51
|
Jin JO, Puranik N, Bui QT, Yadav D, Lee PCW. The Ubiquitin System: An Emerging Therapeutic Target for Lung Cancer. Int J Mol Sci 2021; 22:9629. [PMID: 34502538 PMCID: PMC8431782 DOI: 10.3390/ijms22179629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Quyen Thu Bui
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
52
|
Xu G, Yang Z, Ding Y, Liu Y, Zhang L, Wang B, Tang M, Jing T, Jiao K, Xu X, Chen Z, Xiang L, Xu C, Fu Y, Zhao X, Jin W, Liu Y. The deubiquitinase USP16 functions as an oncogenic factor in K-RAS-driven lung tumorigenesis. Oncogene 2021; 40:5482-5494. [PMID: 34294846 DOI: 10.1038/s41388-021-01964-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
K-RAS mutation and molecular alterations of its surrogates function essentially in lung tumorigenesis and malignant progression. However, it remains elusive how tumor-promoting and deleterious events downstream of K-RAS signaling are coordinated in lung tumorigenesis. Here, we show that USP16, a deubiquitinase involved in various biological processes, functions as a promoter for the development of K-RAS-driven lung tumor. Usp16 deletion significantly attenuates K-rasG12D-mutation-induced lung tumorigenesis in mice. USP16 upregulation upon RAS activation averts reactive oxygen species (ROS)-induced p38 activation that would otherwise detrimentally influence the survival and proliferation of tumor cells. In addition, USP16 interacts with and deubiquitinates JAK1, and thereby promoting lung tumor growth by augmenting JAK1 signaling. Therefore, our results reveal that USP16 functions critically in the K-RAS-driven lung tumorigenesis through modulating the strength of p38 and JAK1 signaling.
Collapse
Affiliation(s)
- Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Zehong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
53
|
Zhou XJ, Li R, Liu X, Qu YQ. Advances in deubiquitinating enzymes in lung adenocarcinoma. J Cancer 2021; 12:5573-5582. [PMID: 34405018 PMCID: PMC8364634 DOI: 10.7150/jca.56532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The process of ubiquitination and deubiquitination is widely present in the human body's protein reactions and plays versatile roles in multiple diseases. Deubiquitinating enzymes (DUBs) are significant regulators of this process, which cleave the ubiquitin (Ub) moiety from various substrates and maintain protein stability. Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer (NSCLC) and remains refractory to treatment. To elucidate the mechanism of LUAD and advance new therapeutic targets, we review the latest research progress on DUBs in LUAD. We summarize the biological capabilities of these DUBs and further highlight those DUBs that may serve as anticancer target candidates for precision treatment. We also discuss deubiquitinase inhibitors, which are expected to play a role in targeted LUAD therapy.
Collapse
Affiliation(s)
- Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University (Jinan 250012, China)
| |
Collapse
|
54
|
Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF, Cheng KC, Teng YN, Lin YH, Yen CH, Chiu CC. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 2021; 11:8813-8835. [PMID: 34522213 PMCID: PMC8419056 DOI: 10.7150/thno.62521] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, chemotherapies targeting apoptosis have emerged and demonstrated remarkable achievements. However, emerging evidence has shown that chemoresistance is mediated by impairing or bypassing apoptotic cell death. Several novel types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, have recently been reported to play significant roles in the modulation of cancer progression and are considered a promising strategy for cancer treatment. Thus, the switch between apoptosis and pyroptosis is also discussed. Cancer immunotherapy has gained increasing attention due to breakthroughs in immune checkpoint inhibitors; moreover, ferroptosis, necroptosis, and pyroptosis are highly correlated with the modulation of immunity in the tumor microenvironment. Compared with necroptosis and ferroptosis, pyroptosis is the primary mechanism for host defense and is crucial for bridging innate and adaptive immunity. Furthermore, recent evidence has demonstrated that pyroptosis exerts benefits on cancer immunotherapies, including immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell therapy (CAR-T). Hence, in this review, we elucidate the role of pyroptosis in cancer progression and the modulation of immunity. We also summarize the potential small molecules and nanomaterials that target pyroptotic cell death mechanisms and their therapeutic effects on cancer.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wun-Jyun Syue
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung 812, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
55
|
Kim MS, Kim SH, Yang SH, Kim MS. miR-4487 Enhances Gefitinib-Mediated Ubiquitination and Autophagic Degradation of EGFR in Non-Small Cell Lung Cancer Cells by Targeting USP37. Cancer Res Treat 2021; 54:445-457. [PMID: 34352998 PMCID: PMC9016303 DOI: 10.4143/crt.2021.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose With the identification of epidermal growth factor receptor (EGFR) mutations in non–small cell lung cancer (NSCLC) cells, EGFR–tyrosine kinase inhibitors (TKIs) are being used widely as the first-line of treatment in NSCLC. These inhibitors block auto-phosphorylation of activated EGFR by competing with ATP binding and mediate EGFR degradation independent of exogenous epidermal growth factor, which is associated with the mutation variants of EGFR. However, the precise mechanisms underlying the TKI-mediated EGFR degradation are still unclear. Materials and Methods To examine the physiological roles of miR-4487 and ubiquitin-specific peptidase 37 (USP37) in gefitinib-mediated EGFR degradation in NSCLC cells, multiple NSCLC cell lines were applied. The level of EGFR expression, apoptosis marker, and autophagic flux were determined by western blot. Expression level of miR-4487 and cell-cycle arrest was analyzed by TaqMan assay and flow cytometry respectively. Results We found that gefitinib mediates EGFR degradation under normal culture conditions, and is dependent on autophagic flux and the mutation variants of EGFR. Gefitinib reduced expression levels of USP37, which mediated EGFR degradation similar to gefitinib. Our results also showed a gefitinib-mediated increase in endogenous miR-4487 level and presented evidence for the direct targeting of USP37 by miR-4487, resulting in the sequential enhancement of ubiquitination, autophagy, and EGFR degradation. Thus, the depletion of USP37 and overexpression of miR-4487 led to an increase in gefitinib-mediated apoptotic cell death. Conclusion These data suggest that miR-4487 is a potential target for treating NSCLC, and miR-4487/USP37-regulated EGFR degradation is a determinant for developing gefitinib resistance.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Korea.,Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Korea
| | - So Hui Kim
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Korea
| |
Collapse
|
56
|
USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis 2021; 10:52. [PMID: 34272356 PMCID: PMC8285469 DOI: 10.1038/s41389-021-00338-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In hepatocellular carcinoma (HCC), aberrant expression of hypoxia-inducible factor 1 α (HIF1α) and increased aerobic glycolysis metabolism are drivers of resistance to therapy with the multi-kinase inhibitor Sorafenib. However, it has remained unknown how HIF1α is activated and how its activity and the subsequent induction of aerobic glycolysis promote Sorafenib resistance in HCC. Here, we report the ubiquitin-specific peptidase USP29 as a new regulator of HIF1α and of aerobic glycolysis during the development of Sorafenib resistance in HCC. In particular, we identified USP29 as a critical deubiquitylase (DUB) of HIF1α, which directly deubiquitylates and stabilizes HIF1α and, thus, promotes its transcriptional activity. Among the transcriptional targets of HIF1α is the gene encoding hexokinase 2 (HK2), a key enzyme of the glycolytic pathway. The absence of USP29, and thus of HIF1α transcriptional activity, reduces the levels of aerobic glycolysis and restores sensitivity to Sorafenib in Sorafenib-resistant HCC cells in vitro and in xenograft transplantation mouse models in vivo. Notably, the absence of USP29 and high HK2 expression levels correlate with the response of HCC patients to Sorafenib therapy. Together, the data demonstrate that, as a DUB of HIF1α, USP29 promotes Sorafenib resistance in HCC cells, in parts by upregulating glycolysis, thereby opening new avenues for therapeutically targeting Sorafenib-resistant HCC in patients.
Collapse
|
57
|
Sun XX, Li Y, Sears RC, Dai MS. Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Front Oncol 2021; 11:679445. [PMID: 34178666 PMCID: PMC8226175 DOI: 10.3389/fonc.2021.679445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Deregulated MYC overexpression and activation contributes to tumor growth and progression. Given the short half-life and unstable nature of the MYC protein, it is not surprising that the oncoprotein is highly regulated via diverse posttranslational mechanisms. Among them, ubiquitination dynamically controls the levels and activity of MYC during normal cell growth and homeostasis, whereas the disturbance of the ubiquitination/deubiquitination balance enables unwanted MYC stabilization and activation. In addition, MYC is also regulated by SUMOylation which crosstalks with the ubiquitination pathway and controls MYC protein stability and activity. In this mini-review, we will summarize current updates regarding MYC ubiquitination and provide perspectives about these MYC regulators as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Yanping Li
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rosalie C Sears
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
58
|
Kim SH, Baek KH. Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. Int J Mol Sci 2021; 22:ijms22126173. [PMID: 34201062 PMCID: PMC8226939 DOI: 10.3390/ijms22126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin-proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.
Collapse
|
59
|
MYC in T-cell acute lymphoblastic leukemia: functional implications and targeted strategies. BLOOD SCIENCE 2021; 3:65-70. [PMID: 35402840 PMCID: PMC8974894 DOI: 10.1097/bs9.0000000000000073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/03/2021] [Indexed: 01/12/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that frequently occurs in children and adolescents, which results from the transformation of immature T-cell progenitors. Aberrant cell growth and proliferation of T-ALL lymphoblasts are sustained by activation of strong oncogenic drivers. Mounting evidence highlights the critical role of the NOTCH1-MYC highway toward the initiation and progression of T-ALL. MYC has been emphasized as a primary NOTCH1 transcriptional target impinging in leukemia-initiating cell activity particularly responsible for disease onset and relapse. These findings lay a foundation of T-ALL as an ideal disease model for studying MYC-mediated cancer. The biology of MYC deregulation in T-ALL supports innovative strategies for therapeutic targeting of MYC. To summarize the relevant literature and data in recent years, we here provide a comprehensive overview of the functional importance of MYC in T-ALL development, and the molecular mechanisms underlying MYC deregulation in T-ALL. Finally, we illustrate the innovative MYC-targeted approaches that have been evaluated in pre-clinical models and shown significant efficacy. Given the complexity of T-ALL molecular pathogenesis, we propose that a combination of anti-MYC strategies with conventional chemotherapies or other targeted/immunotherapies may provide the most durable response, especially for those patients with relapsed and refractory T-ALL.
Collapse
|
60
|
Xu Z, Hu H, Fang D, Wang J, Zhao K. The deubiquitinase USP38 promotes cell proliferation through stabilizing c-Myc. Int J Biochem Cell Biol 2021; 137:106023. [PMID: 34102342 DOI: 10.1016/j.biocel.2021.106023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022]
Abstract
The oncoprotein c-Myc is a master transcription factor that regulates the expression of a large number of genes involved in cell cycle, cell growth, and cell metabolism. Hence, it is important to keep the level of c-Myc under control. There are many proteins responsible for the degradation of c-Myc. However, the deubiquitinase-mediated stabilization of c-Myc remains less well understood. In this study, we found that USP38, an ubiquitin-specific protease, regulates the levels and function of c-Myc. USP38 can inhibit the polyubiquitination of c-Myc, thereby increasing c-Myc stability. Functionally, USP38 is able to promote cell proliferation via a c-Myc dependent manner. Mechanistically, USP38 physically interacts with FBW7α and abolishes FBW7α-mediated degradation of c-Myc. Furthermore, USP38 can restore the inhibitory effect of FBW7α on proliferation. Taken together, our study uncovers a novel role for USP38 in the regulation of c-Myc abundance and stability.
Collapse
Affiliation(s)
- Zhijun Xu
- Department of Respiration and Critical Care Medicine, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Hao Hu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Debao Fang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Jiong Wang
- Department of Respiration and Critical Care Medicine, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Kailiang Zhao
- Department of Cancer Chemotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China; CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
61
|
Mou K, Zhang J, Mu X, Wang L, Liu W, Ge R. Zwint facilitates melanoma progression by promoting c-Myc expression. Exp Ther Med 2021; 22:818. [PMID: 34131441 PMCID: PMC8193213 DOI: 10.3892/etm.2021.10250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
ZW10 interactor (Zwint) is upregulated in various types of tumors and exerts a carcinogenic effect. However, little is known about the expression profile, function and molecular mechanisms of action of Zwint in melanoma. Therefore, the aim of the present study was to investigate the expression levels of Zwint in melanoma cell lines and tissues. It was revealed that Zwint was highly expressed in melanoma samples. Functional experiments indicated that Zwint knockdown suppressed the proliferation and migration of A375 melanoma cells. Further mechanistic studies demonstrated that Zwint knockdown decreased the protein expression levels of c-Myc, MMP-2, Slug, mTOR, phosphorylated (p)-mTOR, p-p38 and fibronectin, while it increased the protein expression levels of E-cadherin and MMP-9. Among these genes, c-Myc, MMP-2 and Slug were overexpressed to investigate their effects on cell proliferation following Zwint knockdown. The results demonstrated that overexpression of c-Myc, but not MMP-2 or Slug, rescued the effects of Zwint knockdown on melanoma cell proliferation and migration. Taken together, the results of the present study suggested that Zwint may act as an oncogene in melanoma by regulating c-Myc expression.
Collapse
Affiliation(s)
- Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Mu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenli Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Ge
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
62
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|
63
|
Wang C, Fang H, Zhang J, Gu Y. Targeting "undruggable" c-Myc protein by synthetic lethality. Front Med 2021; 15:541-550. [PMID: 33660217 DOI: 10.1007/s11684-020-0780-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Synthetic lethal screening, which exploits the combination of mutations that result in cell death, is a promising method for identifying novel drug targets. This method provides a new avenue for targeting "undruggable" proteins, such as c-Myc. Here, we revisit current methods used to target c-Myc and discuss the important functional nodes related to c-Myc in non-oncogene addicted network, whose inhibition may cause a catastrophe for tumor cell destiny but not for normal cells. We further discuss strategies to identify these functional nodes in the context of synthetic lethality. We review the progress and shortcomings of this research field and look forward to opportunities offered by synthetic lethal screening to treat tumors potently.
Collapse
Affiliation(s)
- Chen Wang
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Hui Fang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiawei Zhang
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ying Gu
- Division of Genome Medicine and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
64
|
Zhang X, Meng T, Cui S, Feng L, Liu D, Pang Q, Wang P. Ubiquitination of Nonhistone Proteins in Cancer Development and Treatment. Front Oncol 2021; 10:621294. [PMID: 33643919 PMCID: PMC7905169 DOI: 10.3389/fonc.2020.621294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination, a crucial post-translation modification, regulates the localization and stability of the substrate proteins including nonhistone proteins. The ubiquitin-proteasome system (UPS) on nonhistone proteins plays a critical role in many cellular processes such as DNA repair, transcription, signal transduction, and apoptosis. Its dysregulation induces various diseases including cancer, and the identification of this process may provide potential therapeutic targets for cancer treatment. In this review, we summarize the regulatory roles of key UPS members on major nonhistone substrates in cancer-related processes, such as cell cycle, cell proliferation, apoptosis, DNA damage repair, inflammation, and T cell dysfunction in cancer. In addition, we also highlight novel therapeutic interventions targeting the UPS members (E1s, E2s, E3s, proteasomes, and deubiquitinating enzymes). Furthermore, we discuss the application of proteolysis-targeting chimeras (PROTACs) technology as a novel anticancer therapeutic strategy in modulating protein target levels with the aid of UPS.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Shuaishuai Cui
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Dongwu Liu
- School of Life Sciences, Shandong University of Technology, Zibo, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Ping Wang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
65
|
Ge J, Yu W, Li J, Ma H, Wang P, Zhou Y, Wang Y, Zhang J, Shi G. USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:59. [PMID: 33546726 PMCID: PMC7866668 DOI: 10.1186/s13046-021-01843-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Background c-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive. Methods Bioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing. Results Functional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis. Conclusions USP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01843-8.
Collapse
Affiliation(s)
- Jianchao Ge
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Wandong Yu
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Junhong Li
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Hangbin Ma
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Pengyu Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Yinghao Zhou
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Yang Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Jun Zhang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China.
| | - Guowei Shi
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
66
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
67
|
Qin T, Cui XY, Xiu H, Huang C, Sun ZN, Xu XM, Li LH, Yue L. USP37 downregulation elevates the Chemical Sensitivity of Human Breast Cancer Cells to Adriamycin. Int J Med Sci 2021; 18:325-334. [PMID: 33390801 PMCID: PMC7757157 DOI: 10.7150/ijms.54301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Background: The evolution of adriamycin (ADR) resistance in the treatment of breast cancer often leads to a poor prognosis in patients. Ubiquitin-specific peptidase 37 (USP37) has been recently identified as a modulator in regulating the stemness of breast cancer cells, but its underlying mechanism remains unclear. In this study, we investigated whether USP37 knockdown could hamper the chemical resistance of MCF-7 and MCF-7/ADR cells to adriamycin and elucidated the potential mechanism. Methods: Immunohistochemistry, western blotting, and RT-qPCR assays were performed to detect the USP37 expression in MCF-7 and MCF-7/ADR cells. The efficiency of USP37 knockdown in breast cancer cells was confirmed by western blotting and RT-qPCR assays. We also performed CCK-8 assay, flow cytometry, western blotting, and TUNEL assays to evaluate cell viability and apoptosis in breast cancer cells. In vivo study was performed to detect the tumorigenicity of MCF-7/ADR cells transfected with shScramble or shUSP37#1 under adriamycin treatment. Results: Bioinformatic analysis indicated that USP37 overexpression was positively correlated with adriamycin resistance. The expression levels of USP37 in both MCF-7 and MCF-7/ADR cells increased significantly with the exposure to adriamycin in a dose-dependent manner. It was verified by the observation that USP37 downregulation elevated the inhibitory effects of adriamycin on breast cancer cells, suppressed cell proliferation caused by cell cycle arrest in G1/S transition, as well as induced apoptosis. Furthermore, in vivo study showed that knockdown of USP37 expression also decreased tumorigenicity of MCF-7/ADR cells in mice. TUNEL assay and observation of cell morphology magnified USP37 knockdown synergized with Adriamycin could elevate the apoptosis of MCF-7 and MCF-7/ADR cells. Western blotting assay illustrated that the combination of USP37 knockdown with adriamycin treatment significantly upregulated the expression levels of cleaved caspase 3 and Bax, whereas the expression level of Bcl-2 was inhibited. Conclusion: Knockdown of USP37 gene expression can reverse the resistance of breast cancer cells to adriamycin, and down-regulating USP37 might be a valuable strategy against ADR resistance in breast cancer therapy.
Collapse
Affiliation(s)
- Tao Qin
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xin-Ye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Hao Xiu
- Department of Traditional Chinese Medicine, The West District of Qingdao Municipal Hospital Group (Qingdao Ninth People's Hospital), Qingdao, Shandong 266071, P.R. China
| | - Chao Huang
- Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China
| | - Zhen-Ni Sun
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiao-Mei Xu
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lian-Hong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, P.R. China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
68
|
Wu L, Zhao N, Zhou Z, Chen J, Han S, Zhang X, Bao H, Yuan W, Shu X. PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Am J Cancer Res 2021; 11:700-714. [PMID: 33391500 PMCID: PMC7738862 DOI: 10.7150/thno.47800] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: PLAGL2 (pleomorphic adenoma gene like-2), a zinc finger PLAG transcription factor, is aberrantly expressed in several malignant tumors. However, the biological roles of PLAGL2 and its underlying mechanism in gastric cancer (GC) remain unclear. Methods: A series of experiments in vitro and in vivo were conducted to reveal the role of PLAGL2 in GC progression. Results: The data revealed that PLAGL2 promotes GC cell proliferation, migration, invasion, and EMT in vitro and in vivo. Mechanistically, we demonstrated the critical role of PLAGL2 in the stabilization of snail family transcriptional repressor 1 (Snail1) and promoting Snail1-mediated proliferation and migration of GC cells. PLAGL2 activated the transcription of deubiquitinase USP37, which then interacted with and deubiquitinated Snail1 protein directly. In addition, GSK-3β-dependent phosphorylation of Snail1 protein is essential for USP37-mediated Snail1 deubiquitination regulation. Conclusions: In general, PLAGL2 promotes the proliferation and migration of GC cells through USP37-mediated deubiquitination of Snail1 protein. This work provided potential therapeutic targets for GC treatment.
Collapse
|
69
|
Intermittent hypoxia-induced downregulation of microRNA-320b promotes lung cancer tumorigenesis by increasing CDT1 via USP37. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:528-541. [PMID: 33898105 PMCID: PMC8056179 DOI: 10.1016/j.omtn.2020.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea-hypopnea (OSAH) is correlated with an increased incidence of lung cancer. In our study, we explored the functional roles of microRNAs (miRNAs) in lung cancer patients that were complicated with OSAH involving the deubiquitination enzyme. The miR-320b expression pattern in lung cancer tissues and cells was determined. The interactions between ubiquitin-specific peptidase 37 (USP37) and miR-320b were evaluated by a dual-luciferase reporter gene assay, whereas USP37 and Cdc10-dependent transcript 1 (CDT1) was assessed by co-immunoprecipitation and immunofluorescence. After the induction of intermittent hypoxia (IH), a gain-of function approach was performed to investigate roles of miR-320b, USP37, and CDT1 in lung cancer cell proliferation and invasion. In addition, nude mouse xenograft models were used to study their effects on tumor growth in vivo. miR-320b was poorly expressed in lung cancer patients with OSAH. IH treatment downregulated the expression of miR-320b but promoted the proliferation and invasion capabilities of lung cancer cells, both of which were suppressed by the overexpression of miR-320b through decreasing USP37. USP37 interacted with and deubiquitinated CDT1 to protect it from proteasomal degradation. Our study uncovered that IH-induced downregulation of miR-320b promoted the tumorigenesis of lung cancer by the USP37-mediated deubiquitination of CDT1.
Collapse
|
70
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
71
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
72
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
73
|
Wang X, Xia S, Li H, Wang X, Li C, Chao Y, Zhang L, Han C. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ 2020; 27:1747-1764. [PMID: 31748695 PMCID: PMC7244734 DOI: 10.1038/s41418-019-0458-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 4 (KLF4), a key transcription factor, acts as a multifunctional player involved in the progression of numerous aggressive cancers. The proteasome-dependent pathway is one of the main modalities in controlling KLF4 abundance at a posttranslational level. Although some of the ubiquitin ligases have been identified, the deubiquitinases of KLF4 and the regulatory function remain unexplored. Here, by screening ubiquitin-specific proteases that may interact with KLF4, we found ubiquitin-specific peptidase 10 (USP10) as a deubiquitinating enzyme for KLF4. Forced expression of USP10 remarkably increases KLF4 protein level by blocking the latter degradation, whereas the depletion of USP10 promotes KLF4 degradation and thus enhances tumorigenesis. Loss of USP10 in mice downregulates KLF4 expression and accelerates KrasG12D-driven lung adenocarcinoma initiation and progression. In addition, our data revealed that KLF4 can facilitate the transcription of tumor suppressor TIMP3 by directly binding to the TIMP3 promoter. Clinically, reduction of USP10 expression, concomitant with decreased KLF4 and TIMP3 abundance in carcinoma tissue, predicts poor prognosis of lung cancer patient. Taken together, our results demonstrate that USP10 is a critical regulator of KLF4, pinpointing USP10-KLF4-TIMP3 axis as a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Xingyun Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Chaonan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yulin Chao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
74
|
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by loss of tumor suppressor Von Hippel Lindau (VHL) function, which leads to accumulation of hypoxia inducible factor α (including HIF1α and HIF2α). HIF2α was previously reported to be one of the major oncogenic drivers in ccRCC, however, its therapeutic targets remain challenging. Here we performed a deubiquitinase (DUB) complementary DNA (cDNA) library binding screen and discovered that ubiquitin-specific peptidase 37 (USP37) is a DUB that binds HIF2α and promotes HIF2α deubiquitination. As a result, USP37 promotes HIF2α protein stability in an enzymatically dependent manner, and depletion of USP37 leads to HIF2α down-regulation in ccRCC. Functionally, USP37 depletion causes decreased cell proliferation measured by MTS, two-dimensional (2D) colony formation as well as three-dimensional (3D) anchorage- independent growth. USP37 is also essential for maintaining kidney tumorigenesis in an orthotopic xenograft model and its depletion leads to both decreased primary kidney tumorigenesis and spontaneous lung metastasis. Our results suggest that USP37 is a potential therapeutic target in ccRCC.
Collapse
|
75
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
76
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
77
|
Cai J, Li M, Wang X, Li L, Li Q, Hou Z, Jia H, Liu S. USP37 Promotes Lung Cancer Cell Migration by Stabilizing Snail Protein via Deubiquitination. Front Genet 2020; 10:1324. [PMID: 31998374 PMCID: PMC6967296 DOI: 10.3389/fgene.2019.01324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Snail is a prominent epithelial–mesenchymal transition (EMT) transcription factor and promotes metastasis. However, Snail protein is unstable and is quickly degraded through ubiquitination-mediated proteasome pathway. Deubiquitinases prevent Snail degradation by regulating the ubiquitination-mediated hydrolysis process. Our studies demonstrate that a deubiquitinating enzyme (DUB) family member, USP37, can deubiquitinate Snail and prevent degradation of Snail. USP37 is co-localized with Snail in the nucleus. Biologically, upregulated expression of USP37 promotes lung cancer cell migration, while depletion of Snail abolishes the effect of USP37. These data demonstrate that USP37 is a Snail-specific deubiquitinase and also indicate a potential therapeutic target for metastasis.
Collapse
Affiliation(s)
- Jiali Cai
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Li
- Department of Thoracic Surgery, Lanling People's Hospital, Lanling County, Linyi, China
| | - Qi Li
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Thoracic Surgery, Lanling People's Hospital, Lanling County, Linyi, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Jia
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
78
|
Wu H, Yang TY, Li Y, Ye WL, Liu F, He XS, Wang JR, Gan WJ, Li XM, Zhang S, Zhao YY, Li JM. Tumor Necrosis Factor Receptor-Associated Factor 6 Promotes Hepatocarcinogenesis by Interacting With Histone Deacetylase 3 to Enhance c-Myc Gene Expression and Protein Stability. Hepatology 2020; 71:148-163. [PMID: 31155734 DOI: 10.1002/hep.30801] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
The oncogene c-Myc is aberrantly expressed and plays a key role in malignant transformation and progression of hepatocellular carcinoma (HCC). Here, we report that c-Myc is significantly up-regulated by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, in hepatocarcinogenesis. High TRAF6 expression in clinical HCC samples correlates with poor prognosis, and the loss of one copy of the Traf6 gene in Traf6+/- mice significantly impairs liver tumorigenesis. Mechanistically, TRAF6 first interacts with and ubiquitinates histone deacetylase 3 (HDAC3) with K63-linked ubiquitin chains, which leads to the dissociation of HDAC3 from the c-Myc promoter and subsequent acetylation of histone H3 at K9, thereby epigenetically enhancing the mRNA expression of c-Myc. Second, the K63-linked ubiquitination of HDAC3 impairs the HDAC3 interaction with c-Myc and promotes c-Myc protein acetylation, which thereby enhances c-Myc protein stability by inhibiting carboxyl terminus of heat shock cognate 70-kDa-interacting protein-mediated c-Myc ubiquitination and degradation. Importantly, TRAF6/HDAC3/c-Myc signaling is also primed in hepatitis B virus-transgenic mice, unveiling a critical role for a mechanism in inflammation-cancer transition. In clinical specimens, TRAF6 positively correlates with c-Myc at both the mRNA and protein levels, and high TRAF6 and c-Myc expression is associated with an unfavorable prognosis, suggesting that TRAF6 collaborates with c-Myc to promote human hepatocarcinogenesis. Consistently, curbing c-Myc expression by inhibition of TRAF6 activity with a TRAF6 inhibitor peptide or the silencing of c-Myc by small interfering RNA significantly suppressed tumor growth in mice. Conclusion: These findings demonstrate the oncogenic potential of TRAF6 during hepatocarcinogenesis by modulating TRAF6/HDAC3/c-Myc signaling, with potential implications for HCC therapy.
Collapse
Affiliation(s)
- Hua Wu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Department of Pathology, Soochow University, Suzhou, China
| | - Yi Li
- Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Long Ye
- Department of Pathology, Soochow University, Suzhou, China
| | - Feng Liu
- Department of General Surgery, Canglang Hospital of Suzhou, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Zhang
- Department of Pathology, Soochow University, Suzhou, China
| | - Yuan-Yuan Zhao
- Department of Pathology, Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pathology, Soochow University, Suzhou, China
| |
Collapse
|
79
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
80
|
Zhang Y, Zhao X, Zhou Y, Wang M, Zhou G. Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer. Front Med 2019; 14:318-326. [DOI: 10.1007/s11684-019-0708-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023]
|
81
|
Chen Y, Sun XX, Sears RC, Dai MS. Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis 2019; 6:359-371. [PMID: 31832515 PMCID: PMC6889025 DOI: 10.1016/j.gendis.2019.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) controls diverse transcription programs and plays a key role in the development of many human cancers. Cells develop multiple mechanisms to ensure that MYC levels and activity are precisely controlled in normal physiological context. As a short half-lived protein, MYC protein levels are tightly regulated by the ubiquitin proteasome system. Over a dozen of ubiquitin ligases have been found to ubiquitinate MYC whereas a number of deubiquitinating enzymes counteract this process. Recent studies show that SUMOylation and deSUMOylation can also regulate MYC protein stability and activity. Interestingly, evidence suggests an intriguing crosstalk between MYC ubiquitination and SUMOylation. Deregulation of the MYC ubiquitination-SUMOylation regulatory network may contribute to tumorigenesis. This review is intended to provide the current understanding of the complex regulation of the MYC biology by dynamic ubiquitination and SUMOylation and their crosstalk.
Collapse
Affiliation(s)
- Yingxiao Chen
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C Sears
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
82
|
Zyner KG, Mulhearn DS, Adhikari S, Martínez Cuesta S, Di Antonio M, Erard N, Hannon GJ, Tannahill D, Balasubramanian S. Genetic interactions of G-quadruplexes in humans. eLife 2019; 8:e46793. [PMID: 31287417 PMCID: PMC6615864 DOI: 10.7554/elife.46793] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.
Collapse
Affiliation(s)
- Katherine G Zyner
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Darcie S Mulhearn
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Santosh Adhikari
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Marco Di Antonio
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Nicolas Erard
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - David Tannahill
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
| | - Shankar Balasubramanian
- Cancer Research United Kingdom Cambridge InstituteCambridgeUnited Kingdom
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
- School of Clinical MedicineUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
83
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
84
|
The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019. [DOI: 10.4155/fsoa-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
85
|
Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019; 5:FSO394. [PMID: 31205749 PMCID: PMC6556819 DOI: 10.2144/fsoa-2019-0017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is a major preventable risk factor for lung cancer, contributing to lung cancer progression and metastasis. Moreover, cigarette smoking correlates with increased metastasis frequency of pancreatic, breast and bladder cancer. The aim of this review was to examine the role of cigarette smoke extract in cell cycle and cancer progression. Clinical impact and the effects of cigarette smoke extract on carcinogenesis are discussed. 98 of the over 5000 chemicals in tobacco smoke are known carcinogens that can act on cancer genes such as K-RAS and p53. Through various mechanisms these compounds can activate molecules involved in the cell cycle, such as cyclins, and molecules involved in apoptosis and autophagy, such as Beclin-1 or LC3B. A search of the literature, including in vitro and in vivo studies, was carried out and the results summarized. There is evidence of cancerogenic effects of cigarette smoke compounds. Cigarette smoke extract is a tobacco condensate obtained by filtration processes. Studies have shown that it can modify the cell cycle, inducing uncontrolled cell proliferation. This effect occurs through activation of genetic and epigenetic pathways and increasing the expression of proteins involved in inflammation. The pathways activated by cigarette smoke extract open up opportunities for researchers to develop new targeted therapies toward the specific molecules involved. Furthermore, the effects exerted by cigarette smoke extract on normal epithelial cells hold potential for use in the development of prevention medicine and early cancer diagnosis.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular & Thoracic Department, AOU Sant'Andrea, Sapienza - Università di Roma, Roma, Italy
| | | | - Ivana Croghan
- Department of Medicine Clinical Research Office & Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico Università di Roma, Roma, Italy
| |
Collapse
|
86
|
The ubiquitin interacting motifs of USP37 act on the proximal Ub of a di-Ub chain to enhance catalytic efficiency. Sci Rep 2019; 9:4119. [PMID: 30858488 PMCID: PMC6412040 DOI: 10.1038/s41598-019-40815-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
USP37 is a deubiquitinase (DUB) with roles in the regulation of DNA damage repair and the cohesion of sister chromatids during mitosis. USP37 contains a unique insert of three ubiquitin interacting motifs (UIMs) within its catalytic DUB domain. We investigated the role of the three UIMs in the ability of USP37 to cleave di-ubiquitin chains. We found that the third UIM of USP37 recognizes the proximal ubiquitin moiety of K48 di-Ub to potentiate cleavage activity and posit that this mechanism of action may be generalizable to other chain types. In the case of K48-linked ubiquitin chains this potentiation stemmed largely from a dramatic increase in catalytic rate (kcat). We also developed and characterized three ubiquitin variant (UbV) inhibitors that selectively engage distinct binding sites in USP37. In addition to validating the deduced functional roles of the three UIMs in catalysis, the UbVs highlight a novel and effective means to selectively inhibit members of the difficult to drug DUB family.
Collapse
|
87
|
Zhang J, Ren P, Xu D, Liu X, Liu Z, Zhang C, Li Y, Wang L, Du X, Xing B. Human UTP14a promotes colorectal cancer progression by forming a positive regulation loop with c-Myc. Cancer Lett 2019; 440-441:106-115. [DOI: 10.1016/j.canlet.2018.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
88
|
Qin T, Li B, Feng X, Fan S, Liu L, Liu D, Mao J, Lu Y, Yang J, Yu X, Zhang Q, Zhang J, Song B, Li M, Li L. Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:287. [PMID: 30482232 PMCID: PMC6258492 DOI: 10.1186/s13046-018-0934-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
Background Recent studies have indicated that deubiquitinating enzymes (DUBs) are related to the stem-cell pathway network and chemo-resistance in cancer. Ubiquitin-specific peptidase 37 (USP37), a novel DUB, was identified to be a potential factor associated with tumor progression. However, the biological functions of USP37 in breast cancer remain unclear. Methods The distribution of USP37 expression in breast cancer and the correlation between USP37 expression and the overall survival rate were detected by The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was utilized to evaluate potential mechanism of USP37 in breast cancer. The USP37 expression in breast cancer tissues and breast cancer cell lines were detected by immunohistochemistry and western blotting. Sorting of breast cancer stem cells (BCSCs) were by using MACS assay. In vitro and in vivo assays were performed to examine the biological functions of USP37 in breast cancer cells. MG132, CHX chase, immunofluorescence staining and co-immunoprecipitation assays were used to test the interaction between USP37 and Gli-1. Results Bioinformatics analysis demonstrated that USP37 gene was elevated in breast cancer tissues and its overexpression was strongly correlated with the increased mortality rate. GSEA analysis showed that USP37 expression was positively associated with cell growth and metastasis while negatively related to cell apoptosis in the TCGA breast cancer samples. USP37 expression was elevated in breast cancer tissues and breast cancer cell lines. Moreover, we also detected that USP37 was overexpressed in BCSCs. USP37 regulated the ability of cell invasion, epithelial-mesenchymal transition (EMT), stemness and cisplatin sensitivity in breast cancer cell lines. Additionally, USP37 knockdown inhibited tumorigenicity and increased anticancer effect of cisplatin in vivo. Knockdown of USP37 significantly decreased hedgehog (Hh) pathway components Smo and Gli-1. Gli-1 was stabilized by USP37 and they interacted with each other. Further studies indicated that USP37 knockdown could inhibit the stemness, cell invasion and EMT in breast cancer via downregulation of Hh pathway. Conclusions These findings reveal that USP37 is highly expressed in BCSCs and is correlated with poor prognosis in breast cancer patients. USP37 can regulate the stemness, cell invasion and EMT via Hh pathway, and decreased USP37 confers sensitivity to cisplatin in breast cancer cells. USP37 is required for the regulation of breast cancer progression, as well as a critical target for clinical treatment of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0934-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Qin
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bai Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaoyue Feng
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Dandan Liu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jinfeng Yang
- Department of Pathology, Xiangyang Central Hospital, Xiangyang, 441000, People's Republic of China
| | - Xiaotang Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Zhang
- Department of Dean, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China.
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China. .,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
89
|
Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M, Wang X. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol 2018; 53:2503-2517. [PMID: 30272279 PMCID: PMC6203153 DOI: 10.3892/ijo.2018.4577] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor with a high incidence in males. Localized tumors can be treated via surgery or radiation; however, it remains difficult to prevent disease progression. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader protein that binds to acetylated lysine on histones and has been reported to serve critical roles in numerous types of cancers. In the present study, it was demonstrated that BRD4 expression levels were significantly increased in cancerous prostate tissue specimens and cells, which were associated with clinical stage and metastasis. In addition, the present study reported that inhibition of BRD4 via short hairpin RNA or JQ1 (a bromo-domain inhibitor) decreased PCa cell proliferation, induced G0/G1 cell cycle arrest and apoptosis, mitigated cell invasion and migration in vitro, and impaired tumor growth in vivo. Mechanistically, BRD4 inhibition-induced suppression of cell cycle progression was associated with the upregulation of p21 and cyclin D1. c-Myc and B-cell lymphoma-2 (Bcl-2), important genes responsible for cell cycle regulation and anti-apoptotic functions, were downregulated in response to BRD4 inhibition. Furthermore, the present study revealed that c-Myc expression was negatively regulated by p21, and that the induction of p21 via BRD4 inhibition was mediated by forkhead box protein O1 (FOXO1), rather than p53. In summary, the results of the present study suggested that the aberrant expression of BRD4 in PCa may induce carcinogenesis. In addition, a mechanism by which BRD4 inhibition suppresses cell proliferation via the regulation of FOXO1-p21-Myc signaling was proposed in the present study, which may contribute to the development of novel therapeutic approaches in the management of PCa.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
90
|
He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, Guan C, Pei F, Lei L, Zhang Y, Yi X, Yang X, Liang J, Liu R, Sun L, Shang Y. Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res 2018; 28:934-951. [PMID: 30135474 DOI: 10.1038/s41422-018-0079-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
Hyperactivation of EGFR/PI3K/AKT is a prominent feature of various human cancers. Thus, understanding how this molecular cascade is balanced is of great importance. We report here that the ubiquitin-specific protease USP43 is physically associated with the chromatin remodeling NuRD complex and catalyzes H2BK120 deubiquitination. Functionally this coordinates the NuRD complex to repress a cohort of genes, including EGFR, which are critically involved in cell proliferation and carcinogenesis. We show that USP43 strongly suppresses the growth and metastasis of breast cancer in vivo. Interestingly, USP43 also exists in the cytoplasm, where it is phosphorylated by AKT, enabling its binding to the 14-3-3β/ε heterodimer and sequestration in the cytoplasm. Significantly, hyperactivation of EGFR/PI3K/AKT in breast cancer is associated with the cytoplasmic retention of USP43 and thus, the inhibition of its transcriptional regulatory function. Moreover, cancer-associated mutations of USP43 affect its subcellular localization and/or epigenetic regulatory functions. Nuclear USP43 is significantly reduced in breast carcinomas and is associated with EGFR accumulation and AKT hyperactivation. A low level of nuclear USP43 correlates with higher histologic grades and poor prognosis. Our study identifies USP43 to be an H2BK120 deubiquitinase and a potential tumor suppressor and reveals a reciprocally inhibitory loop between USP43 and EGFR/PI3K/AKT, whose imbalance drives breast carcinogenesis.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinhua Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xujun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziran Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengjian Guan
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liandi Lei
- Laboratory of Molecular Imaging, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Rong Liu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
91
|
Wang Y, Zhang J, Wu L, Liu W, Wei G, Gong X, Liu Y, Ma Z, Ma F, Thiery JP, Chen L. Tricho-rhino-phalangeal syndrome 1 protein functions as a scaffold required for ubiquitin-specific protease 4-directed histone deacetylase 2 de-ubiquitination and tumor growth. Breast Cancer Res 2018; 20:83. [PMID: 30071870 PMCID: PMC6090974 DOI: 10.1186/s13058-018-1018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although numerous studies have reported that tricho-rhino-phalangeal syndrome type I (TRPS1) protein, the only reported atypical GATA transcription factor, is overexpressed in various carcinomas, the underlying mechanism(s) by which it contributes to cancer remain unknown. Methods Both overexpression and knockdown of TRPS1 assays were performed to examine the effect of TRPS1 on histone deacetylase 2 (HDAC2) protein level and luminal breast cancer cell proliferation. Also, RT-qRCR, luciferase reporter assay and RNA-sequencing were used for transcription detection. Chromatin immunoprecipitation (ChIP) using H4K16ac antibody in conjunction with qPCR was used for determining H4K16ac levels in targeted genes. Furthermore, in vitro cell proliferation assay and in vivo tumor xenografts were used to detect the effect of TRPS1 on tumor growth. Results We found that TRPS1 scaffolding recruits and enhances interaction between USP4 and HDAC2 leading to HDAC2 de-ubiquitination and H4K16 deacetylation. We detected repression of a set of cellular growth-related genes by the TRPS1-USP4-HDAC2 axis indicating it is essential in tumor growth. In vitro and in vivo experiments confirmed that silencing TRPS1 reduced tumor growth, whereas overexpression of HDAC2 restored tumor growth. Conclusion Our study deciphered the TRPS1-USP4-HDAC2 axis as a novel mechanism that contributes to tumor growth. Significantly, our results revealed the scaffolding function of TPRS1 in USP4-directed HDAC2 de-ubiquitination and provided new mechanistic insights into the crosstalk between TRPS1, ubiquitin, and histone modification systems leading to tumor growth. Electronic supplementary material The online version of this article (10.1186/s13058-018-1018-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuzhi Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jun Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Lele Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Weiguang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Guanyun Wei
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xue Gong
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yan Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhifang Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Fei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jean Paul Thiery
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, Singapore
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210096, People's Republic of China. .,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
92
|
Choi J, Baek KH. Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system. Cell Mol Life Sci 2018; 75:1947-1957. [PMID: 29423528 PMCID: PMC11105287 DOI: 10.1007/s00018-018-2770-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
Stem cells undergo partitioning through mitosis and separate into specific cells of each of the three embryonic germ layers: endoderm, mesoderm, and ectoderm. Pluripotency, reprogramming, and self-renewal are essential elements of embryonic stem cells (ESCs), and it is becoming evident that regulation of protein degradation mediated by the ubiquitin-proteasome system (UPS) is one of the key cellular mechanisms in ESCs. Although the framework of that mechanism may seem simple, it involves complicated proteolytic machinery. The UPS controls cell development, survival, differentiation, lineage commitment, migration, and homing processes. This review is centered on the connection between stem cell factors NANOG, OCT-3/4, SOX2, KLF4, C-MYC, LIN28, FAK, and telomerase and the UPS. Herein, we summarize recent findings and discuss potential UPS mechanisms involved in pluripotency, reprogramming, differentiation, and self-renewal. Interactions between the UPS and stem cell transcription factors can apply to various human diseases which can be treated by generating more efficient iPSCs. Such complexes may permit the design of novel therapeutics and the establishment of biomarkers that may be used in diagnosis and prognosis development. Therefore, the UPS is an important target for stem cell therapeutic product research.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
93
|
Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, Wang X, Di W, Zhuang G. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun 2018; 9:215. [PMID: 29335437 PMCID: PMC5768685 DOI: 10.1038/s41467-017-02693-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
MCL1 is a pivot member of the anti-apoptotic BCL-2 family proteins. While a distinctive feature of MCL1 resides in its efficient ubiquitination and destruction, the deubiquitinase USP9X has been implicated in the preservation of MCL1 expression by removing the polyubiquitin chains. Here we perform an unbiased siRNA screen and identify that the second deubiquitinase, USP13, regulates MCL1 stability in lung and ovarian cancer cells. Mechanistically, USP13 interacts with and stabilizes MCL1 via deubiquitination. As a result, USP13 depletion using CRISPR/Cas9 nuclease system inhibits tumor growth in xenografted nude mice. We further report that genetic or pharmacological inhibition of USP13 considerably reduces MCL1 protein abundance and significantly increases tumor cell sensitivity to BH3 mimetic inhibitors targeting BCL-2 and BCL-XL. Collectively, we nominate USP13 as a novel deubiquitinase which regulates MCL1 turnover in diverse solid tumors and propose that USP13 may be a potential therapeutic target for the treatment of various malignancies. MCL1, a pro-survival BCL-2 related protein with rapid turnover rate, is often dysregulated in cancers. Here, the authors show that MCL1’s stability is regulated by deubiquitinase USP13, and its inhibition sensitises tumor cells to BH3 mimetic inhibitors.
Collapse
Affiliation(s)
- Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meiying Zhang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Jing
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xia Yin
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xiaojie Wang
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
94
|
Zhu R, Liu Y, Zhou H, Li L, Li Y, Ding F, Cao X, Liu Z. Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma. Cancer Lett 2018; 418:125-134. [PMID: 29331416 DOI: 10.1016/j.canlet.2018.01.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) transcription factor SNAIL is associated with distant metastasis and poor prognosis of esophageal squamous cell carcinoma (ESCC) patients. The proteolysis of SNAIL is mediated by the ubiquitin-proteasome system. Several E3 ligases have been characterized to promote SNAIL ubiquitination and degradation. However, the reverse process - deubiquitination of SNAIL remains largely unknown. In this study, we performed a mass spectrometry to examine the interaction between SNAIL and deubiquitinating enzyme(s). Subsequently, the deubiquitinating enzyme PSMD14 was identified to target SNAIL for deubiquitination and stabilization. Furthermore, knockdown of PSMD14 significantly blocks SNAIL-induced EMT and then suppresses tumor cell migration and invasion in vitro and tumor metastasis in vivo. In addition, the high expression level of PSMD14 predicts poor prognosis for esophageal cancer patients. These findings suggest PSMD14 as a bona fide deubiquitinating enzyme to regulate SNAIL at the post-translational level and provide a promising therapeutic strategy against tumor metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yongshuo Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China; Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Honghong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yi Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xiufeng Cao
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
95
|
Lei H, Wang W, Wu Y. Targeting oncoproteins for degradation by small molecules in myeloid leukemia. Leuk Lymphoma 2017; 59:2297-2304. [DOI: 10.1080/10428194.2017.1403600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
96
|
Lei H, Shan H, Wu Y. Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 2017; 17:101. [PMID: 29142505 PMCID: PMC5670729 DOI: 10.1186/s12935-017-0472-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitination. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in the CSC-targeted therapy.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
97
|
Haq S, Suresh B, Ramakrishna S. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer 2017; 1869:1-10. [PMID: 29054474 DOI: 10.1016/j.bbcan.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/20/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022]
Abstract
The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.
Collapse
Affiliation(s)
- Saba Haq
- Department of Lifesciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
98
|
Lu L, Qi H, Luo F, Xu H, Ling M, Qin Y, Yang P, Liu X, Yang Q, Xue J, Chen C, Lu J, Xiang Q, Liu Q, Bian Q. Feedback circuitry via let-7c between lncRNA CCAT1 and c-Myc is involved in cigarette smoke extract-induced malignant transformation of HBE cells. Oncotarget 2017; 8:19285-19297. [PMID: 28184029 PMCID: PMC5386684 DOI: 10.18632/oncotarget.15195] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Cigarette smoking is a primary risk factor for the development of lung cancer, which is regarded as the leading cause of cancer-related deaths. The process of malignant transformation of cells, however, is complex and elusive. The present study investigated the roles of an lncRNA, CCAT1, and a transcriptional factor, c-Myc, in human bronchial epithelial (HBE) cell transformation induced by cigarette smoke extract. With acute and chronic treatment of HBE cells, cigarette smoke extract induced increases of CCAT1 and c-Myc levels and decreases of levels of let-7c, a microRNA. Down-regulation of c-Myc reduced the degree of malignancy and the invasion/migration capacity of HBE cells transformed by cigarette smoke extract. ChIP assays established that c-Myc, increased by cigarette smoke extract, binds to the promoter of CCAT1, activating its transcription. Further, let-7c suppressed the expression of c-Myc through binding to its 3'-UTR. In turn, CCAT1 promoted the accumulation of c-Myc through binding to let-7c and decreasing free let-7c, which influenced the neoplastic capacity of HBE cells transformed by cigarette smoke extract. These results indicate that a positive feedback loop ensures expression of cigarette smoke extract-induced CCAT1 and c-Myc via let-7c, which is involved in cigarette smoke extract-induced malignant transformation of HBE cells. Thus, the present research establishes a new mechanism for the reciprocal regulation between CCAT1 and c-Myc and provides an understanding of cigarette smoke extract-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hong Qi
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic China
| | - Yu Qin
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic China
| | - Ping Yang
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic China
| | - Xinlu Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiachun Lu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic China
| | - Quanyong Xiang
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic China
| | - Qizhan Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Bian
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic China
| |
Collapse
|
99
|
Abstract
Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 MAPK. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network. Here, we show that MKK3 interacts with a large number of proteins critical for cell growth and metabolism, including the major oncogenic driver MYC. Multiple complementary approaches were employed to demonstrate the direct interaction of MKK3 with MYC in vitro and in vivo. Computational modeling and experimental studies mapped the interaction interface to the MYC helix-loop-helix domain and a novel 15-residue MYC-binding motif in MKK3 (MBM). The MBM in MKK3 is distinct from the known binding sites for p38 or upstream kinases. Functionally, MKK3 stabilized MYC protein, enhanced its transcriptional activity and increased expression of MYC-regulated genes. The defined MBM peptide mimicked the MKK3 effect in promoting MYC activity. Together, the exploration of OncoPPi led to a new biological model in which MKK3 operates by two distinct mechanisms in cellular regulation through its phosphorylation of p38 and its activation of MYC through protein-protein interaction.
Collapse
|
100
|
Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene 2017; 36:5668-5680. [DOI: 10.1038/onc.2017.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022]
|