51
|
Jain M, Ravoo BJ. Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehak Jain
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
52
|
Wan J, Zhang Z, Wang Y, Zhao J, Qi Y, Zhang X, Liu K, Yu C, Yan X. Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties. Chem Commun (Camb) 2021; 57:7374-7377. [PMID: 34231574 DOI: 10.1039/d1cc02873a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synergistic covalent-and-supramolecular polymers, in which covalent polymers and supramolecular polymers connect with each other through [2]pseudorotaxane moieties, are designed and synthesized. The unique topological structure effectively enhances the synergistic effect between these two polymers, thereby generating a novel class of mechanically adaptive materials.
Collapse
Affiliation(s)
- Junjun Wan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yumeng Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
53
|
Wang Z, Chen T, Liu H, Zhao XL, Hu WB, Yang H, Liu YA, Wen K. Pillar[5]arene-Derived endo-Functionalized Molecular Tube for Mimicking Protein-Ligand Interactions. J Org Chem 2021; 86:6467-6477. [PMID: 33872006 DOI: 10.1021/acs.joc.1c00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial tubular molecular pockets bearing polar functionalities on their inner surface are useful model systems for understanding the mechanisms of protein-ligand interactions in living systems. We herein report a pillar[5]arene-derived molecular tube, [P4-(OH)BPO], whose endo conformational isomer endo-[P4-(OH)BPO] possesses an inwardly pointing hydrogen-bond (H-bond) donor (OH) in its deep cavity and a strong H-bond acceptor (C═O) on its predominantly hydrophobic inner surface, rendering it a perfect protein binding pocket mimetic. A fragment-based drug design model was established using endo-[P4-(OH)BPO] and a library of various shape-complementary fragment ligands (1-38). On the basis of the binding affinity data for "fragment-pocket" complexes G⊂endo-[P4-(OH)BPO] (G = 1-38), two rationally designed "lead molecules" (39 and 40) were identified as being able to enhance binding affinity significantly by forming H-bonds with both the donor and acceptor of endo-[P4-(OH)BPO]. The described work opens new avenues for developing pillar[n]arene-derived protein binding pocket-mimetic systems for studies of protein-ligand interactions and mechanisms of enzymatic reactions.
Collapse
Affiliation(s)
- Zhuo Wang
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
54
|
Guo YZ, Gao F, Wang Z, Liu YA, Hu WB, Yang H, Wen K. Highly Branched Pillar[5]arene-Derived Porous Aromatic Frameworks (PAFs) for Removal of Organic Pollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16507-16515. [PMID: 33784811 DOI: 10.1021/acsami.1c02583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption process is widely used for the treatment of wastewater containing organic pollutants. We fabricated highly branched pillar[5]arene-based porous aromatic frameworks (PAFs), PAF-P5, for the adsorption and removal of organic pollutants (short-chain alkyl derivatives 1-3 and pesticide molecules 4-6) from water with high removal efficiency (RE). However, PAF-P5 was incapable of adsorbing aromatic organic dyes 7-9. Adsorption kinetic studies indicated that the adsorption is mainly driven by strong host-guest interactions between 1-3 and the pillar[5]arene units in PAF-P5, while 4-6 only weakly interacted with the pillar[5]arene units in PAF-P5. Moreover, chemically breaking down the pillar[5]arene rings in PAF-P5 caused changes in the pore size, the microenvironment inside of the pores, and the frame morphology, and the resultant frameworks, PAF-DeP5, exhibited poor adsorption toward 1-6 but adsorbed 7-9 possibly through physical adsorption as implied by fitting the experimental data into the adsorption kinetic models.
Collapse
Affiliation(s)
- Yun-Zhe Guo
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Zhuo Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
55
|
Kato K, Onishi K, Maeda K, Yagyu M, Fa S, Ichikawa T, Mizuno M, Kakuta T, Yamagishi TA, Ogoshi T. Thermally Responsive Poly(ethylene oxide)-Based Polyrotaxanes Bearing Hydrogen-Bonding Pillar[5]arene Rings*. Chemistry 2021; 27:6435-6439. [PMID: 33543802 DOI: 10.1002/chem.202005099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/09/2022]
Abstract
Poly(ethylene oxide)s (PEOs) are useful polymers with good water solubility, biological compatibility, and commercial availability. PEOs with various end groups were threaded into pillar[5]arene rings in a mixture of water and methanol to afford pseudopolyrotaxanes. Corresponding polyrotaxanes were also constructed by capping COOH-terminated pseudopolyrotaxanes with bulky amines, in which multiple hydrogen bonds involving the pillar[5]arene OH groups were critically important to prevent dethreading. The number of threaded ring components could be rationally controlled in these materials, providing a simple and versatile method to tune the mechanical and thermal properties. Specifically, a polyrotaxane with a high-molecular-weight axle became elastic upon heating above the melting point of PEOs and exhibited temperature-dependent shape memory property because of the topological confinement and crosslinked hydrogen bonds.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 1848588, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| |
Collapse
|
56
|
Xiao T, Wang J, Shen Y, Bao C, Li ZY, Sun XQ, Wang L. Preparation of a fixed-tetraphenylethylene motif bridged ditopic benzo-21-crown-7 and its application for constructing AIE supramolecular polymers. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Chang Q, Shen Z, Guo Z, Xue C, Li N, Yang J, Hu S. Hydroxypropylmethyl Cellulose Modified with Carbon Dots Exhibits Light-Responsive and Reversible Optical Switching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12375-12382. [PMID: 33667060 DOI: 10.1021/acsami.0c22300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A light-responsive optical switching material is reported, which was obtained by incorporating carbon dots (CDs) into thermochromic hydroxypropylmethyl cellulose (HPMC). The ultrasmall size of CDs guarantees the considerable transparency of CDs/HPMC. Under illumination, CDs/HPMC shows rapid and reversible optical switching between transparent and opaque states due to the remarkable photothermal effect of CDs. Moreover, the interaction between CDs and HPMC enhances the light absorption and boosts the nonradiative recombination of photoexcited charge carriers that further promote the photothermal conversion of CDs, and also ensures the structural stability of the composite. The obtained CDs/HPMC with good reversibility and high sensitivity which can dynamically switch their transparency in response to weather conditions exhibits excellent solar modulation ability.
Collapse
Affiliation(s)
- Qing Chang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| | - Zhuohao Shen
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| | - Zeyu Guo
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| | - Ning Li
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, China
| |
Collapse
|
58
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021; 60:8967-8975. [DOI: 10.1002/anie.202015162] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
59
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
60
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
61
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021; 60:8115-8120. [DOI: 10.1002/anie.202013701] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/12/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
62
|
Liu W, Zeng C, Ge F, Yin Y, Wang C. Realization of reversible thermochromic polydiacetylene through silica nanoparticle surface modification. J Appl Polym Sci 2021. [DOI: 10.1002/app.49809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenwen Liu
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Chanjuan Zeng
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Fangqing Ge
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Yunjie Yin
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Chaoxia Wang
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| |
Collapse
|
63
|
Synthesis of Chiral Helic[1]triptycene[3]arenes and Their Enantioselective Recognition Towards Chiral Guests Containing Aminoindan Groups. Molecules 2021; 26:molecules26030536. [PMID: 33498575 PMCID: PMC7864338 DOI: 10.3390/molecules26030536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Starting from the enantiopure precursors, a pair of chiral macrocyclic arenes named helic[1]triptycene[3]arenes were conveniently synthesized. The circular dichroism (CD) spectra of the enantiomeric macrocyclic arenes exhibited mirror images, and the X-ray single crystal structures confirmed their absolute conformations as well. Moreover, the macrocyclic arenes showed strong complexation with secondary ammonium and primary ammonium salts containing aminoindan groups. In particular, the chiral macrocyclic arenes exhibited enantioselective recognition ability towards the chiral secondary ammonium salts containing aminoindan groups with an enantioselective ratio up to 3.89.
Collapse
|
64
|
Li RH, Ma J, Sun Y, Li H. Tailoring two-dimensional surfaces with pillararenes based host–guest chemistry. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
65
|
Zhang Z, Cheng L, Zhao J, Zhang H, Zhao X, Liu Y, Bai R, Pan H, Yu W, Yan X. Muscle-Mimetic Synergistic Covalent and Supramolecular Polymers: Phototriggered Formation Leads to Mechanical Performance Boost. J Am Chem Soc 2020; 143:902-911. [DOI: 10.1021/jacs.0c10918] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
66
|
Wu H, Xiao T. Supramolecular Polymers With AIE Property Fabricated From a Cyanostilbene Motif-Derived Ditopic Benzo-21-Crown-7 and a Ditopic Dialkylammonium Salt. Front Chem 2020; 8:610093. [PMID: 33330405 PMCID: PMC7710702 DOI: 10.3389/fchem.2020.610093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Fluorescent supramolecular polymers (FSP) have attracted considerable attention in recent years. Particularly, the incorporation of aggregation-induced emission (AIE) property to the FSP will bring this material into practical applications. Herein, we designed and synthesized a cyanostilbene motif derived ditopic benzo-21-crown-7 (B21C7) as a host molecule (H). The cyanostilbene motif endows H with AIE property while the B21C7 motif renders it with the capability to complex with electron deficient guest molecules. Upon the addition of a ditopic dialkylammonium salt molecule (G), a novel FSP with blue luminescent property can be constructed. This B21C7-based host-guest FSP with blue fluorescence may have potential application in supramolecular luminescent materials.
Collapse
Affiliation(s)
- Haoran Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
67
|
Duan Q, Wang F, Zhang H, Lu K. pH-Responsive Host-Guest Complexations Between a Water-Soluble Pillar[6]arene Dodecyl-Ammonium Chloride and Aromatic Sulfonic Acids. Front Chem 2020; 8:588201. [PMID: 33195089 PMCID: PMC7533581 DOI: 10.3389/fchem.2020.588201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the present work, new host-guest binding motifs based on a water-soluble pillar[6]arene dodecyl-ammonium chloride (CP6) with two aromatic sulfonic acids in aqueous media were fabricated. In accordance with the integrated results of 1H NMR, 2D NOESY, and florescence titration experiments, it was demonstrated that the host-guest binding of CP6 with the two aromatic sulfonic acids in aqueous solution not only has high binding constants but also has pH-responsiveness.
Collapse
Affiliation(s)
- Qunpeng Duan
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China.,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
68
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Liu X, Rapakousiou A, Deraedt C, Ciganda R, Wang Y, Ruiz J, Gu H, Astruc D. Multiple applications of polymers containing electron-reservoir metal-sandwich complexes. Chem Commun (Camb) 2020; 56:11374-11385. [PMID: 32990300 DOI: 10.1039/d0cc04586a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferrocene-containing polymers have been investigated for more than six decades, and more recently modern synthetic methods have allowed the fabrication of precise polymers that contain a variety of transition-metal complexes. Trends are now oriented towards applications, such as optics, energy conversion and storage, electrochemistry, magnetics, electric conductors and biomedicine. Metal-sandwich complexes such as those of ferrocene type and other related complexes that present redox-robust groups in polymers, i.e. that are isolable in both their oxidized and reduced forms, are of particular interest, because it is possible to address them using electronic or photonic redox stimuli for application. Our research groups have called such complexes Electron-Reservoirs and introduced them in the main chain or in the side chains of well-defined polymers. For instance, polymers with ferrocene in the main chain or in the side chain are oxidized to stable polycationic polyelectrolytes only if ferrocene is part of a biferrocene unit, because biferrocene oxidation leads to the biferrocenium cation that is stabilized by the mixed valency. Then a group of several redox-robust iron sandwich complexes were fabricated and incorporated in precise polymers including multi-block copolymers whose controlled synthesis and block incorporation was achieved for instance using ring-opening-metathesis polymerization. Applications of this family of Electron-Reservoir-containing polymers includes electrochemically induced derivatization of electrodes by decorating them with these polymers, molecular recognition and redox sensing, electrochromics with multiple colours, generation of gold and silver nanoparticles of various size by reduction of gold(iii) and silver(i) precursors and their use for nanocatalysis towards depollution and biomedicine.
Collapse
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Li B, Li S, Wang B, Meng Z, Wang Y, Meng Q, Li C. Capture of Sulfur Mustard by Pillar[5]arene: From Host-Guest Complexation to Efficient Adsorption Using Nonporous Adaptive Crystals. iScience 2020; 23:101443. [PMID: 32829284 PMCID: PMC7452326 DOI: 10.1016/j.isci.2020.101443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Sulfur mustard (SM) has been the most frequently used chemical warfare agent. Here, we present the efficient containment of SM and its simulants by per-ethylated pillar[5]arene (EtP5). EtP5 exhibited strong binding abilities toward SM and its simulants not only in solution but also in the solid state. The association constant (Ka) between SM and EtP5 was determined as (6.2 ± 0.6) × 103 M-1 in o-xylene-d10. Single crystal structure of SM@EtP5 showed that a 1:1 inclusion complex was formed, which was driven by multiple C-H···π/Cl/S and S···π interactions. In addition, activated crystal materials of EtP5 (EtP5α) could effectively adsorb SM simulants at solid-vapor phase; powder X-ray diffraction patterns and host-guest crystal structures indicated that the uptake process triggered a solid-state structural transformation. More interestingly, the captured guest molecules could be stably contained in EtP5α for at least 6 months in air at room temperature.
Collapse
Affiliation(s)
- Bin Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Shuo Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Bin Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chunju Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
71
|
Ogoshi T, Kotera D, Fa S, Nishida S, Kakuta T, Yamagishi TA, Brouwer AM. A light-operated pillar[6]arene-based molecular shuttle. Chem Commun (Camb) 2020; 56:10871-10874. [PMID: 32789406 DOI: 10.1039/d0cc03945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A molecular shuttle comprising a pillar[6]arene macrocyclic ring and an axle with two equal-energy-level stations connected by an azobenzene unit was synthesised. The E isomer of the azobenzene functioned as "open gate", allowing the pillar[6]arene ring to rapidly shuttle back-and-forth between the two stations. Ultraviolet irradiation induced photo-isomerisation of the azobenzene from E to Z form. The Z isomer of the azobenzene functioned as a "closed gate", inhibiting shuttling of the pillar[6]arene ring.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Kotera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
72
|
Li K, Meng S, Xia S, Ren X, Gao G. Durable and Controllable Smart Windows Based on Thermochromic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42193-42201. [PMID: 32820627 DOI: 10.1021/acsami.0c12710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, the use of smart windows to adjust sunlight to achieve energy conversion has received increasing attention. In this paper, a novel smart window was easily prepared by using thermochromic hydrogels as an interlayer and indium tin oxide films as an electric heating layer. The shielding transmission rates of visible and near-infrared light reached 88.3 and 85.4% at the temperature of 25 °C, respectively. However, the transmittance at a light wavelength of 550 nm was greater than 70% after applying voltage. The smart windows with different components could possess thermochromic temperature ranging from 28 to 35 °C, which was suitable for daily life. The smart window could maintain a stable reversible thermochromic transition. Importantly, the time of light transition and the demand of energy efficiency could be adjusted by controlling the magnitude of the output voltage, which benefited the development of energy-efficient materials.
Collapse
Affiliation(s)
- Kunming Li
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shengfei Meng
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shan Xia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
73
|
Lee JH, Kim SH, Doh KY, Kim EH, Lee D. First-Principles Investigations to Evaluate the Spin-Polarized Metal-to-Insulator Transition of Halide Cuprite Perovskites for Smart Windows. J Am Chem Soc 2020; 142:14859-14863. [PMID: 32791835 DOI: 10.1021/jacs.0c07529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although smart windows have received wide attention as energy-saving devices, conventional metal-to-insulator materials such as VO2 hinder their commercial usage because of their high transition temperature and low solar energy modulation. Further development can be achieved by finding a new material system that can effectively overcome these limitations. In this study, first-principles density functional theory calculations are used to investigate the possibility of exploiting a spin-polarized band gap material for smart window applications. Halide cuprite perovskites (A2CuX4) were chosen because they have a spin-polarized band gap that can be tuned by element selection at sites A and X. Our study shows that the optical transmittance of the insulating phase is increased by a violation of the selection rule. The spin-polarized band gap is closely related to the metal-to-insulator transition temperature and can be modulated by chemical engineering, strain engineering, or both. Therefore, A2CuX4 is a promising candidate for smart windows.
Collapse
Affiliation(s)
- June Ho Lee
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seong Hun Kim
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung-Yeon Doh
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eun Ho Kim
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering (MSE) and Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
74
|
|
75
|
Li J, Han XN, Zhou HY, Han Y, Chen CF. Helic[1]triptycene[3]arene: Synthesis, Complexation, and Formation of [2]Rotaxane Shuttle. J Org Chem 2020; 85:11465-11474. [PMID: 32791824 DOI: 10.1021/acs.joc.0c01558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new macrocyclic arene, helic[1]triptycene[3]arene H, was conveniently synthesized in 37% yield by a one-pot reaction starting from 2,6-dimethoxyl-3,7-dihydroxymethyltriptycene. Macrocycle H showed fixed conformation in solution and could form 1:1 complexes with a series of neutral guests, secondary ammonium salts, and tertiary ammonium salts in both solution and solid states. The association constants between H and the neutral guests were between (1.23 ± 0.10) × 102 and (4.70 ± 0.47) × 103 M-1, while the association constants between H and the ammonium guests were between (1.35 ± 0.12) × 103 and (1.59 ± 0.14) × 105 M-1. Moreover, H showed bigger association constants with secondary ammonium salts than those with tertiary ammonium salts possibly because of the steric hindrance effect and multiple intermolecular interactions. The stimuli-responsive complexation between H and the ammonium salts could be controlled by the addition and removal of acids and bases as well. Based on the host-guest complexation between H and the secondary ammonium salt, [2]rotaxane was further synthesized, and its shuttling motion could be efficiently controlled by an acid and base.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Kang SK, Ho DH, Lee CH, Lim HS, Cho JH. Actively Operable Thermoresponsive Smart Windows for Reducing Energy Consumption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33838-33845. [PMID: 32615750 DOI: 10.1021/acsami.0c09811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Efficient usage of finite energy resources is a core approach for preventing major blackouts caused by a severe lack of energy. Smart windows, which modulate thermal energy transferred from the incident sunlight, have attracted tremendous interest as an alternative technology for resolving the fast-approaching energy crisis by suppressing unnecessary energy usage such as air conditioning or heating inside buildings. Here, we demonstrate a set of materials and design concepts for doubly responsive smart windows, which efficiently reduce the consumption of our limited energy reserves. The proposed smart windows are based on the concept of combining the lower critical solution temperature of thermoresponsive polymer hydrogels and the electrical actuation of graphene-based flexible heaters; this combination serves to actively control the passive-type moving thermoresponsive smart window. The proposed smart windows exhibit a highly tunable transparency of above 90%, which corresponds to an almost instantaneous change from high transmission of the incident light to the complete blockage of its penetration under thermal or electrical stimulation. In particular, when the windows of a mockup house are replaced with the developed flexible smart windows, the increment rate of the indoor temperature under white light irradiation reduces drastically. This type of active light control system is expected to create a new opportunity for achieving cost savings on heating, cooling, and lighting through management of light energy transmitted into the interior of a house.
Collapse
Affiliation(s)
- Sung Kyung Kang
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - Dong Hae Ho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang Hwan Lee
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - Ho Sun Lim
- Department of Chemical and Biological Engineering, Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
77
|
Zhang Z, Cheng L, Zhao J, Wang L, Liu K, Yu W, Yan X. Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials. Angew Chem Int Ed Engl 2020; 59:12139-12146. [PMID: 32293777 DOI: 10.1002/anie.202004152] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/06/2022]
Abstract
Nature has engineered delicate synergistic covalent and supramolecular polymers (CSPs) to achieve advanced life functions, such as the thin filaments that assist in muscle contraction. Constructing artificial synergistic CSP materials with bioinspired mechanically adaptive features, however, represents a challenging goal. Here, we report an artificial CSP system to illustrate the integration of a covalent polymer (CP) and a supramolecular polymer (SP) in a synergistic fashion, along with the emergence of notable mechanical and dynamic properties which are unattainable when the two polymers are formed individually. The synergistic effect relies on the peculiar network structures of the SP and CPs, which endow the resultant CSPs with overall improved mechanical performance in terms of the stiffness, strength, stretchability, toughness, and elastic recovery. Moreover, the dynamic properties of the SP, including self-healing, stimuli-responsiveness, and reprocessing, are also retained in the CSPs, thus leading to their application as programmable and tunable materials.
Collapse
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
78
|
Zhang Z, Guo L, Zhang X, Hao J. Environmentally stable, photochromic and thermotropic organohydrogels for low cost on-demand optical devices. J Colloid Interface Sci 2020; 578:315-325. [PMID: 32531561 DOI: 10.1016/j.jcis.2020.05.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS The color-changing ability of creatures widely existed in nature has inspired the development of adaptive allochroic materials, which can respond to various external stimuli. Integrating multi-stimuli responsiveness and long-term stability in allochroic system are urgent for practical applications under complex circumstances. EXPERIMENTS The photochromic/thermotropic organohydrogels (PTOs) comprised polyacrylamide and cationic cellulose (JR400) were prepared by facile free-radical polymerization and glycerol displacement. The coexisting covalent bonds and noncovalent interactions collaboratively reinforce the networks, endowing the PTOs with boosted stretchability and toughness. FINDINGS The photochromic ammonium molybdate (Mo7) and thermo-sensitive poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EPE) were made into networks. In these cooperative networks, each constituent performed their own function without disruption, including fast photochromism (10 s) and durable thermo-responsiveness. Importantly, the glycerol-water solvent bestowed the distinct anti-freezing (-30 °C) and anti-dehydration performances on the PTOs. Accordingly, the materials could serve as promising rewritable devices for high-resolution and long-term data storage/encryption. Moreover, on-demand PTO windows integrating UV-prevention and solar energy regulation with Tlum (92.96%) and ΔTsol (46.02%) could create comfortable and healthy environments for occupants. This work offers a new design strategy for low-cost, environmentally stable smart optical devices.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, People's Republic of China.
| |
Collapse
|
79
|
Ji J, Wu W, Wei X, Rao M, Zhou D, Cheng G, Gong Q, Luo K, Yang C. Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts. Chem Commun (Camb) 2020; 56:6197-6200. [PMID: 32396589 DOI: 10.1039/d0cc02055a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tri-cavity hosts consisting of one pillar[5]arene (P5) sandwiched by two β-cyclodextrins (CDs) were synthesized, and their diastereoseparation was successfully accomplished. Photocyclodimerization of 2-anthracenecarboxylate with these hybrid hosts demonstrated the critical dependence of stereoselectivity on the absolute configuration of the central P5 and the conjugating positions on the β-CD, and gave the non-classical HT photodimers in up to 87% ee.
Collapse
Affiliation(s)
- Jiecheng Ji
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Healthy Food Evaluation Research Center and College of Chemistry, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhang Z, Cheng L, Zhao J, Wang L, Liu K, Yu W, Yan X. Synergistic Covalent and Supramolecular Polymers for Mechanically Robust but Dynamic Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
81
|
Zhang X, Liu Y, Wen J, Zhao Z, Chen H, Liu X, Liu S. Host-guest interaction-mediated fabrication of a hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength. SOFT MATTER 2020; 16:3416-3424. [PMID: 32219229 DOI: 10.1039/d0sm00271b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The introduction of structured microsphere composites into hydrogels is found to improve their mechanical strength capability. Herein, chitosan microspheres were functionalized with poly(acrylamide-co-1-benzyl-3-vinylimidazolium bromide) (CS-P(AM-G)), which was synthesized through an in situ copolymerization of acrylamide and a guest functional monomer. Supramolecular hydrogels were fabricated by dynamic host-guest interactions between guest units and the host molecule cucurbit[8]uril (CB[8]). Investigations on the mechanical properties of the hydrogels show that the tensile stress and the compress stress of the hydrogels are five times higher than those of CB[8] hydrogels without CS, and the healing efficiency of the hydrogels at room temperature is 88% after 24 h. The results show that CS microspheres serve as both polyfunctional initiating and cross-linking centers, whereas the dynamic host-guest interactions endow the hydrogels with a higher self-healing property. The process provides a novel method for the production of tough and self-healing supramolecular hydrogels with various potential applications.
Collapse
Affiliation(s)
- Xiongzhi Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuanxun Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Junwei Wen
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Hongxiang Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
82
|
Wang X, Li M, Wang D, Zhang H, Duan R, Zhang D, Song B, Dong B. Low-Cost, Robust Pressure-Responsive Smart Windows with Dynamic Switchable Transmittance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15695-15702. [PMID: 32159325 DOI: 10.1021/acsami.0c00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanically responsive smart windows with adjustable light transmittance have attracted more and more attention due to their great potential in our daily life. However, their fabrication normally requires complicated preparation such as oxygen plasma treatment and high-cost materials (i.e., poly(dimethylsiloxane) (PDMS)), which hinders their practical applications. Herein, a principally different mechanically responsive smart window, i.e., a pressure-responsive smart window, is reported, which is achieved by harnessing the synergistic interactions (i.e., hydrogen bonding and surface roughness compensation) between the two constituent parts, i.e., hydrogel and agar films. The pressure-responsive smart window features the ultrafast response time (37.5 ms) and high transmittance changes (∼50%) with excellent repeatability, which can be stained with different colors and operated on a flexible substrate. Since the pressure-responsive smart window enables the utilization of the low-cost material and does not require the external energy input, it is anticipated that it may have great potential in practical applications.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingtong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruomeng Duan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Bo Song
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
83
|
Zhang Z, Liang H, Li M, Shao L, Hua B. Host-Guest Complexation of Perethylated Pillar[6]arene toward Ferrocene Derivatives Both in Solution and Solid State: Different Binding Modes Induced by Minor Structural Changes of Guests. Org Lett 2020; 22:1552-1556. [PMID: 32003213 DOI: 10.1021/acs.orglett.0c00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, novel host-guest properties between perethylated pillar[6]arene and four kinds of ferrocene derivatives were fully investigated. NMR titrations, 2D NOESY NMR spectroscopy, and ESI-MS are used to confirm that they indeed formed stable inclusion complexes. Two precious single-crystal structures were obtained and showed that ferrocene derivatives with different chemical structures exhibit different binding modes with perethylated pillar[6]arenes.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Haozhong Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Ming Li
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Li Shao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Bin Hua
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| |
Collapse
|
84
|
Wang L, Cheng L, Li G, Liu K, Zhang Z, Li P, Dong S, Yu W, Huang F, Yan X. A Self-Cross-Linking Supramolecular Polymer Network Enabled by Crown-Ether-Based Molecular Recognition. J Am Chem Soc 2020; 142:2051-2058. [PMID: 31905287 DOI: 10.1021/jacs.9b12164] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular polymers based on host-guest molecular recognition have emerged as promising platforms for the development of smart materials. However, the studies on them are primarily conducted in solution and/or in the gel state. In contrast, little is known about dynamic properties and applications of supramolecular polymers in bulk. Herein, we present a self-cross-linking supramolecular polymer network (SPN) as a model system to understand the bulk properties controlled by noncovalent interactions. Specifically, the SPN monomer is composed of two benzo-21-crown-7 (B21C7) host units and two dialkylammonium salt guest moieties on a four-arm core, wherein complementary host-guest complexation drives the formation of the SPN with [2]pseudorotaxane linkages between B21C7 and ammonium motifs. The dynamic and reversible behaviors of the linkages are evaluated by measurement of viscoelasticity. The results indicate that the host-guest molecular recognition becomes highly dynamic at elevated temperature. Moreover, the relatively high activation energy of the SPN manifests itself as a new type of thermoplastic material with network topology freezing glass transition. Finally, we demonstrate how these findings provide insights into the malleability and processability of the SPN by simple demos. The fundamental understanding gained from the research on this SPN in bulk will facilitate the advancement and application of supramolecular materials.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Peitong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| |
Collapse
|
85
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
86
|
Song Q, Mei L, Zhang X, Xu P, Dhinakaran MK, Li H, Yang G. Spreading of benquitrione droplets on superhydrophobic leaves through pillar[5]arene-based host–guest chemistry. Chem Commun (Camb) 2020; 56:7593-7596. [DOI: 10.1039/d0cc02187c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spreading of agricultural sprays on plant surfaces is a significant task as it helps decrease pesticide usage and thereby reduces the risk of environmental pollution.
Collapse
Affiliation(s)
- Qianqian Song
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Longcan Mei
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Xujie Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Pingping Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Guangfu Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU)
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| |
Collapse
|
87
|
Işık D, Quaas E, Klinger D. Thermo- and oxidation-sensitive poly(meth)acrylates based on alkyl sulfoxides: dual-responsive homopolymers from one functional group. Polym Chem 2020. [DOI: 10.1039/d0py01321h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkyl sulfoxide side groups introduce thermo- and oxidation-sensitivity into poly(meth)acrylates, thus realizing new dual-responsive homopolymers based on one functional group.
Collapse
Affiliation(s)
- Doğuş Işık
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Elisa Quaas
- Institute of Chemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Daniel Klinger
- Institute of Pharmacy
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
88
|
Li W, Vaseem M, Yang S, Shamim A. Flexible and reconfigurable radio frequency electronics realized by high-throughput screen printing of vanadium dioxide switches. MICROSYSTEMS & NANOENGINEERING 2020; 6:77. [PMID: 34567687 PMCID: PMC8433205 DOI: 10.1038/s41378-020-00194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Smart materials that can change their properties based on an applied stimulus are in high demand due to their suitability for reconfigurable electronics, such as tunable filters or antennas. In particular, materials that undergo a metal-insulator transition (MIT), for example, vanadium dioxide (VO2) (M), are highly attractive due to their tunable electrical and optical properties at a low transition temperature of 68 °C. Although deposition of this material on a limited scale has been demonstrated through vacuum-based fabrication methods, its scalable application for large-area and high-volume processes is still challenging. Screen printing can be a viable option because of its high-throughput fabrication process on flexible substrates. In this work, we synthesize high-purity VO2 (M) microparticles and develop a screen-printable VO2 ink, enabling the large-area and high-resolution printing of VO2 switches on various substrates. The electrical properties of screen-printed VO2 switches at the microscale are thoroughly investigated under both thermal and electrical stimuli, and the switches exhibit a low ON resistance of 1.8 ohms and an ON/OFF ratio of more than 300. The electrical performance of the printed switches does not degrade even after multiple bending cycles and for bending radii as small as 1 mm. As a proof of concept, a fully printed and mechanically flexible band-pass filter is demonstrated that utilizes these printed switches as reconfigurable elements. Based on the ON and OFF conditions of the VO2 switches, the filter can reconfigure its operating frequency from 3.95 to 3.77 GHz without any degradation in performance during bending.
Collapse
Affiliation(s)
- Weiwei Li
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisiorn, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Mohammad Vaseem
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisiorn, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Shuai Yang
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisiorn, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisiorn, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
89
|
Zhao J, Cheng L, Liu K, Zhang Z, Yu W, Yan X. Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chem Commun (Camb) 2020; 56:8031-8034. [DOI: 10.1039/d0cc01205j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular polymeric elastomers crosslinked by metal–organic polyhedra were developed, featuring not only tunable mechanical properties but also dynamic actuation behaviors.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
90
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
91
|
Xue K, Liu Z, Jiang L, Kai D, Li Z, Su X, Loh XJ. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater Sci 2020; 8:926-936. [DOI: 10.1039/c9bm01603a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transparency is an important criterion for the application of biomaterials to the eye and essential for use as a vitreous substitute.
Collapse
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zengping Liu
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Lu Jiang
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| | - Xinyi Su
- Department of Ophthalmology
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore 138634
- Singapore
| |
Collapse
|
92
|
Wu S, Zhang Q, Deng Y, Li X, Luo Z, Zheng B, Dong S. Assembly Pattern of Supramolecular Hydrogel Induced by Lower Critical Solution Temperature Behavior of Low-Molecular-Weight Gelator. J Am Chem Soc 2019; 142:448-455. [PMID: 31825602 DOI: 10.1021/jacs.9b11290] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the gelation process and lower critical solution temperature (LCST) behavior are well acknowledged in polymer systems, low-molecular-weight gelators (LMWGs) rarely display LCST behavior during supramolecular gelation. Herein, we report an LMWG system with LCST-type thermoresponsiveness and an LCST-triggered supramolecular gelation process. Temperature plays a crucial role in this system, not only affecting the LCST phase separation but also triggering the gelation process. The backbones (three-dimensional structures) of the resulting hydrogel are the hierarchical assemblies of the LMWG undergoing the LCST phase separation. Hence, the gelation of the LMWG is only realized when the gelation temperature is above the critical transition temperature (Tcloud) of the LCST behavior, which is different from many supramolecular or polymeric hydrogel systems.
Collapse
Affiliation(s)
- Shuanggen Wu
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Yan Deng
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Xing Li
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , People's Republic of China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , People's Republic of China
| |
Collapse
|
93
|
Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Zhou W, Chen Y, Dai X, Zhang HY, Liu Y. Cucurbit[8]uril-Mediated Polypseudorotaxane for Enhanced Lanthanide Luminescence Behavior in Water. Org Lett 2019; 21:9363-9367. [DOI: 10.1021/acs.orglett.9b03597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weilei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000, People’s Republic of China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hao-yang Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
95
|
Mihara N, Ronson TK, Nitschke JR. Different Modes of Anion Response Cause Circulatory Phase Transfer of a Coordination Cage with Controlled Directionality. Angew Chem Int Ed Engl 2019; 58:12497-12501. [PMID: 31282602 PMCID: PMC6771743 DOI: 10.1002/anie.201906644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/22/2019] [Indexed: 12/19/2022]
Abstract
Controlled directional transport of molecules is essential to complex natural systems, from cellular transport up to organismal circulatory systems. In contrast to these natural systems, synthetic systems that enable transport of molecules between several spatial locations on the macroscopic scale, when external stimuli are applied, remain to be explored. Now, the transfer of a supramolecular cage is reported with controlled directionality between three phases, based on a cage that responds reversibly in two distinct ways to different anions. Notably, circulatory phase transfer of the cage was demonstrated based on a system where the three layers of solvent are arranged within a circular track. The direction of circulation between solvent phases depended upon the order of addition of anions.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | |
Collapse
|
96
|
Mihara N, Ronson TK, Nitschke JR. Different Modes of Anion Response Cause Circulatory Phase Transfer of a Coordination Cage with Controlled Directionality. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nozomi Mihara
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
97
|
Li J, Shi Q, Han Y, Chen CF. Complexation of 2,6-helic[6]arene and its derivatives with 1,1'-dimethyl-4,4'-bipyridinium salts and protonated 4,4'-bipyridinium salts: an acid-base controllable complexation. Beilstein J Org Chem 2019; 15:1795-1804. [PMID: 31435451 PMCID: PMC6664404 DOI: 10.3762/bjoc.15.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 01/26/2023] Open
Abstract
2,6-Helic[6]arene and its derivatives were synthesized, and their complexation with 1,1'-dimethyl-4,4'-bipyridinium and protonated 4,4'-bipyridinium salts were investigated in detail. It was found that the helic[6]arene and its derivatives could all form 1:1 complexes with both 1,1'-dimethyl-4,4'-bipyridinium salts and protonated 4,4'-bipyridinium salts in solution and in the solid state. Especially, the helic[6]arene and its derivatives containing 2-hydroxyethoxy or 2-methoxyethoxy groups exhibited stronger complexation with the guests than the other helic[6]arene derivatives for the additional multiple hydrogen bonding interactions between the hosts and the guests, which were evidenced by 1H NMR titrations, X-ray crystal structures and DFT calculations. Moreover, it was also found that the association constants (K a) of the complexes could be significantly enhanced with larger counteranions of the guests and in less polar solvents. Furthermore, the switchable complexation between the helic[6]arene and protonated 4,4'-bipyridinium salt could be efficiently controlled by acids and bases.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
98
|
Duan Q, Zhang H, Mai W, Wang F, Lu K. Acid/base- and base/acid-switchable complexation between anionic-/cationic-pillar[6]arenes and a viologen ditosylate salt. Org Biomol Chem 2019; 17:4430-4434. [PMID: 30888007 DOI: 10.1039/c9ob00398c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new host-guest complexes between water-soluble anionic pillar[6]arene (WP6) or cationic pillar[6]arene (CP6) and a viologen ditosylate salt G·2TsO were constructed, among which one formed from WP6 and G2+ ions can be controlled by the sequential addition of an acid and a base (HCl and NaOH, respectively), whereas the other fabricated from CP6 and TsO- ions can be switched through the sequential addition of basic and acidic reagents (NaOH and HCl, respectively).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | |
Collapse
|
99
|
Heydari Z, Rashidi-Ranjbar P. Synthesis and photophysical properties of a new carbazole-based acidochromic molecular switch. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
100
|
Guan XW, Lin Q, Zhang YM, Wei TB, Wang J, Fan YQ, Yao H. Pillar[5]arene-based spongy supramolecular polymer gel and its properties in multi-responsiveness, dye sorption, ultrasensitive detection and separation of Fe 3. SOFT MATTER 2019; 15:3241-3247. [PMID: 30916674 DOI: 10.1039/c8sm02482k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, a novel way to design and construct multi-functional spongy supramolecular polymer gels through an easy to make tripodal guest (TA) and a naphthalimide functionalized-pillar[5]arene host (AP5) has been developed. According to this approach, a novel pillar[5]arene-based supramolecular polymer gel (SHG) was constructed via multi-non-covalent interactions such as host-guest inclusion, C-Hπ, ππ and hydrogen bonds and so on. Interestingly, the SHG exhibits a spongy structure and strong aggregation induced emission (AIE). Furthermore, the SHG also exhibited multi-responsiveness toward outer stimuli such as heating-cooling, pH, competitive agents and mechanical. More importantly, the SHG xerogel shows separation properties for Fe3+, methyl orange, methylene blue and sudan I dyes. The separation rates of SHG xerogel for Fe3+ ions and organic dyes can reach up to 99.8%. Simultaneously, the SHG could ultrasensitively detect Fe3+ (LOD is 0.9 nM). In addition, a thin film based on SHG was also prepared, which was confirmed to be a convenient test kit for detecting Fe3+.
Collapse
Affiliation(s)
- Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|