and TP73 activity and increased gene expression in large squamous cancer samples from PanCancer 12 TCGA by CircleMap. PARADIGM inferred pathway analysis revealed the network connection of TP63 and NF-κB complexes through an AP-1 hub, further supporting our findings. Thus, inflammatory cytokine TNF-α mediates genome-wide redistribution of the cREL/p63/p73, and AP-1 interactome, to diminish TAp73 tumor suppressor function and reciprocally activate NF-κB and AP-1 gene programs implicated in malignancy.
Collapse
Affiliation(s)
- Han Si
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Hai Lu
- Orthopaedic Center, Zhujiang Hospital Guangzhou, Guangdong,
China
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Austin Mattox
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Minyoung Jang
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Eleanor Sano
- Department of Chemistry and Biochemistry, University of
California, San Diego, La Jolla, CA
| | - Hector Viadiu
- Instituto de Química, Universidad Nacional
Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria,
Mexico City, D.F. 04510, MÉXICO
| | - Bin Yan
- LKS Faculty of Medicine and School of Biomedical Sciences,
LKS Faculty of Medicine and Center of Genome Sciences, The University of Hong Kong,
Hong Kong, China
| | | | - Sam Ng
- Department of Biomolecular Engineering, Center for
Biomolecular Sciences and Engineering, University of California, Santa Cruz, Santa
Cruz, CA
| | - Steven K. Lee
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Rose-Anne Romano
- Department of Biochemistry, State University of New York at
Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New
York, USA
| | - Sean Davis
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Robert L. Walker
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, National
Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson,
Arkansas
| | - Hongwei Sun
- Biodata Mining and Discovery Section, National Institute
of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Lai Wei
- Clinical Immunology Section, National Eye Institute, NIH,
Bethesda, Maryland, USA
- State Key Laboratory of Ophthalmology, Zhongshan
Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at
Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New
York, USA
| | | | - Joshua M. Stuart
- Department of Biomolecular Engineering, Center for
Biomolecular Sciences and Engineering, University of California, Santa Cruz, Santa
Cruz, CA
| | - Paul S. Meltzer
- Cancer Genetics Branch, National Cancer Institute,
Bethesda, Maryland, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch,
National Institute on Deafness and Other Communication Disorders, NIH, Bethesda,
Maryland, USA
| |
Collapse
|
58
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
59
|
Zhu G, Huang Y, Wu C, Wei D, Shi Y. Activation of G-Protein-Coupled Estrogen Receptor Inhibits the Migration of Human Nonsmall Cell Lung Cancer Cells via IKK-β/NF-κB Signals. DNA Cell Biol 2016; 35:434-42. [PMID: 27082459 DOI: 10.1089/dna.2016.3235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen signals have been suggested to modulate the progression and metastasis of nonsmall cell lung cancer (NSCLC), which is one of the leading causes of cancer deaths worldwide. While there are limited data concerning the roles and effects of G-protein-coupled estrogen receptor (GPER) on the progression of NSCLC, our present study reveals that the expression of GPER in NSCLC cells is obviously greater than that in lung fibroblast cell line MRC-5. Activation of GPER via its specific agonist G-1 decreases the in vitro motility of A549 and H358 cells and the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Further, G-1 treatment can rapidly decrease the phosphorylation, nuclear translocation, and promoter activities of NF-κB in NSCLC cells. BAY 11-7082, the inhibitor of NF-κB, also inhibits the expression of MMP-2/9, while overexpression of p65 significantly attenuates G-1-induced downregulation of MMP-2/9. It suggests that inhibition of NF-κB mediates G-1-induced MMP-2/9 downregulation. G-1 treatment significantly down regulates the phosphorylation of IκB kinase β (IKK-β) and IκBα, while not IKK-α, in both 549 and H358 cells. ACHP, the specific inhibitor of IKK-β, can reinforce G-1-induced MMP-2/9 downregulation and invasion suppression of A549 cells. Collectively, our results suggest that activation of GPER can inhibit the migration of human NSCLC cells via suppression of IKK-β/NF-κB signals. These findings will help to better understand the roles and mechanisms of GPER as a potential therapy target for NSCLC patients.
Collapse
Affiliation(s)
- Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Chunting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Dong Wei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yingxin Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| |
Collapse
|
60
|
Sasaki CT, Issaeva N, Vageli DP. In vitro model for gastroduodenal reflux-induced nuclear factor-kappaB activation and its role in hypopharyngeal carcinogenesis. Head Neck 2015; 38 Suppl 1:E1381-91. [DOI: 10.1002/hed.24231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Clarence T. Sasaki
- Department of Surgery, Section of Otolaryngology; Yale School of Medicine; New Haven Connecticut
| | - Natalia Issaeva
- Department of Surgery, Section of Otolaryngology; Yale School of Medicine; New Haven Connecticut
| | - Dimitra P. Vageli
- Department of Surgery, Section of Otolaryngology; Yale School of Medicine; New Haven Connecticut
| |
Collapse
|
61
|
Giopanou I, Lilis I, Papaleonidopoulos V, Marazioti A, Spella M, Vreka M, Papadaki H, Stathopoulos GT. Comprehensive Evaluation of Nuclear Factor-κΒ Expression Patterns in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0132527. [PMID: 26147201 PMCID: PMC4493092 DOI: 10.1371/journal.pone.0132527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
Nuclear factor (NF)-κB signalling is required for lung adenocarcinoma development in mice, and both of its subunits RelA and RelB were independently reported to be highly expressed in human non-small cell lung cancer (NSCLC). To comprehensively examine NF-κB expression in NSCLC, we analyzed serial sections of primary tumor samples from 77 well-documented patients (36 adenocarcinomas, 40 squamous cell carcinomas and 3 large cell carcinomas) for immunoreactivity of RelA, RelB, P50, and P52/P100. Tumor and intratumoral stroma areas were discriminated based on proliferating cell nuclear antigen immunoreactivity and inflammatory infiltration was assessed in intratumoral stroma areas. NF-κB immunoreactivity was quantified by intensity, extent, and nuclear localization and was cross-examined with tumor cell proliferation, inflammatory infiltration, and clinical-pathologic data. We found that the expression of the different NF-κB subunits was not concordant, warranting our integral approach. Overall, RelA, RelB, and P50 were expressed at higher levels compared with P52/P100. However, RelA and P50 were predominantly expressed in intratumoral stroma, but RelB in tumor cells. Importantly, tumor area RelA expression was correlated with the intensity of inflammatory infiltration, whereas RelB expression was identified in proliferating tumor cells. Using multiple logistic regression, we identified that tumor RelB expression was an independent predictor of lymph node metastasis, and tumor P50 was an independent predictor of TNM6 stage IIB or higher, whereas tumor RelA was an independent predictor of inflammatory infiltration. We conclude that pathologic studies of NF-κB expression in cancer should include multiple pathway components. Utilizing such an approach, we identified intriguing associations between distinct NF-κB subunits and clinical and pathologic features of NSCLC.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Malamati Vreka
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Helen Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgios T. Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- * E-mail:
| |
Collapse
|
62
|
Gaykalova DA, Manola JB, Ozawa H, Zizkova V, Morton K, Bishop JA, Sharma R, Zhang C, Michailidi C, Considine M, Tan M, Fertig EJ, Hennessey PT, Ahn J, Koch WM, Westra WH, Khan Z, Chung CH, Ochs MF, Califano JA. NF-κB and stat3 transcription factor signatures differentiate HPV-positive and HPV-negative head and neck squamous cell carcinoma. Int J Cancer 2015; 137:1879-89. [PMID: 25857630 DOI: 10.1002/ijc.29558] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 12/29/2022]
Abstract
Using high-throughput analyses and the TRANSFAC database, we characterized TF signatures of head and neck squamous cell carcinoma (HNSCC) subgroups by inferential analysis of target gene expression, correcting for the effects of DNA methylation and copy number. Using this discovery pipeline, we determined that human papillomavirus-related (HPV+) and HPV- HNSCC differed significantly based on the activity levels of key TFs including AP1, STATs, NF-κB and p53. Immunohistochemical analysis confirmed that HPV- HNSCC is characterized by co-activated STAT3 and NF-κB pathways and functional studies demonstrate that this phenotype can be effectively targeted with combined anti-NF-κB and anti-STAT therapies. These discoveries correlate strongly with previous findings connecting STATs, NF-κB and AP1 in HNSCC. We identified five top-scoring pair biomarkers from STATs, NF-κB and AP1 pathways that distinguish HPV+ from HPV- HNSCC based on TF activity and validated these biomarkers on TCGA and on independent validation cohorts. We conclude that a novel approach to TF pathway analysis can provide insight into therapeutic targeting of patient subgroup for heterogeneous disease such as HNSCC.
Collapse
Affiliation(s)
- Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Judith B Manola
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Hiroyuki Ozawa
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Veronika Zizkova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Laboratory of Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Kathryn Morton
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Justin A Bishop
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Chi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,University of Virginia, Charlottesville, VA
| | - Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Michael Considine
- Division of Oncology Biostatistics, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Marietta Tan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Elana J Fertig
- Division of Oncology Biostatistics, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Patrick T Hennessey
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Mid-Michigan Ear, Nose, and Throat, East Lansing, MI
| | - Julie Ahn
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - William H Westra
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Christine H Chung
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Michael F Ochs
- Division of Oncology Biostatistics, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD.,Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD.,Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, MD
| |
Collapse
|
63
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
64
|
Shostak K, Chariot A. EGFR and NF-κB: partners in cancer. Trends Mol Med 2015; 21:385-93. [DOI: 10.1016/j.molmed.2015.04.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/29/2022]
|
65
|
Bian Y, Han J, Kannabiran V, Mohan S, Cheng H, Friedman J, Zhang L, VanWaes C, Chen Z. MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer. Int J Biol Sci 2015; 11:411-22. [PMID: 25798061 PMCID: PMC4366640 DOI: 10.7150/ijbs.10745] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/17/2015] [Indexed: 11/05/2022] Open
Abstract
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.
Collapse
Affiliation(s)
- Yansong Bian
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Jiawei Han
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 2. Department of Otolaryngology Head and Neck Surgery, National Key Discipline, Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Vishnu Kannabiran
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 3. NIH Clinical Research Training Program-NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Suresh Mohan
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA; ; 3. NIH Clinical Research Training Program-NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Hui Cheng
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Jay Friedman
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Luo Zhang
- 2. Department of Otolaryngology Head and Neck Surgery, National Key Discipline, Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Carter VanWaes
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| | - Zhong Chen
- 1. Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA
| |
Collapse
|
66
|
Lou C, Yokoyama S, Saiki I, Hayakawa Y. Selective anticancer activity of hirsutine against HER2‑positive breast cancer cells by inducing DNA damage. Oncol Rep 2015; 33:2072-6. [PMID: 25672479 DOI: 10.3892/or.2015.3796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 11/05/2022] Open
Abstract
Hirsutine is one of the major alkaloids isolated from plants of the Uncaria genus and is known for its cardioprotective, anti‑hypertensive and anti-arrhythmic activities. We recently reported that hirsutine is an anti-metastatic phytochemical by targeting NF-κB activation in a murine breast cancer model. In the present study, we further examined the clinical utility of hirsutine against human breast cancer. Among six distinct human breast cancer cell lines, hirsutine showed strong cytotoxicity against HER2-positive/p53-mutated MDA-MB‑453 and BT474 cell lines. Conversely, HER2-negative/p53 wild‑type MCF-7 and ZR-75-1 cell lines showed resistance against hirsutine-induced cytotoxicity. Hirsutine induced apoptotic cell death in the MDA-MB-453 cells, but not in the MCF-7 cells, through activation of caspases. Furthermore, hirsutine induced the DNA damage response in the MDA-MB-453 cells, but not in the MCF-7 cells, as highlighted by the upregulation of γH2AX expression. Along with the induction of the DNA damage response, the suppression of HER2, NF-κB and Akt pathways and the activation of the p38 MAPK pathway in the MDA-MB-453 cells were observed. Considering that there was no difference between MDA-MB-453 and MCF-7 cells in regards to irinotecan‑induced DNA damage response, our present results indicate the selective anticancer activity of hirsutine in HER2-positive breast cancer by inducing a DNA damage response.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
67
|
Allen CT, Van Waes C. Immunohistochemical analysis of NF-κB in human tumor tissue. Methods Mol Biol 2015; 1280:459-68. [PMID: 25736767 DOI: 10.1007/978-1-4939-2422-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunohistochemistry is a valuable molecular technique based upon the principle of antibody specificity for target antigens in tissues with subsequent development of an amplified colorimetric signal. When staining specificity is ensured with the use of an isotype control, it allows for semiquantitative comparisons, tissue/cellular localization, and inference regarding activation status of proteins of interest. Here we describe a protocol for immunohistochemical analysis of NF-κB family members in fresh frozen human tumor samples.
Collapse
Affiliation(s)
- Clint T Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders (NICDC)/NIH, 10 Center Drive, CRC 4-2740, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
68
|
Nielsen C, Jakobsen MA, Larsen MJ, Müller AC, Hansen S, Lillevang ST, Fisker N, Barington T. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol 2014; 34:916-21. [PMID: 25216719 DOI: 10.1007/s10875-014-0097-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 01/03/2023]
Abstract
We report an infant of consanguineous parents of Turkish decent with a novel immunodeficiency associated with homozygosity for a nonsense mutation of the gene encoding Inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKβ). At five months, she presented with respiratory insufficiency and Pneumocystis jirovecii pneumonia which was successfully treated. At nine months, iatrogenic systemic infection with Mycobacterium bovis was found and eventually led to her death at age 14 months. Laboratory findings were reminiscent of hyper-IgM syndrome, but genetic testing gave no explanation before whole exome sequencing revealed a novel mutation abrogating signaling through the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Lou C, Takahashi K, Irimura T, Saiki I, Hayakawa Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int J Oncol 2014; 45:2085-91. [PMID: 25175557 DOI: 10.3892/ijo.2014.2624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-κB (NF-κB) activation has been implicated not only in carcinogenesis but also in cancer cell invasion and metastatic process; therefore, targeting the NF-κB pathway is an attractive strategy for controlling meta-stasis. Amongst 56 chemically defined compounds derived from natural products, we have identified a new phytochemical compound Hirsutine, which strongly suppresses NF-κB activity in murine 4T1 breast cancer cells. In accordance with the NF-κB inhibition, Hirsutine reduced the metastatic potential of 4T1 cells, as seen in the inhibition of the migration and invasion capacity of 4T1 cells. Hirsutine further inhibited the constitutive expression of MMP-2 and MMP-9 in 4T1 cells, and reduced the in vivo lung metastatic potential of 4T1 cells in the experimental model. Given that the migration of human breast cancer cells was also inhibited, our present study implies that Hirsutine is an attractive phytochemical compound for reducing metastasis potential of cancer cells by regulating tumor-promoting NF-κB activity.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kei Takahashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
70
|
Safdari Y, Khalili M, Farajnia S, Asgharzadeh M, Yazdani Y, Sadeghi M. Recent advances in head and neck squamous cell carcinoma--a review. Clin Biochem 2014; 47:1195-202. [PMID: 24912050 DOI: 10.1016/j.clinbiochem.2014.05.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/10/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The current review presents the results of the most recent studies performed on different aspects of human head and neck squamous cell carcinoma, including radiosensitivity induction, efficiency improvement of monoclonal antibodies using low-intensity ultrasound, chemical compounds such as toll-like receptor (TLC) agonists, dasatinib, resveratrol and niclosamide, nuclear inhibition of cancer using STAT3 decoy oligonucleotide, efficiency of anti-EGFR monoclonal antibodies in detection of head and neck cancers and other related issues.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Science Research Center, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yaghoub Yazdani
- Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahnaz Sadeghi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
71
|
Du J, Romano RA, Si H, Mattox A, Bian Y, Yang X, Sinha S, Van Waes C, Chen Z. Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation. J Pathol 2014; 232:356-68. [DOI: 10.1002/path.4302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/15/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Jihui Du
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
- Central Laboratory, Nanshan Hospital; Guangdong Medical College; Shenzhen Guangdong 518052 China
| | - Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo; Center for Excellence in Bioinformatics and Life Sciences; Buffalo New York USA
| | - Han Si
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| | - Austin Mattox
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| | - Yansong Bian
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| | - Xinping Yang
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo; Center for Excellence in Bioinformatics and Life Sciences; Buffalo New York USA
| | - Carter Van Waes
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| | - Zhong Chen
- Clinical Genomics Unit and Tumor Biology Section, Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; NIH, Bethesda MD 20892 USA
| |
Collapse
|
72
|
The TGFβ1 pathway is required for NFκB dependent gene expression in mouse keratinocytes. Cytokine 2013; 64:652-9. [PMID: 24075100 DOI: 10.1016/j.cyto.2013.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/27/2013] [Accepted: 09/01/2013] [Indexed: 12/21/2022]
Abstract
The transforming growth factor-beta 1 (TGFβ1) and NFκB pathways are important regulators of epidermal homeostasis, inflammatory responses and carcinogenesis. Previous studies have shown extensive crosstalk between these pathways that is cell type and context dependent, but this has not been well-characterized in epidermal keratinocytes. Here we show that in primary mouse keratinocytes, TGFβ1 induces NFκB-luciferase reporter activity that is dependent on both NFκB and Smad3. TGFβ1-induced NFκB-luciferase activity was blocked by the IκB inhibitor parthenolide, the IκB super-repressor, a dominant negative TGFβ1-activated kinase 1 (TAK1) and genetic deletion of NFκB1. Coexpression of NFκB p50 or p65 subunits enhanced NFκB-luciferase activity. Similarly, inhibition of the TGFβ1 type I receptor with SB431542 or genetic deletion of Smad3 blocked TGFβ1 induction of NFκB-luciferase. TGFβ1 rapidly induced IKK phosphorylation but did not cause a detectable decrease in cytoplasmic IκB levels or nuclear translocation of NFκB subunits, although EMSA showed rapid NFκB nuclear binding activity that could be blocked by SB431542 treatment. TNFα, a well characterized NFκB target gene was also induced by TGFβ1 and this was blocked in NFκB+/- and -/- keratinocytes and by the IκB super-repressor. To test the effects of the TGFβ1 pathway on a biologically relevant activator of NFκB, we exposed mice and primary keratinocytes in culture to UVB irradiation. In primary keratinocytes UVB caused a detectable increase in levels of Smad2 phosphorylation that was dependent on ALK5, but no significant increase in SBE-dependent gene expression. Inhibition of TGFβ1 signaling in primary keratinocytes with SB431542 or genetic deletion of Tgfb1 or Smad3 suppressed UVB induction of TNFα message. Similarly, UVB induction of TNFα mRNA was blocked in skin of Tgfb1+/- mice. These studies demonstrate that intact TGFβ1 signaling is required for NFκB-dependent gene expression in mouse keratinocytes and skin and suggest that a convergence of these pathways in the nucleus rather than the cytoplasm may be critical for regulation of inflammatory pathways in skin by TGFβ1.
Collapse
|