51
|
Claereboudt EJS, Caulier G, Decroo C, Colson E, Gerbaux P, Claereboudt MR, Schaller H, Flammang P, Deleu M, Eeckhaut I. Triterpenoids in Echinoderms: Fundamental Differences in Diversity and Biosynthetic Pathways. Mar Drugs 2019; 17:E352. [PMID: 31200494 PMCID: PMC6627624 DOI: 10.3390/md17060352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 02/03/2023] Open
Abstract
Echinoderms form a remarkable phylum of marine invertebrates that present specific chemical signatures unique in the animal kingdom. It is particularly the case for essential triterpenoids that evolved separately in each of the five echinoderm classes. Indeed, while most animals have Δ5-sterols, sea cucumbers (Holothuroidea) and sea stars (Asteroidea) also possess Δ7 and Δ9(11)-sterols, a characteristic not shared with brittle stars (Ophiuroidea), sea urchins (Echinoidea), and crinoids (Crinoidea). These particular Δ7 and Δ9(11) sterols emerged as a self-protection against membranolytic saponins that only sea cucumbers and sea stars produce as a defense mechanism. The diversity of saponins is large; several hundred molecules have been described in the two classes of these saponins (i.e., triterpenoid or steroid saponins). This review aims to highlight the diversity of triterpenoids in echinoderms by focusing on sterols and triterpenoid glycosides, but more importantly to provide an updated view of the biosynthesis of these molecules in echinoderms.
Collapse
Affiliation(s)
- Emily J S Claereboudt
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium.
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| | - Corentin Decroo
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
- Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| | - Emmanuel Colson
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
- Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| | - Michel R Claereboudt
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, 123 Al-Khod, Oman.
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France.
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| | - Magali Deleu
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium.
| | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium.
| |
Collapse
|
52
|
Wang Z, Cui J, Song J, Gou M, Wang H, Gao K, Qiu X, Wang X, Chang Y. Integration of small RNAs and mRNAs by high-throughput sequencing reveals a complex regulatory network in Chinese sea cucumber, Russian sea cucumber and their hybrids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:1-13. [DOI: 10.1016/j.cbd.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 11/30/2022]
|
53
|
Wang Y, Sun G, Zeng Q, Chen Z, Hu X, Li H, Wang S, Bao Z. Predicting Growth Traits with Genomic Selection Methods in Zhikong Scallop (Chlamys farreri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:769-779. [PMID: 30116982 DOI: 10.1007/s10126-018-9847-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Selective breeding is a common and effective approach for genetic improvement of aquaculture stocks with parental selection as the key factor. Genomic selection (GS) has been proposed as a promising tool to facilitate selective breeding. Here, we evaluated the predictability of four GS methods in Zhikong scallop (Chlamys farreri) through real dataset analyses of four economical traits (e.g., shell length, shell height, shell width, and whole weight). Our analysis revealed that different GS models exhibited variable performance in prediction accuracy depending on genetic and statistical factors, but non-parametric method, including reproducing kernel Hilbert spaces regression (RKHS) and sparse neural networks (SNN), generally outperformed parametric linear method, such as genomic best linear unbiased prediction (GBLUP) and BayesB. Furthermore, we demonstrated that the predictability relied mainly on the heritability regardless of GS methods. The size of training population and marker density also had considerable effects on the predictive performance. In practice, increasing the training population size could better improve the genomic prediction than raising the marker density. This study is the first to apply non-linear model and neural networks for GS in scallop and should be valuable to help develop strategies for aquaculture breeding programs.
Collapse
Affiliation(s)
- Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Guidong Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
| | - Qifan Zeng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhihui Chen
- Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hengde Li
- Ministry of Agriculture Key Laboratory of Aquatic Genomics, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|