51
|
Foley JF, Elgart B, Alex Merrick B, Phadke DP, Cook ME, Malphurs JA, Solomon GG, Shah RR, Fessler MB, Miller FW, Gerrish KE. Whole genome sequencing of low input circulating cell-free DNA obtained from normal human subjects. Physiol Rep 2021; 9:e14993. [PMID: 34350716 PMCID: PMC8339531 DOI: 10.14814/phy2.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cell-free DNA circulates in plasma at low levels as a normal by-product of cellular apoptosis. Multiple clinical pathologies, as well as environmental stressors can lead to increased circulating cell-free DNA (ccfDNA) levels. Plasma DNA studies frequently employ targeted amplicon deep sequencing platforms due to limited concentrations (ng/ml) of ccfDNA in the blood. Here, we report whole genome sequencing (WGS) and read distribution across chromosomes of ccfDNA extracted from two human plasma samples from normal, healthy subjects, representative of limited clinical samples at <1 ml. Amplification was sufficiently robust with ~90% of the reference genome (GRCh38.p2) exhibiting 10X coverage. Chromosome read coverage was uniform and directly proportional to the number of reads for each chromosome across both samples. Almost 99% of the identified genomic sequence variants were known annotated dbSNP variants in the hg38 reference genome. A high prevalence of C>T and T>C mutations was present along with a strong concordance of variants shared between the germline genome databases; gnomAD (81.1%) and the 1000 Genome Project (93.6%). This study demonstrates isolation and amplification procedures from low input ccfDNA samples that can detect sequence variants across the whole genome from amplified human plasma ccfDNA that can translate to multiple clinical research disciplines.
Collapse
Affiliation(s)
- Julie F. Foley
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - B. Alex Merrick
- Division of National Toxicology ProgramNIEHSDurhamNorth CarolinaUSA
| | | | - Molly E. Cook
- Division of Intramural ResearchNIEHSDurhamNorth CarolinaUSA
| | | | | | | | | | | | | |
Collapse
|
52
|
Jiao J, Sanchez JI, Thompson EJ, Mao X, McCormick JB, Fisher-Hoch SP, Futreal PA, Zhang J, Beretta L. Somatic Mutations in Circulating Cell-Free DNA and Risk for Hepatocellular Carcinoma in Hispanics. Int J Mol Sci 2021; 22:ijms22147411. [PMID: 34299031 PMCID: PMC8304329 DOI: 10.3390/ijms22147411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Hispanics are disproportionally affected by liver fibrosis and hepatocellular carcinoma (HCC). Advanced liver fibrosis is a major risk factor for HCC development. We aimed at identifying somatic mutations in plasma cell-free DNA (cfDNA) of Hispanics with HCC and Hispanics with advanced liver fibrosis but no HCC. Targeted sequencing of over 262 cancer-associated genes identified nonsynonymous mutations in 22 of the 27 HCC patients. Mutations were detected in known HCC-associated genes (e.g., CTNNB1, TP53, NFE2L2, and ARID1A). No difference in cfDNA concentrations was observed between patients with mutations and those without detectable mutations. HCC patients with higher cfDNA concentrations or higher number of mutations had a shorter overall survival (p < 0.001 and p = 0.045). Nonsynonymous mutations were also identified in 17 of the 51 subjects with advanced liver fibrosis. KMT2C was the most commonly mutated gene. Nine genes were mutated in both subjects with advanced fibrosis and HCC patients. Again, no significant difference in cfDNA concentrations was observed between subjects with mutations and those without detectable mutations. Furthermore, higher cfDNA concentrations and higher number of mutations correlated with a death outcome in subjects with advanced fibrosis. In conclusion, cfDNA features are promising non-invasive markers for HCC risk prediction and overall survival.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
| | - Erika J. Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Joseph B. McCormick
- Brownsville Regional Campus, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX 78520, USA; (J.B.M.); (S.P.F.-H.)
| | - Susan P. Fisher-Hoch
- Brownsville Regional Campus, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX 78520, USA; (J.B.M.); (S.P.F.-H.)
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
- Correspondence: ; Tel.: +1-713-792-9100
| |
Collapse
|
53
|
The Nexus of cfDNA and Nuclease Biology. Trends Genet 2021; 37:758-770. [PMID: 34006390 DOI: 10.1016/j.tig.2021.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA) is a widely used noninvasive biomarker for diagnosis and prognosis of multiple disease states. Emerging evidence suggests that cfDNA might not just be passive waste products of cell death but could have a physiological and pathological function in inflammation and autoimmunity. The balance of cfDNA generation and clearance may thus be vital in health and disease. In particular, plasma nuclease activity has been linked to multiple pathologies including cancer and systemic lupus erythematosus (SLE) and associated with profound changes in the nonrandom fragmentation of cfDNA. Lastly, in this review, we explore the effects of DNA fragmentation factor B (DFFB), DNASE1L3, and DNASE1 on cfDNA levels and their fragmentomic profiles, and what these recent insights reveal about the biology of cfDNA.
Collapse
|
54
|
Yang Z, Chen W, Wang J, Shi M, Zhang R, Dai S, Wu T, Zhao M. Programmable One-Pot Enzymatic Reaction for Direct Fluorescence Detection of Ultralow-Abundance Mutations in the DNA Duplex. Anal Chem 2021; 93:7086-7093. [PMID: 33901400 DOI: 10.1021/acs.analchem.1c00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sensitive detection of low-abundance driver mutations may provide valuable information for precise clinical treatment. Compared to next-generation sequencing and droplet digital PCR methods, fluorescent probes show great flexibility in rapid detection of specific mutations with high sensitivity and easily accessible instruments. However, existing approaches with fluorescent probes need an additional step to convert duplex DNA to single-stranded DNA (ssDNA) before the detection step, which increases the time, cost, and risk of loss of low-input target strands. In this work, we attempt to integrate the ssDNA-generation step with the subsequent detection into a programable one-pot reaction by employing lambda exonuclease (λ exo), a versatile nanopore nuclease which exercises different functions on different substrates. The capability of λ exo in discrimination of mismatched bases in 5'- FAM-ended 2 nt-unpaired DNA duplexes was first demonstrated. Specific fluorescent probes were developed for EGFR exon 19 E746-A750del and PIK3CA E545K mutations with discrimination factors as high as 8470 and 884, respectively. By mixing the probes and λ exo with the PCR products of cell-free circulating DNA extracted from plasma samples, the reaction was immediately initiated, which allowed sensitive detection of the two types of mutations at an abundance as low as 0.01% within less than 2 h. Compared to existing approaches, the new method has distinct advantages in simplicity, low cost, and rapidity. It provides a convenient tool for companion diagnostic tests and other routine analysis targeting genetic mutations in clinical samples.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Minghe Shi
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shenbin Dai
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
55
|
Ogawa M, Yokoyama K, Imoto S, Tojo A. Role of Circulating Tumor DNA in Hematological Malignancy. Cancers (Basel) 2021; 13:2078. [PMID: 33923024 PMCID: PMC8123338 DOI: 10.3390/cancers13092078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
With the recent advances in noninvasive approaches for cancer diagnosis and surveillance, the term "liquid biopsy" has become more familiar to clinicians, including hematologists. Liquid biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated liquid biopsies has received increasing attention. This review summarizes the current knowledge of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and key areas of clinical application. We also highlight recent advances in the minimal residual disease monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical practice of hematopoietic oncology.
Collapse
Affiliation(s)
- Miho Ogawa
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| |
Collapse
|
56
|
Wang SC, Liao LM, Ansar M, Lin SY, Hsu WW, Su CM, Chung YM, Liu CC, Hung CS, Lin RK. Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response. Cancers (Basel) 2021; 13:cancers13061375. [PMID: 33803633 PMCID: PMC8002961 DOI: 10.3390/cancers13061375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Shih-Yun Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, 101 Dickens Hall, 1116 Mid-Campus Drive N, Manhattan, KS 66506-0802, USA;
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
| | - Yu-Mei Chung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Cai-Cing Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| | - Ruo-Kai Lin
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Clinical trial center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| |
Collapse
|
57
|
Paul RS, Almokayad I, Collins A, Raj D, Jagadeesan M. Donor-derived Cell-free DNA: Advancing a Novel Assay to New Heights in Renal Transplantation. Transplant Direct 2021; 7:e664. [PMID: 33564715 PMCID: PMC7862009 DOI: 10.1097/txd.0000000000001098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite advances in transplant immunosuppression, long-term renal allograft outcomes remain suboptimal because of the occurrence of rejection, recurrent disease, and interstitial fibrosis with tubular atrophy. This is largely due to limitations in our understanding of allogeneic processes coupled with inadequate surveillance strategies. The concept of donor-derived cell-free DNA as a signal of allograft stress has therefore rapidly been adopted as a noninvasive monitoring tool. Refining it for effective clinical use, however, remains an ongoing effort. Furthermore, its potential to unravel new insights in alloimmunity through novel molecular techniques is yet to be realized. This review herein summarizes current knowledge and active endeavors to optimize cell-free DNA-based diagnostic techniques for clinical use in kidney transplantation. In addition, the integration of DNA methylation and microRNA may unveil new epigenetic signatures of allograft health and is also explored in this report. Directing research initiatives toward these aspirations will not only improve diagnostic precision but may foster new paradigms in transplant immunobiology.
Collapse
Affiliation(s)
- Rohan S. Paul
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ismail Almokayad
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Ashte Collins
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | - Dominic Raj
- Division of Kidney Disease & Hypertension, George Washington University, Washington, DC
| | | |
Collapse
|
58
|
Lim JK, Kuss B, Talaulikar D. Role of cell-free DNA in haematological malignancies. Pathology 2021; 53:416-426. [PMID: 33648721 DOI: 10.1016/j.pathol.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Cell-free DNA (cfDNA) consists of fragments of double stranded DNA that are found in the circulation. They are released from the apoptosis of both normal haemopoietic cells and malignant cells. The use of cfDNA from easily accessible peripheral blood samples has created a new strategy in studying molecular genomics in haematological malignancies. Its use in diagnosis, prognosis and monitoring potentially precludes the need for repeated tissue samples, i.e., bone marrow biopsy or primary tissue biopsy. It also potentially provides a more comprehensive analysis of the disease as cfDNA are released from tumours from multiple sites of the body. While cfDNA research is still in its infancy, given its potential and the expansion in next generation sequencing (NGS) it has attracted a lot of attention in recent years. This review will focus on acute leukaemia, multiple myeloma and lymphoma and the potential diagnostic and prognostic implications of cfDNA, its role in response assessment and in detection of disease relapse.
Collapse
Affiliation(s)
- Jun K Lim
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia
| | - Bryone Kuss
- Department of Molecular Medicine and Genetics, Flinders University/Flinders Medical Centre, SA Pathology Laboratories, Adelaide, SA, Australia
| | - Dipti Talaulikar
- Department of Haematology, The Canberra Hospital, Canberra, ACT, Australia; College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
59
|
Single-use microfluidic device for purification and concentration of environmental DNA from river water. Talanta 2021; 226:122109. [PMID: 33676665 DOI: 10.1016/j.talanta.2021.122109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022]
Abstract
Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contaminants that may interfere with downstream DNA amplification. Complexity of samples, minute content of target analyte, or high DNA fragmentation greatly entangles the success of this step. To overcome this issue, we designed and fabricated a novel miniaturized disposable device for a highly efficient DNA purification. The microfluidic device showed binding efficiency and elution yield of 90.1% and 86.7%, respectively. Moreover, the effect of DNA fragmentation, a parameter that has not been previously addressed, showed a great impact in the recovery step. The microfluidic system integrated micropillars with chitosan being used as the solid-phase for a pH-dependent DNA capture and release. We have showed the potential of the device in the successful purification of environmental DNA (eDNA) from river water samples contaminated with Dreissena polymorpha, an invasive alien species responsible for unquestionable economic and environmental consequences in river water basins. Additionally, the device was also able to concentrate the DNA extract from highly diluted samples, showing promising results for the early detection of such invasive species, which may allow prompt measures for a more efficient control in affected areas. Suitability for integration with downstream DNA analysis was also demonstrated through qPCR analysis of the samples purified with the microfluidic device, allowing detection of the target species even if highly diluted.
Collapse
|
60
|
Esposito Abate R, Frezzetti D, Maiello MR, Gallo M, Camerlingo R, De Luca A, De Cecio R, Morabito A, Normanno N. Next Generation Sequencing-Based Profiling of Cell Free DNA in Patients with Advanced Non-Small Cell Lung Cancer: Advantages and Pitfalls. Cancers (Basel) 2020; 12:E3804. [PMID: 33348595 PMCID: PMC7766403 DOI: 10.3390/cancers12123804] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is the main cause of death for cancer worldwide and non-small cell lung cancer (NSCLC) represents the most common histology. The discovery of genomic alterations in driver genes that offer the possibility of therapeutic intervention has completely changed the approach to the diagnosis and therapy of advanced NSCLC patients, and tumor molecular profiling has become mandatory for the choice of the most appropriate therapeutic strategy. However, in approximately 30% of NSCLC patients tumor tissue is inadequate for biomarker analysis. The development of highly sensitive next generation sequencing (NGS) technologies for the analysis of circulating cell-free DNA (cfDNA) is emerging as a valuable alternative to assess tumor molecular landscape in case of tissue unavailability. Additionally, cfDNA NGS testing can better recapitulate NSCLC heterogeneity as compared with tissue testing. In this review we describe the main advantages and limits of using NGS-based cfDNA analysis to guide the therapeutic decision-making process in advanced NSCLC patients, to monitor the response to therapy and to identify mechanisms of resistance early. Therefore, we provide evidence that the implementation of cfDNA NGS testing in clinical research and in the clinical practice can significantly improve precision medicine approaches in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rossella De Cecio
- Department of Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Alessandro Morabito
- Department of Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| |
Collapse
|
61
|
Lueong SS, Herbst A, Liffers ST, Bielefeld N, Horn PA, Tannapfel A, Reinacher-Schick A, Hinke A, Hegewisch-Becker S, Kolligs FT, Siveke JT. Serial Circulating Tumor DNA Mutational Status in Patients with KRAS-Mutant Metastatic Colorectal Cancer from the Phase 3 AIO KRK0207 Trial. Clin Chem 2020; 66:1510-1520. [PMID: 33257977 DOI: 10.1093/clinchem/hvaa223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND We assessed the usefulness of circulating tumor DNA (ctDNA) pre- or post-treatment initiation for outcome prediction and treatment monitoring in metastatic colorectal cancer (mCRC). METHODS Droplet digital PCR was used to measure absolute mutant V-Ki-ras2 Kirsten rat sarcoma viral oncogene ((mut)KRAS) ctDNA concentrations in 214 healthy controls (plasma and sera) and in 151 tissue-based mutKRAS positive patients with mCRC from the prospective multicenter phase 3 trial AIO KRK0207. Serial mutKRAS ctDNA was analyzed prior to and 2-3 weeks after first-line chemotherapy initiation with fluoropyrimidine, oxaliplatin, and bevacizumab in patients with mCRC and correlated with clinical parameters. RESULTS mut KRAS ctDNA was detected in 74.8% (113/151) of patients at baseline and in 59.6% (90/151) at follow-up. mutKRAS ctDNA at baseline and follow-up was associated with poor overall survival (OS) (hazard ratio [HR] =1.88, 95% confidence interval [CI] 1.20-2.95; HR = 2.15, 95% CI 1.47-3.15) and progression-free survival (PFS) (HR = 2.53, 95% CI 1.44-4.46; HR = 1.90, 95% CI 1.23-2.95), respectively. mutKRAS ctDNA clearance at follow-up conferred better disease control (P = 0.0075), better OS (log-rank P = 0.0018), and PFS (log-rank P = 0.0018). Measurable positive mutKRAS ctDNA at follow-up was the strongest and most significant independent prognostic factor on OS in multivariable analysis (HR = 2.31, 95% CI 1.40-3.25). CONCLUSIONS Serial analysis of circulating mutKRAS concentrations in mCRC has prognostic value. Post treatment mutKRAS concentrations 2 weeks after treatment initiation were associated with therapeutic response in multivariable analysis and may be an early response predictor in patients receiving first-line combination chemotherapy. CLINICALTRIALSGOV IDENTIFIER NCT00973609.
Collapse
Affiliation(s)
- Smiths S Lueong
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Andreas Herbst
- Institute of Laboratory Medicine, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK, Partner Site Munich) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Nicola Bielefeld
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Peter A Horn
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | | | - Anke Reinacher-Schick
- Department of Hematology, Oncology and Palliative Care, St. Josef-Hospital, Ruhr-University Bochum
| | - Axel Hinke
- CCRC: Cancer Clinical Research Consulting, Düsseldorf, Germany
| | | | - Frank T Kolligs
- German Cancer Consortium (DKTK, Partner Site Munich) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Department of Medicine, Division of- Gastroenterology, Hepatology & Infectiology, Helios Clinic Berlin-Buch, Berlin, Germany.,Department of Medicine II, University of Munich, Munich, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Medicine Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| |
Collapse
|
62
|
Taylor C, Chacko S, Davey M, Lacroix J, MacPherson A, Finn N, Wajnberg G, Ghosh A, Crapoulet N, Lewis SM, Ouellette RJ. Peptide-Affinity Precipitation of Extracellular Vesicles and Cell-Free DNA Improves Sequencing Performance for the Detection of Pathogenic Mutations in Lung Cancer Patient Plasma. Int J Mol Sci 2020; 21:E9083. [PMID: 33260345 PMCID: PMC7730179 DOI: 10.3390/ijms21239083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsy is a minimally-invasive diagnostic method that may improve access to molecular profiling for non-small cell lung cancer (NSCLC) patients. Although cell-free DNA (cf-DNA) isolation from plasma is the standard liquid biopsy method for detecting DNA mutations in cancer patients, the sensitivity can be highly variable. Vn96 is a peptide with an affinity for both extracellular vesicles (EVs) and circulating cf-DNA. In this study, we evaluated whether peptide-affinity (PA) precipitation of EVs and cf-DNA from NSCLC patient plasma improves the sensitivity of single nucleotide variants (SNVs) detection and compared observed SNVs with those reported in the matched tissue biopsy. NSCLC patient plasma was subjected to either PA precipitation or cell-free methods and total nucleic acid (TNA) was extracted; SNVs were then detected by next-generation sequencing (NGS). PA led to increased recovery of DNA as well as an improvement in NGS sequencing parameters when compared to cf-TNA. Reduced concordance with tissue was observed in PA-TNA (62%) compared to cf-TNA (81%), mainly due to identification of SNVs in PA-TNA that were not observed in tissue. EGFR mutations were detected in PA-TNA with 83% sensitivity and 100% specificity. In conclusion, PA-TNA may improve the detection limits of low-abundance alleles using NGS.
Collapse
Affiliation(s)
- Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Jacynthe Lacroix
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Alexander MacPherson
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Nicholas Finn
- Dr Léon-Richard Oncology Center, Moncton, NB E1C 8X3, Canada;
| | - Gabriel Wajnberg
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
63
|
Kim EJ, Im HS, Lee J, Cho EH, Kim YH, Kim HR, Kim JH, Park SR. Genome-wide and size-based cell-free DNA indices as predictive biomarkers for locally advanced esophageal squamous cell carcinoma treated with preoperative or definitive chemoradiotherapy. Curr Probl Cancer 2020; 45:100685. [PMID: 33342577 DOI: 10.1016/j.currproblcancer.2020.100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
For locally advanced esophageal cancer, concurrent chemoradiotherapy (CRT) followed by surgery has been a standard treatment, while clinical studies showed comparable survival outcomes between definitive CRT and neoadjuvant CRT followed by surgery in patients responding to CRT. Thus, biomarkers are required to predict treatment outcomes and benefit of adding surgery after CRT. This prospective biomarker study examined the role of cell-free DNA (cfDNA) fragmentation profiles and genomic copy number variations (CNVs) in predicting treatment outcomes in esophageal squamous cell carcinoma patients treated with neoadjuvant or definitive CRT. The clinical response was evaluated after induction chemotherapy and after CRT. Fragment Ratio (FR)-score and I-score were calculated from plasma cfDNA reflecting fragment lengths and CNV of cfDNA, respectively. The association between indices of cfDNA (cfDNA concentration, FR-score, and I-score) and treatment outcomes (clinical response, time to progression [TTP], and overall survival [OS]) were evaluated. Sixty-one patients were included. Thirty patients received neoadjuvant CRT followed by surgery, whereas 31 received definitive CRT. Low baseline, post-induction chemotherapy, and post-CRT FR-scores and low post-induction I-score were significantly associated with improved treatment response (P < 0.05). Additionally, patients with surgery after CRT showed significantly longer survival than patients without surgery in the FR-score-high group (median TTP, 12.7 vs 3.4 months; P = 0.011; OS, not reached vs 12.9 months; P = 0.02), while there was no survival benefit with surgery in the FR-score-low group. FR-score may be a new biomarker to predict treatment response, residual tumor burden after CRT, and consequently, survival benefit of adding morbid surgery after CRT. FR-score has strength in a relatively simple and inexpensive methodology compared to deep sequencing, resulting in high availability and accessibility, despite limited sensitivity.
Collapse
Affiliation(s)
- Eo Jin Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Su Im
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junnam Lee
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Eun-Hae Cho
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Yong-Hee Kim
- Department of Thoracic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeong Ryul Kim
- Department of Thoracic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Esteva-Socias M, Enver-Sumaya M, Gómez-Bellvert C, Guillot M, Azkárate A, Marsé R, Sastre Ú, Blasco A, Calabuig-Fariñas S, Asensio VJ, Terrasa J, Obrador-Hevia A. Detection of the EGFR G719S Mutation in Non-small Cell Lung Cancer Using Droplet Digital PCR. Front Med (Lausanne) 2020; 7:594900. [PMID: 33282894 PMCID: PMC7691481 DOI: 10.3389/fmed.2020.594900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives: The main objectives of the study were (1) to set-up a droplet digital PCR (ddPCR) assay for the non-invasive detection of G719S EGFR mutation in NSCLC patients; (2) to determine the limits of detection of the ddPCR assay for G719S mutation and (3) to compare COBAS® and ddPCR System for G719S quantification in plasma. Materials and Methods: Blood samples were collected from 22 patients diagnosed with advanced NSCLC. Then, plasma ctDNA was extracted with the Qiagen Circulating Nucleic Acids kit and quantified by QuantiFluor® dsDNA System. The mutational study of EGFR was carried out by digital droplet PCR (ddPCR) with the QX200 Droplet Digital PCR System with specific probes and primers. Results: We observed the lowest percentage of G719S mutant allele could be detected in a wildtype background was 0.058%. In the specificity analysis, low levels of G719S mutation were detected in healthy volunteers with a peak of 21.65 mutant copies per milliliter of plasma and 6.35 MAFs. In those patients whose tissue biopsy was positive for G719S mutation, mutant alleles could also be detected in plasma using both ddPCR and COBAS® System. Finally, when mutational status was studied using both genotyping techniques, higher mutant copies/ml and higher mutant allele fraction (MAF) correlated with higher Semiquantitative Index obtained by COBAS®. Conclusions: Although tissue biopsies cannot be replaced due to the large amount of information they provide regarding tumor type and structure, liquid biopsy and ddPCR represents a new promising strategy for genetic analysis of tumors from plasma samples. In the present study, G719S mutation was detected in a highly sensitive manner, allowing its monitorization with a non-invasive technique.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), Plataforma Biobanco Pulmonar CIBERES, Hospital Universitari Son Espases, Palma, Spain.,Grupo de Inflamación, reparación y cáncer en enfermedades respiratorias, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | - Mónica Enver-Sumaya
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | - Cristina Gómez-Bellvert
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.,Department of Pathology, Hospital Universitari Son Espases, Palma, Spain
| | - Mónica Guillot
- Department of Oncology, Hospital Universitari Son Espases, Palma, Spain.,Grupo de Enfermedad Oncológica Peritoneal, Institut d'Investigació Sanitária de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | - Aitor Azkárate
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.,Department of Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Raquel Marsé
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.,Department of Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Úrsula Sastre
- Department of Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Ana Blasco
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Molecular Oncology Laboratory, General University Hospital Research Foundation, Valencia, Spain.,Mixed Unit TRIAL CIPF-FIHGUV, Valencia, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - Víctor José Asensio
- Molecular Diagnosis and Clinical Genetics Unit, Hospital Universitari Son Espases, Palma, Spain.,Grupo Genòmica de la Salut, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | - Josefa Terrasa
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.,Department of Oncology, Hospital Universitari Son Espases, Palma, Spain
| | - Antònia Obrador-Hevia
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.,Molecular Diagnosis and Clinical Genetics Unit, Hospital Universitari Son Espases, Palma, Spain
| |
Collapse
|
65
|
Garrido-Navas MC, García-Díaz A, Molina-Vallejo MP, González-Martínez C, Alcaide Lucena M, Cañas-García I, Bayarri C, Delgado JR, González E, Lorente JA, Serrano MJ. The Polemic Diagnostic Role of TP53 Mutations in Liquid Biopsies from Breast, Colon and Lung Cancers. Cancers (Basel) 2020; 12:E3343. [PMID: 33198130 PMCID: PMC7696715 DOI: 10.3390/cancers12113343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Being minimally invasive and thus allowing repeated measures over time, liquid biopsies are taking over traditional solid biopsies in certain circumstances such as those for unreachable tumors, very early stages or treatment monitoring. However, regarding TP53 mutation status analysis, liquid biopsies have not yet substituted tissue samples, mainly due to the lack of concordance between the two types of biopsies. This needs to be examined in a study-dependent manner, taking into account the particular type of liquid biopsy analyzed, that is, circulating tumor cells (CTCs) or cell-free DNA (cfDNA), its involvement in the tumor biology and evolution and, finally, the technology used to analyze each biopsy type. Here, we review the main studies analyzing TP53 mutations in either CTCs or cfDNA in the three more prevalent solid tumors: breast, colon and lung cancers. We evaluate the correlation for mutation status between liquid biopsies and tumor tissue, suggesting possible sources of discrepancies, as well as evaluating the clinical utility of using liquid biopsies for the analysis of TP53 mutation status and the future actions that need to be undertaken to make liquid biopsy analysis a reality for the evaluation of TP53 mutations.
Collapse
Affiliation(s)
- M. Carmen Garrido-Navas
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Universidad Internacional de la Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| | - Abel García-Díaz
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Departamento de Medicina, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Maria Pilar Molina-Vallejo
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
| | - Coral González-Martínez
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
| | - Miriam Alcaide Lucena
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Inés Cañas-García
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Clara Bayarri
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Department of Thoracic Surgery, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Juan Ramón Delgado
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
| | - Encarna González
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
| | - Jose Antonio Lorente
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Laboratory of Genetic Identification, Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - M. Jose Serrano
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
- Department of Pathological Anatomy, Faculty of Medicine, Campus de Ciencias de la Salud, University of Granada, 18016 Granada, Spain
| |
Collapse
|
66
|
Chin YM, Takahashi Y, Chan HT, Otaki M, Fujishima M, Shibayama T, Miki Y, Ueno T, Nakamura Y, Low SK. Ultradeep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer. Cancer Sci 2020; 112:454-464. [PMID: 33075187 PMCID: PMC7780051 DOI: 10.1111/cas.14697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
We present a study to evaluate the feasibility and clinical utility of amplicon‐based Oncomine Pan‐Cancer cell‐free assay to detect circulating tumor DNA (ctDNA) in patients with early or advanced breast cancer. In this study, 109 early and metastatic breast cancer patients were recruited before the initiation of treatment. ctDNA mutation profiles were assessed through unique molecular tagging (UMT) and ultradeep next generation sequencing (NGS). For patients with mutations, DNA from corresponding white blood cells (WBC) was sequenced to exclude variants of clonal‐hematopoietic (CH) origin. UMT targeted sequencing from plasma of 109 patients achieved a median total coverage of 55 498X and a median molecular coverage of 4187X. Among 53 ctDNA positive samples, 38% were mutation positive by WBC sequencing, indicating potentially false‐positive results contributed by CH origin. Prevalence of CH‐related mutations was associated with age (P = 7.51 × 10−4). After exclusion of CH mutations, ctDNA detection rates were 37% for local or locally advanced breast cancer (stage I‐III) and 81% for metastatic or recurrent breast cancer. The ctDNA detection rate correlated with disease stage (P = 2.60 × 10−4), nodal spread (P = 6.49 × 10−3) and the status of distant metastases (P = 5.00 × 10−4). ctDNA variants were detected mostly in TP53, PIK3CA and AKT1 genes, with variants showing therapeutic relevance. This pilot study endorses the use of targeted NGS for non‐invasive molecular profiling of breast cancer. Paired sequencing of plasma ctDNA and WBC should be implemented to improve accurate interpretation of liquid biopsy.
Collapse
Affiliation(s)
- Yoon Ming Chin
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Precision Medicine Inc., Kawasaki, Japan
| | - Yoko Takahashi
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiu Ting Chan
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masumi Otaki
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Tomoko Shibayama
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshio Miki
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Molecular Genetics, Medical Research Institute, Tokyo Medical & Dental University, Tokyo, Japan
| | - Takayuki Ueno
- Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
67
|
Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, Gahan PB, Hui L, Holdenrieder S, Thierry AR. Towards systematic nomenclature for cell-free DNA. Hum Genet 2020; 140:565-578. [PMID: 33123832 PMCID: PMC7981329 DOI: 10.1007/s00439-020-02227-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Cell-free DNA (cfDNA) has become widely recognized as a promising candidate biomarker for minimally invasive characterization of various genomic disorders and other clinical scenarios. However, among the obstacles that currently challenge the general progression of the research field, there remains an unmet need for unambiguous universal cfDNA nomenclature. To address this shortcoming, we classify in this report the different types of cfDNA molecules that occur in the human body based on its origin, genetic traits, and locality. We proceed by assigning existing terms to each of these cfDNA subtypes, while proposing new terms and abbreviations where clarity is lacking and more precise stratification would be beneficial. We then suggest the proper usage of these terms within different contexts and scenarios, focusing mainly on the nomenclature as it relates to the domains of oncology, prenatal testing, and post-transplant surgery surveillance. We hope that these recommendations will serve as useful considerations towards the establishment of universal cfDNA nomenclature in the future. In addition, it is conceivable that many of these recommendations can be transposed to cell-free RNA nomenclature by simply exchanging “DNA” with “RNA” in each acronym/abbreviation. Similarly, when describing DNA and RNA collectively, the suffix can be replaced with “NAs” to indicate nucleic acids.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Frank Diehl
- Thrive Earlier Detection Corp., Cambridge, MA, USA
| | - Philippe Anker
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Michael Fleischhacker
- DRK Kliniken Berlin Mitte, Klinik für Innere Medizin, Pneumologie und Schlafmedizin, Drontheimer Str. 39-40, 13359, Berlin, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126, Perugia, Italy
| | - Lisa Hui
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, VIC, Australia
- Department of Obstetrics and Gynaecology, The Northern Hospital, Epping, VIC, Australia
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
68
|
Pellini B, Szymanski J, Chin RI, Jones PA, Chaudhuri AA. Liquid Biopsies Using Circulating Tumor DNA in Non-Small Cell Lung Cancer. Thorac Surg Clin 2020; 30:165-177. [PMID: 32327175 DOI: 10.1016/j.thorsurg.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liquid biopsies for the diagnosis and treatment of lung cancer have developed rapidly, driven primarily by technical advances in sensitivity to detect circulating tumor DNA (ctDNA). Still, technical limitations such as the challenge of detecting low-level ctDNA variants and distinguishing tumor-related variants from clonal hematopoiesis remain. With further technical advancements, new applications for ctDNA analysis are emerging including detection of post-treatment molecular residual disease (MRD), clinical trial selection, and early cancer detection. This chapter reviews the current state of ctDNA testing in NSCLC, the underlying technological advances enabling ctDNA detection, and the potential to expand ctDNA analysis to new applications.
Collapse
Affiliation(s)
- Bruna Pellini
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Division of Oncology Campus Box 8056, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Jeffrey Szymanski
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, Radiation Oncology Campus Box 8224, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Re-I Chin
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, Radiation Oncology Campus Box 8224, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Paul A Jones
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, Radiation Oncology Campus Box 8224, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, Radiation Oncology Campus Box 8224, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
69
|
Zelinova K, Jagelkova M, Laucekova Z, Bobrovska M, Dankova Z, Grendar M, Dokus K. Molecular analysis of circulating tumor DNA from breast cancer patients before and after surgery and following adjuvant chemotherapy. Mol Clin Oncol 2020; 13:26. [PMID: 32765873 PMCID: PMC7403808 DOI: 10.3892/mco.2020.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The primary aim of the present study is to provide a complex molecular profile of tumors using liquid biopsy and to monitor profile changes over time in association with surgery and administered adjuvant therapy. Our secondary aim was to compare the liquid biopsy profile with the tissue biopsy and assess concordance. A total of 27 samples of circulating tumor DNA (ctDNA) collected from 9 breast cancer patients at three different time points and their matched formalin-fixed and paraffin-embedded (FFPE) samples of primary tumor were analyzed with targeted next-generation sequencing. Somatic pathogenic variants were detected before surgery in samples from 5 patients (55.6%). The most frequently mutated genes were phosphatase and tensin homolog (4/9, 44.4%) and tumor protein 53 (4/9, 44.4%). Serial sampling of ctDNA enabled the detection of more variants compared with single-time tissue primary tumor biopsy. There were 17 ctDNA variants across all samples, but only 6 FFPE variants across all patients. In addition, the concordance between ctDNA and FFPE DNA was determined in only 1 patient, and this was connected with higher variant allele frequency. The findings of the present study suggest that liquid biopsy and tissue biopsy may be used as complementary analyses to adequately capture all tumor variants.
Collapse
Affiliation(s)
- Katarina Zelinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Marianna Jagelkova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Zuzana Laucekova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Martina Bobrovska
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Zuzana Dankova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Marian Grendar
- Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-036 01 Martin, Slovakia
| | - Karol Dokus
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Second Department of Obstetrics and Gynecology, Slovak Medical University, Faculty Hospital with Polyclinic of F.D. Roosevelt, 975 17 Banska Bystrica, Slovakia
| |
Collapse
|
70
|
Analytical validation of an error-corrected ultra-sensitive ctDNA next-generation sequencing assay. Biotechniques 2020; 69:133-140. [PMID: 32654508 DOI: 10.2144/btn-2020-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma circulating tumor DNA (ctDNA) analysis has emerged as a minimally invasive means to perform molecular tumor typing. Here we developed a custom ultra-sensitive ctDNA next-generation sequencing assay using molecular barcoding technology and off-the-shelf reagents combined with bioinformatics tools for enhanced ctDNA analysis. Assay performance was assessed via a spike-in experiment and the technique was applied to analyze 41 plasma samples from men with advanced prostate cancer. Orthogonal validation was performed using a commercial assay. Sensitivity and specificity of 93 and 99.5% were recorded for ultra-rare somatic variants (<1%), with high concordance observed between the in-house and commercial assays. The optimized protocol dramatically improved the efficiency of the assay and enabled the detection of low-frequency somatic variants from plasma cell-free DNA (cfDNA).
Collapse
|
71
|
Muyas F, Zapata L, Guigó R, Ossowski S. The rate and spectrum of mosaic mutations during embryogenesis revealed by RNA sequencing of 49 tissues. Genome Med 2020; 12:49. [PMID: 32460841 PMCID: PMC7254727 DOI: 10.1186/s13073-020-00746-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mosaic mutations acquired during early embryogenesis can lead to severe early-onset genetic disorders and cancer predisposition, but are often undetectable in blood samples. The rate and mutational spectrum of embryonic mosaic mutations (EMMs) have only been studied in few tissues, and their contribution to genetic disorders is unknown. Therefore, we investigated how frequent mosaic mutations occur during embryogenesis across all germ layers and tissues. METHODS Mosaic mutation detection in 49 normal tissues from 570 individuals (Genotype-Tissue Expression (GTEx) cohort) was performed using a newly developed multi-tissue, multi-individual variant calling approach for RNA-seq data. Our method allows for reliable identification of EMMs and the developmental stage during which they appeared. RESULTS The analysis of EMMs in 570 individuals revealed that newborns on average harbor 0.5-1 EMMs in the exome affecting multiple organs (1.3230 × 10-8 per nucleotide per individual), a similar frequency as reported for germline de novo mutations. Our multi-tissue, multi-individual study design allowed us to distinguish mosaic mutations acquired during different stages of embryogenesis and adult life, as well as to provide insights into the rate and spectrum of mosaic mutations. We observed that EMMs are dominated by a mutational signature associated with spontaneous deamination of methylated cytosines and the number of cell divisions. After birth, cells continue to accumulate somatic mutations, which can lead to the development of cancer. Investigation of the mutational spectrum of the gastrointestinal tract revealed a mutational pattern associated with the food-borne carcinogen aflatoxin, a signature that has so far only been reported in liver cancer. CONCLUSIONS In summary, our multi-tissue, multi-individual study reveals a surprisingly high number of embryonic mosaic mutations in coding regions, implying novel hypotheses and diagnostic procedures for investigating genetic causes of disease and cancer predisposition.
Collapse
Affiliation(s)
- Francesc Muyas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Luis Zapata
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Roderic Guigó
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
72
|
Di Martino MT, Meschini S, Scotlandi K, Riganti C, De Smaele E, Zazzeroni F, Donadelli M, Leonetti C, Caraglia M. From single gene analysis to single cell profiling: a new era for precision medicine. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:48. [PMID: 32138788 PMCID: PMC7059661 DOI: 10.1186/s13046-020-01549-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Molecular profiling of DNA and RNA has provided valuable new insights into the genetic basis of non-malignant and malignant disorders, as well as an increased understanding of basic mechanisms that regulate human disease. Recent technological advances have enabled the analyses of alterations in gene-based structure or function in a comprehensive, high-throughput fashion showing that each tumor type typically exhibits distinct constellations of genetic alterations targeting one or more key cellular pathways that regulate cell growth and proliferation, evasion of the immune system, and other aspects of cancer behavior. These advances have important implications for future research and clinical practice in areas as molecular diagnostics, the implementation of gene or pathway-directed targeted therapy, and the use of such information to drive drug discovery. The 1st international and 32nd Annual Conference of Italian Association of Cell Cultures (AICC) conference wanted to offer the opportunity to match technological solutions and clinical needs in the era of precision medicine.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy.
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Katia Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Lab, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Turin, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Carlo Leonetti
- UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples and Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| |
Collapse
|
73
|
Greytak SR, Engel KB, Parpart-Li S, Murtaza M, Bronkhorst AJ, Pertile MD, Moore HM. Harmonizing Cell-Free DNA Collection and Processing Practices through Evidence-Based Guidance. Clin Cancer Res 2020; 26:3104-3109. [PMID: 32122922 DOI: 10.1158/1078-0432.ccr-19-3015] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Circulating cell-free DNA (cfDNA) is rapidly transitioning from discovery research to an important tool in clinical decision making. However, the lack of harmonization of preanalytic practices across institutions may compromise the reproducibility of cfDNA-derived data and hamper advancements in cfDNA testing in the clinic. Differences in cellular genomic contamination, cfDNA yield, integrity, and fragment length have been attributed to different collection tube types and anticoagulants, processing delays and temperatures, tube agitation, centrifugation protocols and speeds, plasma storage duration and temperature, the number of freeze-thaw events, and cfDNA extraction and quantification methods, all of which can also ultimately impact subsequent downstream analysis. Thus, there is a pressing need for widely applicable standards tailored for cfDNA analysis that include all preanalytic steps from blood draw to analysis. The NCI's Biorepositories and Biospecimen Research Branch has developed cfDNA-specific guidelines that are based upon published evidence and have been vetted by a panel of internationally recognized experts in the field. The guidelines include optimal procedures as well as acceptable alternatives to facilitate the generation of evidence-based protocols by individual laboratories and institutions. The aim of the document, which is entitled "Biospecimen Evidence-based Best Practices for Cell-free DNA: Biospecimen Collection and Processing," is to improve the accuracy of cfDNA analysis in both basic research and the clinic by improving and harmonizing practices across institutions.
Collapse
Affiliation(s)
| | | | | | - Muhammed Murtaza
- Center for Noninvasive Diagnostics, Translational Genomics Research Institute, Phoenix, Arizona
| | | | - Mark D Pertile
- Victorian Clinical Genetics Services (VCGS), Parkville, Australia
| | - Helen M Moore
- Biorepositories and Biospecimen Research Branch, NCI, Bethesda, Maryland.
| |
Collapse
|
74
|
Lenaerts L, Tuveri S, Jatsenko T, Amant F, Vermeesch JR. Detection of incipient tumours by screening of circulating plasma DNA: hype or hope? Acta Clin Belg 2020; 75:9-18. [PMID: 31578135 DOI: 10.1080/17843286.2019.1671653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: The last half-decade has been marked by a rapid expansion of research efforts in the field of so-called liquid biopsies, thereby investigating the potential of blood-derived cell-free tumour DNA (ctDNA) markers for application in clinical oncological management. The analysis of cfDNA appears to be particularly attractive for therapy monitoring purposes, while in terms of early cancer diagnosis and screening the potentials are just starting to be explored. Challenges, both of biological and technical nature, need to be addressed. One such challenge is to overcome the low levels of ctDNA in the circulation, intrinsic to many early-stage cancers. Methods: Here, we give an overview of the features of ctDNA and the approaches that are currently being applied with the ultimate aim to detect tumours in a presymptomatic stage. Conclusion: Although many studies report encouraging results, further technical development and larger studies are warranted before application of ctDNA analysis may find its place in clinic.
Collapse
Affiliation(s)
| | | | | | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Belgium
- Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam-University of Amsterdam and The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Brancaccio M, Natale F, Falco G, Angrisano T. Cell-Free DNA Methylation: The New Frontiers of Pancreatic Cancer Biomarkers' Discovery. Genes (Basel) 2019; 11:E14. [PMID: 31877923 PMCID: PMC7017422 DOI: 10.3390/genes11010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancer types world-wide. Its high mortality is related to the difficulty in the diagnosis, which often occurs when the disease is already advanced. As of today, no early diagnostic tests are available, while only a limited number of prognostic tests have reached clinical practice. The main reason is the lack of reliable biomarkers that are able to capture the early development or the progression of the disease. Hence, the discovery of biomarkers for early diagnosis or prognosis of PDAC remains, de facto, an unmet need. An increasing number of studies has shown that cell-free DNA (cfDNA) methylation analysis represents a promising non-invasive approach for the discovery of biomarkers with diagnostic or prognostic potential. In particular, cfDNA methylation could be utilized for the identification of disease-specific signatures in pre-neoplastic lesions or chronic pancreatitis (CP), representing a sensitive and non-invasive method of early diagnosis of PDAC. In this review, we will discuss the advantages and pitfalls of cfDNA methylation studies. Further, we will present the current advances in the discovery of pancreatic cancer biomarkers with early diagnostic or prognostic potential, focusing on pancreas-specific (e.g., CUX2 or REG1A) or abnormal (e.g., ADAMTS1 or BNC1) cfDNA methylation signatures in high risk pre-neoplastic conditions and PDAC.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Francesco Natale
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Biogem Scarl, Istituto di Ricerche Genetiche “Gaetano Salvatore”, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
76
|
Wang ZY, Ding XQ, Zhu H, Wang RX, Pan XR, Tong JH. KRAS Mutant Allele Fraction in Circulating Cell-Free DNA Correlates With Clinical Stage in Pancreatic Cancer Patients. Front Oncol 2019; 9:1295. [PMID: 31850201 PMCID: PMC6896365 DOI: 10.3389/fonc.2019.01295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The research on circulating tumor DNA (ctDNA) in pancreatic cancer (PC) has emerged recently. Although the detection rate of the KRAS mutation in ctDNA was relatively consistent with that in tumor tissue, whether the KRAS mutant allele fraction (MAF) differed was still not reported. So far, the clinical application of ctDNA detection in PC remains inconclusive. Methods: Plasma samples were collected from 110 PC and 52 pancreatic benign (PB) disease patients. The detection of KRAS mutation in ctDNA was performed using droplet digital PCR and compared with that in matched tumor tissue. We assessed the utility of KRAS MAFs in ctDNA and tissue for pancreatic malignancy assessment. Results: We found that KRAS MAF in ctDNA of PC patients was higher than that of PB patients, and was obviously associated with tumor staging and distant metastasis. However, KRAS MAF in ctDNA was significantly different from that in matched tissue. KRAS MAF in tumor tissue had no significant correlation with the clinical status. In addition, a ROC curve analysis revealed that mutant KRAS ctDNA combined with CA19-9 could increase the sensitivity rate of early-stage PC prediction, compared with CA19-9 test alone. Conclusion: The MAF of KRAS in ctDNA was related to the clinical stage of PC (p = 0.001). Mutant KRAS ctDNA could improve the sensitivity in early diagnosis of PC as a complement to CA19-9. Our study suggested that KRAS mutation in ctDNA could be a valuable circulating biomarker for the malignancy assessment in PC.
Collapse
Affiliation(s)
- Zhe-Ying Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qing Ding
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xian Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rong Pan
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Tong
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|