51
|
Sun X, Li K, Zha R, Liu S, Fan Y, Wu D, Hase M, Aryal UK, Lin CC, Li BY, Yokota H. Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics 2021; 11:5143-5159. [PMID: 33859739 PMCID: PMC8039940 DOI: 10.7150/thno.58779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Advanced breast cancer metastasizes to many organs including bone, but few effective treatments are available. Here we report that induced tumor-suppressing (iTS) MSCs protected bone from metastases while un-induced MSCs did not. Methods: iTS MSCs were generated by overexpressing Lrp5, β-catenin, Snail, or Akt. Their tumor-suppressing capability was tested using a mouse model of mammary tumors and bone metastasis, human breast cancer tissues and cancer cell lines. Results: In a mouse model, the induced MSC-derived conditioned medium (MSC CM) reduced mammary tumors and suppressed tumor-induced osteolysis. Tumor-promoting genes such as CXCL2 and LIF, as well as PDL1, a blocker of T-cell-based immune responses were downregulated. Proteomics analysis revealed that heat shock protein 90 (Hsp90ab1), calreticulin (Calr) and peptidylprolyl isomerase B (Ppib), which are highly expressed intracellular proteins in many cancers, were enriched in MSC CM as atypical tumor suppressors. Thus, overexpressing selected genes that were otherwise tumorigenic rendered MSCs the tumor-suppressing capability through the atypical suppressors, as well as p53 and Trail. Notably, the inhibitory effect of Lrp5- and Akt-overexpressing MSC CMs, Hsp90ab1 and Calr presented selective inhibition to tumor cells than non-tumor cells. The development of bone-resorbing osteoclasts was also suppressed by MSC CMs. Conclusion: Collectively, the results showed an anti-tumor effect of iTS MSCs and suggested novel therapeutic approaches to suppress the progression of tumors into the bone.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yao Fan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Di Wu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Graduate School of Engineering, Mie University, Mie 514, Japan
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| |
Collapse
|
52
|
Wang H, Ding Y, Chen Y, Jiang J, Chen Y, Lu J, Kong M, Mo F, Huang Y, Zhao W, Fang P, Chen X, Teng X, Xu N, Lu Y, Yu X, Li Z, Zhang J, Wang H, Bao X, Zhou D, Chi Y, Zhou T, Zhou Z, Chen S, Teng L. A novel genomic classification system of gastric cancer via integrating multidimensional genomic characteristics. Gastric Cancer 2021; 24:1227-1241. [PMID: 34095982 PMCID: PMC8502137 DOI: 10.1007/s10120-021-01201-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer deaths with high heterogeneity. There is currently a paucity of clinically applicable molecular classification system to guide precise medicine. METHODS A total of 70 Chinese patients with GC were included in this study and whole-exome sequencing was performed. Unsupervised clustering was undertaken to identify genomic subgroups, based on mutational signature, copy number variation, neoantigen, clonality, and essential genomic alterations. Subgroups were characterized by clinicopathological factors, molecular features, and prognosis. RESULTS We identified 32 significantly mutated genes (SMGs), including TP53, ARID1A, PIK3CA, CDH1, and RHOA. Of these, PREX2, PIEZO1, and FSIP2 have not been previously reported in GC. Using a novel genome-based classification method that integrated multidimensional genomic features, we categorized GC into four subtypes with distinct clinical phenotypes and prognosis. Subtype 1, which was predominantly Lauren intestinal type, harbored recurrent TP53 mutation and ERBB2 amplification, high tumor mutation burden (TMB)/tumor neoantigen burden (TNB), and intratumoral heterogeneity, with a liver metastasis tendency. Subtype 2 tended to occur at an elder age, accompanying with frequent TP53 and SYNE1 mutations, high TMB/TNB, and was associated with poor prognosis. Subtype 3 and subtype 4 included patients with mainly diffuse/mixed type tumors, high frequency of peritoneal metastasis, and genomical stability, whereas subtype 4 was associated with a favorable prognosis. CONCLUSIONS By integrating multidimensional genomic characteristics, we proposed a novel genomic classification system of GC associated with clinical phenotypes and provided a new insight to facilitate genome-guided risk stratification and disease management.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Fan Mo
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences & Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310058 China ,Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, 310051 China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences & Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310058 China
| | - Ping Fang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Ying Chi
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Alibaba DAMO Academy, Hangzhou, 311121 China
| | - Tianhua Zhou
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058 China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences & Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310058 China
| | - Shuqing Chen
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences & Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310058 China ,Hangzhou Neoantigen Therapeutics Co., Ltd., Hangzhou, 310051 China ,Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| |
Collapse
|
53
|
Zhang Z, Jing J, Ye Y, Chen Z, Jing Y, Li S, Hong W, Ruan H, Liu Y, Hu Q, Wang J, Li W, Lin C, Diao L, Zhou Y, Han L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med 2020; 12:101. [PMID: 33225964 PMCID: PMC7682077 DOI: 10.1186/s13073-020-00795-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. METHODS We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. RESULTS We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions. We experimentally characterized the dual function of two genes, DNAJC9 and HSPA14, in lung cancer cells. We further demonstrated the generalization of this dual direction of associations between HSPs and cancer hallmarks, suggesting the necessity to more carefully evaluate HSPs as therapeutic targets and develop highly specific HSP inhibitors for cancer intervention. CONCLUSIONS Our study furnishes a holistic view of functional associations of HSPs with cancer hallmarks to aid the development of HSP inhibitors as well as other drugs in cancer therapy.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiao Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wei Hong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaoming Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
54
|
Xu Z, Ran J, Gong K, Hou Y, Li J, Guo Y. LncRNA SUMO1P3 regulates the invasion, migration and cell cycle of gastric cancer cells through Wnt/β-catenin signaling pathway. J Recept Signal Transduct Res 2020; 41:574-581. [PMID: 33179980 DOI: 10.1080/10799893.2020.1836494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jing Ran
- Department of Gynaecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Kai Gong
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yihan Hou
- Department of ICU, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ji Li
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yijuan Guo
- Department of Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
55
|
Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2020; 122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenbo Zhang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
56
|
Lu J, Huang XY, Wang YH, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Li P, Huang CM, Zheng CH. POC1A acts as a promising prognostic biomarker associated with high tumor immune cell infiltration in gastric cancer. Aging (Albany NY) 2020; 12:18982-19011. [PMID: 33052878 PMCID: PMC7732308 DOI: 10.18632/aging.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The effect of POC1 centriolar protein A (POC1A) on gastric cancer (GC) has not been clearly defined. In this study, POC1A expression and clinical information in patients with GC were analyzed. Multiple databases were used to investigate the genes that were co-expressed with POC1A and genes whose changes co-occurred with genetic alternations of POC1A. Moreover, the TISIDB and TIMER databases were used to analyze immune infiltration. The GSE54129 GC dataset and LASSO regression model (tumor vs. normal) were employed, and 6 significant differentially expressed genes (LAMP5, CEBPB, ARMC9, PAOX, VMP1, POC1A) were identified. POC1A was selected for its high expression in adjacent tissues, which was confirmed with IHC. High POC1A expression was related to better overall and recurrence-free survival. GO and KEGG analyses demonstrated that POC1A may regulate the cell cycle, DNA replication and cell growth. Furthermore, POC1A was found to be correlated with immune infiltration levels in GC according to the TISIDB and TIMER databases. These findings indicate that POC1A acts as a tumor suppressor in GC by regulating the cell cycle and cell growth. In addition, POC1A preferentially regulates the immune infiltration of GC via several immune genes. However, the specific mechanism requires further study.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiao-Yan Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yao-Hui Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
57
|
The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118833. [PMID: 32860837 DOI: 10.1016/j.bbamcr.2020.118833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.
Collapse
|
58
|
Xiao H, Wang B, Xiong HX, Guan JF, Wang J, Tan T, Lin K, Zou SB, Hu ZG, Wang K. A novel prognostic index of hepatocellular carcinoma based on immunogenomic landscape analysis. J Cell Physiol 2020; 236:2572-2591. [PMID: 32853412 DOI: 10.1002/jcp.30015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Changes in immune responses to hepatocellular carcinoma (HCC) are closely related to the occurrence, development, and prognosis of this disease. Exploring the role of immune-related genes (IRGs) in HCC would provide insights into the mechanisms regulating this disease. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) provide a platform for such research, owing to a large number of HCC samples available for comprehensive and systematic immunogenomics analyses. We analyzed the IRGs expression profile and clinical information of patients with HCC based on the TCGA and ICGC database. Potential molecular mechanisms and properties of the screened IRGs were analyzed across multiple databases. And we analyzed the correlation between IRGs, single-nucleotide polymorphisms, and copy number variation. A novel prognostic index, based on IRGs, was developed using the LASSO Cox regression algorithm, followed by univariate and multivariate Cox regression analyses to analyze the prognostic index. Information in the ICGC database was used to verify the reliability of the prognostic index. A total of 54 differentially expressed IRGs were found to be significantly associated with HCC prognosis, and there is a significant correlation between their expression level and copy number variation. Functional enrichment analyses indicated that the genes play active roles in tumor and immune-related signaling pathways. In addition, five potential biomarkers namely IRG, MAPK3, HSP90AA1, HSP90AB1, HSPA4, and CDK4, were identified. Finally, a novel prognostic index, based on IRGs (PSMD14, FABP6, ISG20L2, HGF, BIRC5, IL17D, and STC2), was found useful as an independent prognostic factor, not only for prognosis but also to reflect levels of infiltration in a variety of immune cells. Our team conducted a genomics study of IRGs in HCC and screened several clinically significant IRGs, and our model provides an effective approach for stratification and characterization of patients using IRG-based immunolabeling tools to monitor the prognosis of HCC.
Collapse
Affiliation(s)
- Han Xiao
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Ben Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Hai-Xia Xiong
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jia-Fu Guan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jian Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Tao Tan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Kang Lin
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Gastrointestinal Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Bing Zou
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Zhi-Gang Hu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Kai Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| |
Collapse
|
59
|
Zhang Y, Ni L, Li Q, Li M, Zhu J, Zhang F, Gu K. Diagnostic, clinicopathologic, therapeutic and prognostic value of Plasma Heat Shock Protein 90 levels in patients with advanced Gastrointestinal Carcinoma. J Cancer 2020; 11:5890-5899. [PMID: 32922531 PMCID: PMC7477406 DOI: 10.7150/jca.46343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/01/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose: Heat shock protein 90 (HSP90) is a critical molecular chaperone for protein folding, intracellular disposition and regulation of tumor biological behavior in the extracellular space. HSP90 has received much attention due to its specific effect in gastrointestinal cancer. This clinical study sought to determine whether HSP90 in plasma may serve as a biomarker in patients with advanced gastrointestinal carcinoma. Methods: Using human plasma samples of advanced gastrointestinal carcinoma, we investigated the specific value of HSP90 in gastrointestinal cancer from a clinical perspective. Results: In summary, plasma levels of HSP90 were shown to be higher in patients with gastric cancer (GC) or colorectal cancer (CRC) than in controls with benign gastrointestinal diseases. In both GC and CRC patients, HSP90 was significantly associated with live metastasis. Higher HSP90 levels were more frequent in CRC patients with hazardous or harmful alcohol consumption habits. Patients with RAS mutations had higher HSP90 levels in CRC. Compared with Carcinoembryonic Antigen (CEA) and Carbohydrate Antigen 19-9 (CA19-9), HSP90 benefited patients by enhancing diagnostic sensitivity and the Youden index. The levels of HSP90 were inversely associated with short-term efficacy in GC patients who had received fluorouracil/platinum-based advanced first-line treatment. When first-line therapy failed, plasma HSP90 levels in patients with GC were significantly increased. In terms of progression-free survival (PFS), patients with GC or CRC who had low levels of HSP90 were not significantly different from those with high levels of HSP90. Univariate and multivariate analyses demonstrated that HSP90 was not an independent prognostic predictor for GC and CRC patients with PFS. However, RAS mutation was an independent prognostic factor for poor PFS in CRC patients. Conclusions: Plasma HSP90 levels have potential diagnostic value in advanced gastrointestinal carcinoma and therapeutic predictive value in GC.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Longgang Ni
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.,Department of Oncology, Dongfang Cancer Hospital, Huainan, Anhui, 232000, P. R. China
| | - Qianqian Li
- Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Min Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Jiejie Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Fei Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Kangsheng Gu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
60
|
Sousa A, Ferreira M, Oliveira C, Ferreira PG. Gender Differential Transcriptome in Gastric and Thyroid Cancers. Front Genet 2020; 11:808. [PMID: 32849808 PMCID: PMC7406663 DOI: 10.3389/fgene.2020.00808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Cancer has an important and considerable gender differential susceptibility confirmed by several epidemiological studies. Gastric (GC) and thyroid cancer (TC) are examples of malignancies with a higher incidence in males and females, respectively. Beyond environmental predisposing factors, it is expected that gender-specific gene deregulation contributes to this differential incidence. We performed a detailed characterization of the transcriptomic differences between genders in normal and tumor tissues from stomach and thyroid using Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) data. We found hundreds of sex-biased genes (SBGs). Most of the SBGs shared by normal and tumor belong to sexual chromosomes, while the normal and tumor-specific tend to be found in the autosomes. Expression of several cancer-associated genes is also found to differ between sexes in both types of tissue. Thousands of differentially expressed genes (DEGs) between paired tumor-normal tissues were identified in GC and TC. For both cancers, in the most susceptible gender, the DEGs were mostly under-expressed in the tumor tissue, with an enrichment for tumor-suppressor genes (TSGs). Moreover, we found gene networks preferentially associated to males in GC and to females in TC and correlated with cancer histological subtypes. Our results shed light on the molecular differences and commonalities between genders and provide novel insights in the differential risk underlying these cancers.
Collapse
Affiliation(s)
- Abel Sousa
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Marta Ferreira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro G Ferreira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Computer Science, Faculty of Sciences of the University of Porto, Porto, Portugal.,Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| |
Collapse
|
61
|
Zhu Y, Wang R, Chen W, Chen Q, Zhou J. Construction of a prognosis-predicting model based on autophagy-related genes for hepatocellular carcinoma (HCC) patients. Aging (Albany NY) 2020; 12:14582-14592. [PMID: 32681721 PMCID: PMC7425489 DOI: 10.18632/aging.103507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Background: Autophagy, a highly conserved cellular catabolic process by which the eukaryotic cells deliver autophagosomes engulfing cellular proteins and organelles to lysosomes for degradation, is critical for maintaining cellular homeostasis in response to various signals and nutrient stresses. The dysregulation of autophagy has been noted in the pathogenesis of cancers. Our study aims to investigate the prognosis-predicting value of autophagy-related genes (ARG) in hepatocellular carcinoma (HCC). Results: The signature was constructed based on eight ARGs, which stratified HCC patients into high- and low-risk groups in terms of overall survival (OS) (Hazard Ratio, HR=4.641, 95% Confidential Interval, CI, 3.365-5.917, P=0.000). The ARG signature is an independent prognostic indicator for HCC patients (HR = 1.286, 95% CI, 1.194-1.385; P < 0.001). The area under the receiver operating characteristic (ROC) curve (AUC) for 5-year survival is 0.765. Conclusion: This study provides a potential prognostic signature for predicting the prognosis of HCC patients and molecular insights into the significance of autophagy in HCC. Methods: Sixty-two differentially expressed ARGs and the clinical characteristics and basic information of the 369 enrolled HCC patients were retrieved from The Cancer Genome Atlas (TCGA) database. the Cox proportional hazard regression analysis was adopted to identify survival-related ARGs, based on which a prognosis predicting signature was constructed.
Collapse
Affiliation(s)
- Yayun Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ru Wang
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wanbin Chen
- Department of Marketing, The Johns Hopkins University Carey Business School, Baltimore, MD 21202, USA
| | - Qiuyu Chen
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Liu JH, Chen C, Li ZY, Zou ZM, Gao DC, Zhang X, Kuang XW, Sun ZH, Zheng WJ, Zhou P, Sun SR. The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways. Exp Cell Res 2020; 394:112157. [PMID: 32610185 DOI: 10.1016/j.yexcr.2020.112157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
MyD88 has been implicated in the tumourigenesis, metastasis and recurrence of breast cancer (BC). Here we utilized TJ-M2010-2 (TJ), an inhibitor of MyD88 homodimerimerization, and siMyD88 to suppress the function of MyD88 in MCF-7 and MDA-MB-231 cells. BC cells were treated in vitro and xenografted into nude mice to generate a model in vivo. TJ inhibited BC cell growth by impeding proliferation rather than by promoting apoptosis in vitro. Additionally, TJ and siMyD88 significantly attenuated cell migration and invasion, inhibited EMT-like progression and reduced cytokine (IL-6, IL-8, TGF-β1 and TNF-α) secretion induced by LPS. In vivo, TJ significantly hindered tumour growth in mice. Notably, TJ also decreased the secretion of IL-6, IL-8, TGF-β1, and TNF-α and M2 macrophage infiltration in the tumour microenvironment. The expression of MyD88, TRAF6, NF-κB p65, Snail, MMP-2, MMP-9, p-GSK-3β and p-Akt was significantly downregulated by TJ in BC cells and tumour tissues. Collectively, these results suggest that a MyD88 inhibitor (TJ) may be a promising therapeutic modality for treating BC patients.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ze-Yang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Miao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Cheng Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xue Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Wei-Jie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
63
|
Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy. Cells 2020; 9:cells9040892. [PMID: 32268506 PMCID: PMC7226806 DOI: 10.3390/cells9040892] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are a great challenge in the fight against cancer because these self-renewing tumorigenic cell fractions are thought to be responsible for metastasis dissemination and cases of tumor recurrence. In comparison with non-stem cancer cells, CSCs are known to be more resistant to chemotherapy, radiotherapy, and immunotherapy. Elucidation of mechanisms and factors that promote the emergence and existence of CSCs and their high resistance to cytotoxic treatments would help to develop effective CSC-targeting therapeutics. The present review is dedicated to the implication of molecular chaperones (protein regulators of polypeptide chain folding) in both the formation/maintenance of the CSC phenotype and cytoprotective machinery allowing CSCs to survive after drug or radiation exposure and evade immune attack. The major cellular chaperones, namely heat shock proteins (HSP90, HSP70, HSP40, HSP27), glucose-regulated proteins (GRP94, GRP78, GRP75), tumor necrosis factor receptor-associated protein 1 (TRAP1), peptidyl-prolyl isomerases, protein disulfide isomerases, calreticulin, and also a transcription heat shock factor 1 (HSF1) initiating HSP gene expression are here considered as determinants of the cancer cell stemness and potential targets for a therapeutic attack on CSCs. Various approaches and agents are discussed that may be used for inhibiting the chaperone-dependent development/manifestations of cancer cell stemness.
Collapse
|
64
|
Park KM, Lee HJ, Koo KT, Ben Amara H, Leesungbok R, Noh K, Lee SC, Lee SW. Oral Soft Tissue Regeneration Using Nano Controlled System Inducing Sequential Release of Trichloroacetic Acid and Epidermal Growth Factor. Tissue Eng Regen Med 2020; 17:91-103. [PMID: 31970697 DOI: 10.1007/s13770-019-00232-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effect of nano controlled sequential release of trichloroacetic acid (TCA) and epidermal growth factor (EGF) on the oral soft tissue regeneration was determined. METHODS Hydrophobically modified glycol chitosan (HGC) nano controlled system was developed for the sequential release of TCA and EGF, and the release pattern was identified. The HGC-based nano controlled release system was injected into the critical-sized defects created in beagles' palatal soft tissues. The palatal impression and its scanned body was obtained on various time points post-injection, and the volumetric amount of soft tissue regeneration was compared among the three groups: CON (natural regeneration control group), EXP1 (TCA-loaded nano controlled release system group), EXP2 (TCA and EGF individually loaded nano controlled release system). DNA microarray analysis was performed and various soft tissue regeneration parameters in histopathological specimens were measured. RESULTS TCA release was highest at Day 1 whereas EGF release was highest at Day 2 and remained high until Day 3. In the volumetric measurements of impression body scans, no significant difference in soft tissue regeneration between the three groups was shown in two-way ANOVA. However, in the one-way ANOVA at Day 14, EXP2 showed a significant increase in soft tissue regeneration compared to CON. High correlation was determined between the histopathological results of each group. DNA microarray showed up-regulation of various genes and related cell signaling pathways in EXP2 compared to CON. CONCLUSION HGC-based nano controlled release system for sequential release of TCA and EGF can promote regeneration of oral soft tissue defects.
Collapse
Affiliation(s)
- Kwang Man Park
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Heithem Ben Amara
- Department of Periodontology and Dental Research Institute Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea
| | - Kwantae Noh
- Department of Prosthodontics, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Suk Won Lee
- Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, Republic of Korea.
| |
Collapse
|
65
|
Ji H, Niu C, Zhan X, Xu J, Lian S, Xu B, Guo J, Zhen L, Yang H, Li S, Ma L. Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci Rep 2020; 10:521. [PMID: 31949263 PMCID: PMC6965121 DOI: 10.1038/s41598-020-57451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Cold stimulation reduces the quality of animal products and increases animal mortality, causing huge losses to the livestock industry in cold regions. Long non-coding RNAs (lncRNAs) take part in many biological processes through transcriptional regulation, intracellular material transport, and chromosome remodeling. Although cold stress-related lncRNAs have been reported in plants, no research is available on the characteristic and functional analysis of lncRNAs after cold stress in rats. Here, we built a cold stress animal model firstly. Six SPF male Wistar rats were randomly divided to the acute cold stress group (4 °C, 12 h) and the normal group (24 °C, 12 h). lncRNA libraries were constructed by high-throughput sequencing (HTS) using rat livers. 2,120 new lncRNAs and 273 differentially expressed (DE) lncRNAs were identified in low temperature environments. The target genes of DElncRNA were predicted by cis and trans, and then functional and pathway analysis were performed to them. GO and KEGG analysis revealed that lncRNA targets were mainly participated in the regulation of nucleic acid binding, cold stimulation reaction, metabolic process, immune system processes, PI3K-Akt signaling pathway and pathways in cancer. Next, a interaction network between lncRNA and its targets was constructed. To further reveal the mechanism of cold stress, DElncRNA and DEmRNA were extracted to reconstruct a co-expression sub-network. We found the key lncRNA MSTRG.80946.2 in sub-network. Functional analysis of key lncRNA targets showed that targets were significantly enriched in fatty acid metabolism, the PI3K-Akt signaling pathway and pathways in cancer under cold stress. qRT-PCR confirmed the sequencing results. Finally, hub lncRNA MSTRG.80946.2 was characterized, and verified its relationship with related mRNAs by antisense oligonucleotide (ASO) interference and qRT-PCR. Results confirmed the accuracy of our analysis. To sum up, our work was the first to perform detailed characterization and functional analysis of cold stress-related lncRNAs in rats liver. lncRNAs played crucial roles in energy metabolism, growth and development, immunity and reproductive performance in cold stressed rats. The MSTRG.80946.2 was verified by network and experiments to be a key functional lncRNA under cold stress, regulating ACP1, TSPY1 and Tsn.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jing Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
66
|
Deng G, Mou T, He J, Chen D, Lv D, Liu H, Yu J, Wang S, Li G. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:1. [PMID: 31928527 PMCID: PMC6956561 DOI: 10.1186/s13046-019-1487-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Background Circular RNAs (circRNAs) have recently emerged as a new family of noncoding RNAs that are involved in the causation and progression of various cancers. However, the roles of circRNAs in the tumorigenesis of gastric cancer (GC) are still largely unknown. Methods The expression profiles of circRNAs in GC were identified in open GEO database and were evaluated at the mRNA level in clinical GC samples compared with paired non-tumorous tissues. Kaplan-Meier survival curve was used to analyze the correlation of circRNA and patients’ prognosis. Subsequently, the circular structures of candidate circRNAs were validated by Sanger sequencing, divergent primer PCR, and RNase R treatments. Gain- and loss-of-function analyses were performed to evaluate the functional significance of it in GC initiation and progression. Dual-luciferase reporter and RNA pull-down assays were used to identify the microRNA (miRNA) sponge mechanism of circRNAs. Results The expression of circRHOBTB3 was lower in GC tissues and cell lines. Downregulation of circRHOBTB3 was significantly correlated with poor differentiation and unfavorable prognosis in patients with GC. Overexpression of circRHOBTB3 in GC cells led to decreased proliferation and induced G1/S arrest in vitro, accompanied with inhibited xenograft tumor growth in vivo, while the opposite effects were achieved in circRHOBTB3-silenced cells. Furthermore, we demonstrated that circRHOBTB3 acts as a sponge for miR-654-3p and verified that p21 is a novel target of miR-654-3p. Conclusion Taken together, this study revealed that circRHOBTB3 might function as competing endogenous RNA (ceRNA) for miR-654-3p, which could contribute to growth inhibition of GC through activating p21 signaling pathway. Our data suggested that circRHOBTB3 would serve as a novel promising diagnosis marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Guangxu Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Jiayong He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Da Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Daojun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China.
| |
Collapse
|
67
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16‐eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c‐Myc signaling. Our study unveiled that the SNX16/eEF1A2/c‐Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiping Wang
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
68
|
Ullah MA, Sarkar B, Akter F. Prediction of biomarker signatures and therapeutic agents from blood sample against Pancreatic Ductal Adenocarcinoma (PDAC): A network-based study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
69
|
Lin L, Xiao J, Shi L, Chen W, Ge Y, Jiang M, Li Z, Fan H, Yang L, Xu Z. STRA6 exerts oncogenic role in gastric tumorigenesis by acting as a crucial target of miR-873. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:452. [PMID: 31694721 PMCID: PMC6836487 DOI: 10.1186/s13046-019-1450-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Background Increasing evidence shows that stimulated by retinoic acid 6 (STRA6) participates in regulating multiple cancers. However, the biological roles of STRA6 in gastric cancer (GC) remain unknown. This study aimed to investigate the biological function of STRA6 and reveal the underlying mechanism of its dysregulation in GC. Methods The expression level of STRA6 was detected through quantitative real-time PCR and Western blot analysis. The effects of STRA6 on the proliferation of GC cells were studied through CCK-8 proliferation, colony formation and 5-ethynyl-2′-deoxyuridine (EdU) assays. The effects of STRA6 on migration and invasion were detected via wound healing and Transwell assays. Upstream miRNAs, which might regulate STRA6 expression, was predicted through bioinformatics analysis. Their interaction was further confirmed through dual-luciferase reporter assays and rescue experiments. Results STRA6 was up-regulated in GC and enhanced the proliferation and metastasis of GC cells in vitro and in vivo. STRA6 knockdown could inhibit the Wnt/β-catenin signalling pathway. STRA6 was confirmed as an miR-873 target, which acted as a tumour suppressor in GC. Rescue assays showed that the repressing effect of miR-873 could be partially reversed by overexpressing STRA6. Conclusions STRA6 is down-regulated by miR-873 and plays an oncogenic role by activating Wnt/β-catenin signalling in GC.
Collapse
Affiliation(s)
- Linling Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Wangwang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Yugang Ge
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Mingkun Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Zengliang Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China. .,Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, 213300, Jiangsu Province, China. .,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China
| |
Collapse
|
70
|
Mehdipour T, Tohidkia MR, Ata Saei A, Kazemi A, Khajeh S, Rahim Rahimi AA, Nikfarjam S, Farhadi M, Halimi M, Soleimani R, Zubarev RA, Nouri M. Tailoring subtractive cell biopanning to identify diffuse gastric adenocarcinoma-associated antigens via human scFv antibodies. Immunology 2019; 159:96-108. [PMID: 31596953 DOI: 10.1111/imm.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Among various solid tumours, gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Expansion into the peritoneal cavity, which results from dissemination of diffuse cancer cells, is the main cause of mortality in gastric adenocarcinoma patients. Therefore, investigation of putative biomarkers involved in metastasis is prerequisite for GC management. In an effort to discover potential tumour markers associated with peritoneal metastasis of GC, a semi-synthetic human scFv library (Tomlinson I) was used to isolate novel antibody fragments recognizing MKN-45, a poorly differentiated diffuse gastric adenocarcinoma cell line. Four rounds of subtractive selection each consisting of extensive pre-absorption of phage library with NIH-3T3 murine embryonic fibroblasts and AGS (a well-differentiated intestinal gastric adenocarcinoma) cell line were carried out prior to positive selection on MKN-45 target cells. ELISA-based screening of 192 phage-displayed scFv clones indicated 21 high-affinity binders with specific staining of MKN-45 compared with AGS cells. Diversity analysis of the selected phage-scFvs resulted in five distinct sequences with multiple frequency. Further analysis by ELISA and flow cytometry verified three clones that specifically recognized MKN-45 cells. Liquid chromatography-mass spectrometry analysis of the scFv-immunoprecipitated proteins has led to identification of c-Met, HSP90 α and HSP90 β as candidate biomarkers associated with diffuse GC. Immunohistochemistry revealed the capability of purified scFvs to differentiate diffuse and intestinal gastric adenocarcinoma. Taken together, the isolated MKN-45-specific scFv fragments and their cognate antigens would be beneficial in screening and management as well as targeting and therapy of the diffuse gastric adenocarcinoma.
Collapse
Affiliation(s)
- Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir Kazemi
- Department of Microbiology, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Shirin Khajeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali A Rahim Rahimi
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soleimani
- Department of Molecular Biology, Research and Diagnostic Laboratory of Dook, Sari, Iran
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Nouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
71
|
Wang WJ, Guo CA, Li R, Xu ZP, Yu JP, Ye Y, Zhao J, Wang J, Wang WA, Zhang A, Li HT, Wang C, Liu HB. Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY) 2019; 11:5829-5847. [PMID: 31422382 PMCID: PMC6710062 DOI: 10.18632/aging.102190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
Abstract
Evidence indicates that aberrantly expressed long non-coding RNAs (lncRNAs) are involved in the development and progression of advanced gastric cancer (AGC). Using RNA sequencing data and clinical information obtained from The Cancer Gene Atlas, we combined differential lncRNA expression profiling and weighted gene co-expression network analysis to identify key lncRNAs associated with AGC progression and prognosis. Cancer susceptibility 19 (CASC19) was the top hub lncRNA among the lncRNAs included in the gene module most significantly correlated with AGC’s pathological variables. CASC19 was upregulated in AGC clinical samples and was significantly associated with higher pathologic TNM stage, pathologic T stage, lymph node metastasis, and poor overall survival. Multivariable Cox analysis confirmed that CASC19 overexpression is an independent prognostic factor for overall survival. Furthermore, quantitative real-time PCR assay confirmed that CASC19 expression in four human gastric cancer cells (AGS, BGC-823, MGC-803, and HGC-27) was significantly upregulated compared with human normal gastric mucosal epithelial cell line (GES-1). Functionally, CASC19 knockdown inhibited GC cell proliferation and migration in vitro. These findings suggest that CASC19 may be a novel prognostic biomarker and a potential therapeutic target for AGC.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China
| | - Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China.,Department of Emergency, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, P.R. China
| | - Rui Li
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, P.R. China
| | - Zi-Peng Xu
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China
| | - Jian-Ping Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China
| | - Yan Ye
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China
| | - Jun Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, P.R. China
| | - Jing Wang
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China.,Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu, P.R. China
| | - Wen-An Wang
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China.,Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu, P.R. China
| | - An Zhang
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu, China.,Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu, P.R. China
| | - Hong-Tao Li
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China
| | - Chen Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou 730030, Gansu, P.R. China.,Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu, P.R. China
| |
Collapse
|
72
|
Dong S, Zhang X, Liu D. Overexpression of long noncoding RNA GAS5 suppresses tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway. Biol Open 2019; 8:bio.041343. [PMID: 31182630 PMCID: PMC6602335 DOI: 10.1242/bio.041343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of human cancers. LncRNA GAS5 (GAS5) is identified as a tumor suppressor involved in several cancers. However, the roles of GAS5 and the mechanisms responsible for its functions in gastric cancer (GC) have not been well documented. Herein, the decreased GAS5 and increased miRNA-106a-5p levels were observed in GC and cell lines. GAS5 level was significantly inversely correlated with miRNA-106a-5p level in GC tissues. Moreover, dual-luciferase reporter and qRT-PCR assays showed that GAS5 bound to miRNA-106a-5p and negatively regulated its expression in GC cells. Functional experiments showed that GAS5 overexpression suppressed GC cell proliferation, migration and invasion capabilities, and promoted apoptosis, while miRNA-106a-5p overexpression inverted the functional effects induced by GAS5 overexpression. In vivo, GAS5 overexpression inhibited tumor growth by negatively regulating miRNA-106a-5p expression. Mechanistic investigations revealed that GAS5 overexpression inactivated the Akt/mTOR pathway by suppressing miRNA-106a-5p expression in vitro and in vivo. Taken together, our findings conclude the GAS5 overexpression suppresses tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway. Summary: GAS5, a tumor suppressor, was confirmed to suppress tumorigenesis and development of gastric cancer by sponging miR-106a-5p through the Akt/mTOR pathway, which provides a novel regulatory axis of GC progression.
Collapse
Affiliation(s)
- Shuaijun Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dechun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
73
|
Zhang M, Gu Y, Huang S, Lou Q, Xie Q, Xu Z, Chen Y, Pan F, Xu S, Liu S, Tao J, Liu S, Cai J, Chen P, Qian L, Wang C, Liang C, Huang H, Pan H, Su H, Cheng J, Zhang Y, Hu W, Zou Y. Copy number variations and polymorphisms in HSP90AB1 and risk of systemic lupus erythematosus and efficacy of glucocorticoids. J Cell Mol Med 2019; 23:5340-5348. [PMID: 31124601 PMCID: PMC6653051 DOI: 10.1111/jcmm.14410] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of our study was to assess the associations of HSP90AB1 copy number variations (CNVs) with systemic lupus erythematosus (SLE) risk and glucocorticoids (GCs) efficacy, as well as the relationship between HSP90AB1 single‐nucleotide polymorphisms (SNPs) and GCs efficacy. HSP90AB1 CNVs and SLE risk were analysed in 519 patients and 538 controls. Patients treated with GCs were followed up for 12 weeks and were divided into sensitive and insensitive groups to investigate the effects of CNVs (419 patients) and SNPs (457 patients) on the efficacy of GCs. Health‐related quality of life (HRQoL) was also measured by SF‐36 at baseline and week 12 to explore the relationship between CNVs/SNPs and HRQoL improvements in Chinese SLE patients. Our results indicated a statistically significant association between HSP90AB1 CNVs and SLE (PBH = 0.039), and this association was more pronounced in the female subgroup (PBH = 0.039). However, we did not detect association of HSP90AB1 CNVs/SNPs with efficacy of GCs. But we found a marginal association between SNP rs13296 and improvement in Role‐emotional, while this association was not strong enough to survive in the multiple testing corrections. Collectively, our findings suggest that the copy number of HSP90AB1 is associated with SLE susceptibility. But copy number and polymorphisms of HSP90AB1 may not be associated with efficacy of GCs.
Collapse
Affiliation(s)
- Man Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Yuanyuan Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shunwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiuyue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiaomei Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengxiu Liu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Anhui Medical University Affiliated Provincial Hospital, Hefei, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiling Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Qian
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunhuai Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunmei Liang
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hailiang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| |
Collapse
|