51
|
Zhan KY, Adunka OF, Eshraghi A, Riggs WJ, Prentiss SM, Yan D, Telischi FF, Liu X, He S. Electrophysiology and genetic testing in the precision medicine of congenital deafness: A review. J Otol 2021; 16:40-46. [PMID: 33505449 PMCID: PMC7814082 DOI: 10.1016/j.joto.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital hearing loss is remarkably heterogeneous, with over 130 deafness genes and thousands of variants, making for innumerable genotype/phenotype combinations. Understanding both the pathophysiology of hearing loss and molecular site of lesion along the auditory pathway permits for significantly individualized counseling. Electrophysiologic techniques such as electrocochleography (ECochG) and electrically-evoked compound action potentials (eCAP) are being studied to localize pathology and estimate residual cochlear vs. neural health. This review describes the expanding roles of genetic and electrophysiologic evaluation in the precision medicine of congenital hearing loss.The basics of genetic mutations in hearing loss and electrophysiologic testing (ECochG and eCAP) are reviewed, and how they complement each other in the diagnostics and prognostication of hearing outcomes. Used together, these measures improve the understanding of insults to the auditory system, allowing for individualized counseling for CI candidacy/outcomes or other habilitation strategies. CONCLUSION Despite tremendous discovery in deafness genes, the effects of individual genes on neural function remain poorly understood. Bridging the understanding between molecular genotype and neural and functional phenotype is paramount to interpreting genetic results in clinical practice. The future hearing healthcare provider must consolidate an ever-increasing amount of genetic and phenotypic information in the precision medicine of hearing loss.
Collapse
Affiliation(s)
- Kevin Y. Zhan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F. Adunka
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrien Eshraghi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J. Riggs
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sandra M. Prentiss
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
52
|
Walsh H, Zuwala J, Hunter J, Oh Y. Congenital Cytomegalovirus and Human Immunodeficiency Virus: Effects on Hearing, Speech and Language Development, and Clinical Outcomes in Children. Front Pediatr 2021; 9:771192. [PMID: 34976894 PMCID: PMC8716614 DOI: 10.3389/fped.2021.771192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal infections can have adverse effects on an infant's hearing, speech, and language development. Congenital cytomegalovirus (CMV) and human immunodeficiency virus (HIV) are two such infections that may lead to these complications, especially when left untreated. CMV is commonly associated with sensorineural hearing loss in children, and it can also be associated with anatomical abnormalities in the central nervous system responsible for speech, language, and intellectual acquisition. In terms of speech, language, and hearing, HIV is most associated with conductive and/or sensorineural hearing loss and expressive language deficits. Children born with these infections may benefit from cochlear implantation for severe to profound sensorineural hearing losses and/or speech therapy for speech/language deficits. CMV and HIV simultaneously present in infants has not been thoroughly studied, but one may hypothesize these speech, language, and hearing deficits to be present with potentially higher severity. Early identification of the infection in combination with early intervention strategies yields better results for these children than no identification or intervention. The purpose of this review was to investigate how congenital CMV and/or HIV may affect hearing, speech, and language development in children, and the importance of early identification for these populations.
Collapse
Affiliation(s)
- Hannah Walsh
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Jillian Zuwala
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Jessica Hunter
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Yonghee Oh
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
53
|
Tang X, Liu L, Liang S, Liang M, Liao T, Luo S, Yan T, Chen J. Concurrent Newborn Hearing and Genetic Screening in a Multi-Ethnic Population in South China. Front Pediatr 2021; 9:734300. [PMID: 34917556 PMCID: PMC8669824 DOI: 10.3389/fped.2021.734300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a common sensory deficit in humans with intricate genomic landscape and mutational signature. Approximately 1-3 out of 1,000 newborns have hearing loss and up to 60% of these cases have a genetic etiology. In this study, we conducted the concurrent newborn hearing and genetic screening in 20 mutations (18 pathogenic variants in GJB2, SLC26A4, and MT-RNR1 and 2 uncertain clinical significance variants in GJB3) for 9,506 normal newborns (4,977 [52.4%] males) from 22 ethnic population in South China. A total of 1,079 (11.4%) newborns failed to pass the initial hearing screening; 160 (1.7%) infants failed to pass the re-screening, and 135 (1.4%) infants presented the diagnostic hearing loss. For the genetic screening, 220 (2.3%) newborns who presented at least one of the screened mutations were more likely to fail the hearing screening and have diagnostic hearing loss than mutation-negative newborns. In comparison to the differences of distribution of mutations, we did not identify any significant difference in the prevalence of screened mutations between Han group (n = 5,265) and Zhuang group (n = 3,464), despite the lack of number of minority ethnic groups. Studies including larger number of minority ethnic populations are needed in the future.
Collapse
Affiliation(s)
- Xiangrong Tang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Lihua Liu
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Sulan Liang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Meie Liang
- Department of Otolaryngology-Head and Neck Surgery, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Tao Liao
- Department of Obstetrics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Shiqiang Luo
- Department of Medical Genetics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| | - Jianping Chen
- Department of Children's Health Care, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, China
| |
Collapse
|
54
|
Abstract
IMPORTANCE Hearing loss in children is common and by age 18 years, affects nearly 1 of every 5 children. Without hearing rehabilitation, hearing loss can cause detrimental effects on speech, language, developmental, educational, and cognitive outcomes in children. OBSERVATIONS Consequences of hearing loss in children include worse outcomes in speech, language, education, social functioning, cognitive abilities, and quality of life. Hearing loss can be congenital, delayed onset, or acquired with possible etiologies including congenital infections, genetic causes including syndromic and nonsyndromic etiologies, and trauma, among others. Evaluation of hearing loss must be based on suspected diagnosis, type, laterality and degree of hearing loss, age of onset, and additional variables such as exposure to cranial irradiation. Hearing rehabilitation for children with hearing loss may include use of hearing aids, cochlear implants, bone anchored devices, or use of assistive devices such as frequency modulating systems. CONCLUSIONS AND RELEVANCE Hearing loss in children is common, and there has been substantial progress in diagnosis and management of these cases. Early identification of hearing loss and understanding its etiology can assist with prognosis and counseling of families. In addition, awareness of treatment strategies including the many hearing device options, cochlear implant, and assistive devices can help direct management of the patient to optimize outcomes.
Collapse
Affiliation(s)
- Judith E C Lieu
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St Louis, St Louis, Missouri
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samantha Anne
- Head and Neck Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lisa Davidson
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
55
|
Su X, Feng Y, Rahman SA, Wu S, Li G, Rüschendorf F, Zhao L, Cui H, Liang J, Fang L, Hu H, Froehler S, Yu Y, Patone G, Hummel O, Chen Q, Raile K, Luft FC, Bähring S, Hussain K, Chen W, Zhang J, Gong M. Phosphatidylinositol 4-kinase β mutations cause nonsyndromic sensorineural deafness and inner ear malformation. J Genet Genomics 2020; 47:618-626. [PMID: 33358777 DOI: 10.1016/j.jgg.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Congenital hearing loss is a common disorder worldwide. Heterogeneous gene variation accounts for approximately 20-25% of such patients. We investigated a five-generation Chinese family with autosomal-dominant nonsyndromic sensorineural hearing loss (SNHL). No wave was detected in the pure-tone audiometry, and the auditory brainstem response was absent in all patients. Computed tomography of the patients, as well as of two sporadic SNHL cases, showed bilateral inner ear anomaly, cochlear maldevelopment, absence of the osseous spiral lamina, and an enlarged vestibular aqueduct. Such findings were absent in nonaffected persons. We used linkage analysis and exome sequencing and uncovered a heterozygous missense mutation in the PI4KB gene (p.Gln121Arg) encoding phosphatidylinositol 4-kinase β (PI4KB) from the patients in this family. In addition, 3 missense PI4KB (p.Val434Gly, p.Glu667Lys, and p.Met739Arg) mutations were identified in five patients with nonsyndromic SNHL from 57 sporadic cases. No such mutations were present within 600 Chinese controls, the 1000 genome project, gnomAD, or similar databases. Depleting pi4kb mRNA expression in zebrafish caused inner ear abnormalities and audiosensory impairment, mimicking the patient phenotypes. Moreover, overexpression of 4 human missense PI4KB mutant mRNAs in zebrafish embryos resulted in impaired hearing function, suggesting dominant-negative effects. Taken together, our results reveal that PI4KB mutations can cause SNHL and inner ear malformation. PI4KB should be included in neonatal deafness screening.
Collapse
Affiliation(s)
- Xiulan Su
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, 010050, China
| | - Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Sofia A Rahman
- Genomic Medicine Programme, UCL Institute of Child Health and Great Ormond Street Hospital for Children, 30 Guilford Street, London, WC1N 1EH, UK
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Guoan Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China
| | - Franz Rüschendorf
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany
| | - Lei Zhao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, 010050, China
| | - Hongwei Cui
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, 010050, China
| | - Junqing Liang
- Affiliated People Hospital of Inner Mongolia Medical University, Huhhot, 010050, China
| | - Liang Fang
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany; Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Hu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Sebastian Froehler
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany
| | - Yong Yu
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany
| | - Giannino Patone
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany
| | - Oliver Hummel
- Max-Delbrueck-Center for Molecular Medicine (MDC), Robert-Roessle-Str.10, Berlin, 13125, Germany
| | - Qinghua Chen
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Klemens Raile
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg.80, Berlin, 13125, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg.80, Berlin, 13125, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg.80, Berlin, 13125, Germany
| | - Khalid Hussain
- Department of Paediatric Medicine Division of Endocrinology, Sidra Medical & Research Center, OPC, Doha, C6-337, Qatar
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China; Medi-X Institute, SUSTec Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, 524001, China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Maolian Gong
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Lindenberger Weg.80, Berlin, 13125, Germany.
| |
Collapse
|
56
|
Satterfield-Nash A, Umrigar A, Lanzieri TM. Etiology of Prelingual Hearing Loss in the Universal Newborn Hearing Screening Era: A Scoping Review. Otolaryngol Head Neck Surg 2020; 163:662-670. [PMID: 32423335 PMCID: PMC7541667 DOI: 10.1177/0194599820921870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To conduct a scoping review on etiologic investigation of prelingual hearing loss among children <2 years of age in the era of universal newborn hearing screening (UNHS). DATA SOURCES PubMed, Embase, PsycInfo, CINAHL, and Cochrane Library databases. REVIEW METHODS We searched for articles published from January 1, 1998, to February 19, 2020. We reviewed studies that (1) included children identified with either congenital or delayed-onset hearing loss before 2 years of age among cohorts who had undergone UNHS and (2) investigated ≥1 etiologies of hearing loss. We defined hearing loss as congenital when confirmed after UNHS failure and as delayed onset when diagnosed after ≥1 assessments with normal hearing. RESULTS Among 2069 unique citations, 115 studies met criteria for full-text assessment, and 20 met our inclusion criteria. Six studies tested children diagnosed with hearing loss for genetic etiology, 9 for congenital cytomegalovirus (CMV) infection, and 5 for both. Among 1787 children with congenital hearing loss and etiologic investigation, 933 (52.2%) were tested for genetic mutations and 1021 (57.1%) for congenital CMV infection. The proportion of congenital hearing loss cases attributable to genetic etiology ranged between 7.7% and 83.3% and to congenital CMV infection between 0.0% and 32.0%. CONCLUSION Data are lacking on the identification and etiology of delayed-onset hearing loss in children <2 years of age in the UNHS era. The proportion of congenital hearing loss cases attributable to genetic etiologies and congenital CMV infection appears to vary widely.
Collapse
Affiliation(s)
| | - Ayesha Umrigar
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tatiana M. Lanzieri
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
57
|
Vona B, Doll J, Hofrichter MA, Haaf T. Non-syndromic hearing loss: clinical and diagnostic challenges. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Hereditary hearing loss is clinically and genetically heterogeneous. There are presently over 120 genes that have been associated with non-syndromic hearing loss and many more that are associated with syndromic forms. Despite an increasing number of genes that have been implemented into routine molecular genetic diagnostic testing, the diagnostic yield from European patient cohorts with hereditary hearing loss remains around the 50 % mark. This attests to the many gaps of knowledge the field is currently working toward resolving. It can be expected that many more genes await identification. However, it can also be expected, for example, that the mutational signatures of the known genes are still unclear, especially variants in non-coding or regulatory regions influencing gene expression. This review summarizes several challenges in the clinical and diagnostic setting for hereditary hearing loss with emphasis on syndromes that mimic non-syndromic forms of hearing loss in young children and other factors that heavily influence diagnostic rates. A molecular genetic diagnosis for patients with hearing loss opens several additional avenues, such as patient tailored selection of the best currently available treatment modalities, an understanding of the prognosis, and supporting family planning decisions. In the near future, a genetic diagnosis may enable patients to engage in preclinical trials for the development of therapeutics.
Collapse
Affiliation(s)
- Barbara Vona
- Tübingen Hearing Research Centre, Department of Otolaryngology – Head & Neck Surgery , Eberhard Karls University , Elfriede-Aulhorn-Strasse 5 , Tübingen , Germany
| | - Julia Doll
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| | | | - Thomas Haaf
- Institute of Human Genetics , Julius-Maximilians University Würzburg , Biozentrum, Am Hubland , Würzburg , Germany
| |
Collapse
|
58
|
Morgan M, Schott JW, Rossi A, Landgraf C, Warnecke A, Staecker H, Lesinski-Schiedat A, Schlegelberger B, Büning H, Auber B, Schambach A. Gene therapy as a possible option to treat hereditary hearing loss. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The process of hearing involves a series of events. The energy of sound is captured by the outer ear and further transferred through the external auditory canal to the middle ear. In the middle ear, sound waves are converted into movements of the tympanic membrane and the ossicles, thereby amplifying the pressure so that it is sufficient to cause movement of the cochlear fluid. The traveling wave within the cochlea leads to depolarization of the inner ear hair cells that, in turn, release the neurotransmitter glutamate. Thereby, the spiral ganglion neurons are activated to transfer the signals via the auditory pathway to the primary auditory cortex. This complex combination of mechanosensory and physiological mechanisms involves many distinct types of cells, the function of which are impacted by numerous proteins, including those involved in ion channel activity, signal transduction and transcription. In the last 30 years, pathogenic variants in over 150 genes were found to be linked to hearing loss. Hearing loss affects over 460 million people world-wide, and current treatment approaches, such as hearing aids and cochlear implants, serve to improve hearing capacity but do not address the underlying genetic cause of hearing loss. Therefore, therapeutic strategies designed to correct the genetic defects causative for hearing loss offer the possibility to treat these patients. In this review, we will discuss genetic causes of hearing loss, novel gene therapeutic strategies to correct hearing loss due to gene defects and some of the preclinical studies in hearing loss animal models as well as the clinical translation of gene therapy approaches to treat hearing loss patients.
Collapse
Affiliation(s)
- Michael Morgan
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
- REBIRTH Research Center for Translational Regenerative Medicine , Hannover Medical School , Hannover , Germany
| | - Juliane W. Schott
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
- REBIRTH Research Center for Translational Regenerative Medicine , Hannover Medical School , Hannover , Germany
| | - Axel Rossi
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
- REBIRTH Research Center for Translational Regenerative Medicine , Hannover Medical School , Hannover , Germany
| | - Christian Landgraf
- Department of Human Genetics , Hannover Medical School , Hannover , Germany
| | - Athanasia Warnecke
- Department of Otolaryngology , Hannover Medical School , Hannover , Germany
- Hearing4all Cluster of Excellence , Hannover Medical School , Hannover , Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery , University of Kansas School of Medicine , Kansas City , USA
| | - Anke Lesinski-Schiedat
- Department of Otolaryngology , Hannover Medical School , Hannover , Germany
- Hearing4all Cluster of Excellence , Hannover Medical School , Hannover , Germany
| | | | - Hildegard Büning
- Institute of Experimental Hematology , Hannover Medical School , Hannover , Germany
- REBIRTH Research Center for Translational Regenerative Medicine , Hannover Medical School , Hannover , Germany
- German Center for Infection Research (DZIF) , partner site Hannover-Braunschweig , Braunschweig , Germany
| | - Bernd Auber
- Department of Human Genetics , Hannover Medical School , Hannover , Germany
| | - Axel Schambach
- Institute of Experimental Hematology , Hannover Medical School , Carl-Neuberg-Str.1 , Hannover , Germany
- REBIRTH Research Center for Translational Regenerative Medicine , Hannover Medical School , Hannover , Germany
- Division of Hematology/Oncology, Boston Children’s Hospital , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
59
|
Etiological Work-up in Referrals From Neonatal Hearing Screening: 20 Years of Experience. Otol Neurotol 2020; 41:1240-1248. [PMID: 32925850 DOI: 10.1097/mao.0000000000002758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Confirmation of permanent hearing loss in a newborn should be followed by a search for an underlying etiology because this may impact hearing loss management and counselling. METHODS Retrospective chart review of all newborns seen at a tertiary referral center after referral from newborn hearing screening over a 20-year period. The changes in the diagnostic protocol over the years are outlined and the most recent protocol includes targeted next-generation sequencing using a panel for known hearing loss causing genes, in all cases of bilateral sensorineural hearing loss (SNHL). RESULTS Permanent hearing loss was confirmed in 235 of 1,002 neonates. A complete etiological work-up was performed in 138 cases of SNHL (77 bilateral and 61 unilateral), with the underlying cause found in 77.9% and in 67.2% of patients respectively. Genetic causes explained 55 (58.4%) of bilateral cases and in 17 a genetic cause was identified by the gene panel. Pathogenic variants in GJB2 and MYO15A explained most cases of nonsyndromic SNHL. Waardenburg syndrome was the most frequent syndromic cause. Cochlear nerve deficiency and congenital cytomegalovirus infection accounted for the majority of unilateral SNHL.Other causes of congenital hearing loss were conductive hearing loss (n = 12) and auditory neuropathy/dyssynchrony (n = 9). CONCLUSION Implementation of targeted next-generation sequencing in the etiological work-up improves the diagnostic yield in congenital SNHL, leaving only about 20% of bilateral and 30% of unilateral cases unsolved.
Collapse
|
60
|
Thorpe RK, Smith RJH. Future directions for screening and treatment in congenital hearing loss. PRECISION CLINICAL MEDICINE 2020; 3:175-186. [PMID: 33209510 PMCID: PMC7653508 DOI: 10.1093/pcmedi/pbaa025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common neurosensory deficit. It results from a variety of heritable and acquired causes and is linked to multiple deleterious effects on a child's development that can be ameliorated by prompt identification and individualized therapies. Diagnosing hearing loss in newborns is challenging, especially in mild or progressive cases, and its management requires a multidisciplinary team of healthcare providers comprising audiologists, pediatricians, otolaryngologists, and genetic counselors. While physiologic newborn hearing screening has resulted in earlier diagnosis of hearing loss than ever before, a growing body of knowledge supports the concurrent implementation of genetic and cytomegalovirus testing to offset the limitations inherent to a singular screening modality. In this review, we discuss the contemporary role of screening for hearing loss in newborns as well as future directions in its diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan K Thorpe
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
- The Interdisciplinary Graduate Program in Genetics, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Iowa Institute of Human Genetics, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| |
Collapse
|
61
|
Khela H, Kenna MA. Genetics of pediatric hearing loss: A functional perspective. Laryngoscope Investig Otolaryngol 2020; 5:511-519. [PMID: 32596495 PMCID: PMC7314484 DOI: 10.1002/lio2.390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This article reviews the current role of genetics in pediatric hearing loss (HL). METHODS A review of the current literature regarding the genetic basis of HL in children was performed. RESULTS To date, 119 nonsyndromic genes have been associated with HL. There are also hundreds of syndromic causes that have HL as part of the clinical phenotype. CONCLUSIONS Identifying HL genes coupled with clinical characteristics ("genotype-phenotype") yields a more accurate diagnosis and prognosis. Although the complexity of the auditory apparatus presents challenges, gene therapy is emerging and may be a viable management option in the future.
Collapse
Affiliation(s)
- Harmon Khela
- Summer Scholars Program, Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Margaret A. Kenna
- Department of Otolaryngology and Communication EnhancementBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
62
|
|
63
|
Concurrent hearing and genetic screening in a general newborn population. Hum Genet 2020; 139:521-530. [PMID: 32002660 DOI: 10.1007/s00439-020-02118-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 01/21/2023]
Abstract
Newborn hearing screening is not designed to detect delayed-onset prelingual hearing loss or aminoglycoside-antibiotic-induced ototoxicity. Cases with severe to profound hearing loss have been reported to have been missed by newborn hearing screens. The aim of this study was to evaluate the efficacy of concurrent hearing and genetic screening in the general population and demonstrate its benefits in practice. Enrolled newborns received concurrent hearing and genetic screens between September 1, 2015 and January 31, 2018. Of the 239,636 eligible infants (median age, 19 months), 548 (0.23%) had prelingual hearing loss. Genetic screening identified 14 hearing loss patients with positive genotypes and 27 patients with inconclusive genotypes who had passed the hearing screens. In addition, the genetic screen identified 0.23% (570/239,636) of the newborns and their family members as at-risk for ototoxicity, which is undetectable by hearing screens. In conclusion, genetic screening complements newborn hearing screening by improving the detection of infants at risk of hereditary hearing loss and ototoxicity, and by informing genotype-based clinical management for affected infants and their family members. Our findings suggest that the practice should be further validated in other populations and rigorous cost-effectiveness analyses are warranted.
Collapse
|
64
|
Peterson J, Nishimura C, Smith RJH. Genetic Testing for Congenital Bilateral Hearing Loss in the Context of Targeted Cytomegalovirus Screening. Laryngoscope 2020; 130:2714-2718. [PMID: 31985074 DOI: 10.1002/lary.28536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS To determine the prevalence of children with genetic hearing loss who are cytomegalovirus (CMV) positive at birth and the relative proportion of genetic and CMV etiology among children with congenital bilateral hearing loss. STUDY DESIGN Database review. METHODS We performed a review of clinical test results for patients undergoing comprehensive genetic testing for all known hearing loss-associated genes from January 2012 to January 2019. This population was reviewed for reported CMV status and genetic causes of congenital bilateral hearing loss. RESULTS In the OtoSCOPE database, 61/4,282 patients were found to have a documented CMV status, and 661/4282 had documented bilateral congenital hearing loss. Two patients were identified who had both a positive CMV result and a genetic cause for their hearing loss. Forty-eight percent of patients with bilateral congenital hearing loss (320/661) were found to have a genetic etiology. In 62% (198/320), the hearing loss was associated with pathogenic variants in GJB2, STRC, SLC26A4 or an Usher syndrome-associated gene. CONCLUSIONS We estimate that ~2% of CMV-positive newborns with hearing loss have a known genetic variant as a cause. The subcohort of CMV-positive newborns with symmetric mild-to-moderate bilateral hearing loss will have at least a 7% chance of having pathogenic gene variants associated with hearing loss. In a CMV-positive neonate who failed their newborn hearing screen bilaterally, genetic screening needs to be considered for accurate diagnosis and possible deferment of antiviral treatment. LEVEL OF EVIDENCE 4 Laryngoscope, 130:2714-2718, 2020.
Collapse
Affiliation(s)
- Joseph Peterson
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology and Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, U.S.A
| | - Carla Nishimura
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology and Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, U.S.A
| | - Richard J H Smith
- Department of Otolaryngology-Head and Neck Surgery, Molecular Otolaryngology and Renal Research Labs, University of Iowa Hospitals and Clinics, Iowa City, Iowa, U.S.A
| |
Collapse
|
65
|
We must now put in place an updated, comprehensive newborn screening program for deaf and hard-of-hearing infants. Genet Med 2019; 21:2439-2441. [PMID: 31413371 DOI: 10.1038/s41436-019-0638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
|