51
|
Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree mining approach. BMC Bioinformatics 2020; 21:42. [PMID: 32019496 PMCID: PMC7001330 DOI: 10.1186/s12859-020-3374-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. Results In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. Conclusions We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation.
Collapse
Affiliation(s)
- Lachlan Coff
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Jeffrey Chan
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.,Department of Immunology, Monash University, 3004, Melbourne, Australia.,Department of Surgery Austin Health, University of Melbourne, 3084, Heidelberg, Australia
| | - Andrew J Guy
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.
| |
Collapse
|
52
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
53
|
Strubbia S, Phan MVT, Schaeffer J, Koopmans M, Cotten M, Le Guyader FS. Characterization of Norovirus and Other Human Enteric Viruses in Sewage and Stool Samples Through Next-Generation Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:400-409. [PMID: 31446609 PMCID: PMC6848244 DOI: 10.1007/s12560-019-09402-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/17/2019] [Indexed: 05/06/2023]
Abstract
This study aimed to optimize a method to identify human enteric viruses in sewage and stool samples using random primed next-generation sequencing. We tested three methods, two employed virus enrichment based on the binding properties of the viral capsid using pig-mucin capture or by selecting viral RNA prior to library preparation through a capture using the SureSelect target enrichment. The third method was based on a non-specific biophysical precipitation with polyethylene glycol. Full genomes of a number of common human enteric viruses including norovirus, rotavirus, husavirus, enterovirus and astrovirus were obtained. In stool samples full norovirus genome were detected as well as partial enterovirus genome. A variety of norovirus sequences was detected in sewage samples, with genogroup II being more prevalent. Interestingly, the pig-mucin capture enhanced not only the recovery of norovirus and rotavirus but also recovery of astrovirus, sapovirus and husavirus. Documenting sewage virome using these methods provides information for molecular epidemiology and may be useful in developing strategies to prevent further spread of viruses.
Collapse
Affiliation(s)
- Sofia Strubbia
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France
| | - My V T Phan
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Matthew Cotten
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- London School of Hygiene and Tropical Medicine, London, UK
- Uganda Virus Research Institute, Entebbe, Uganda
- MRC-Centre for Virus Research, Glasgow, UK
| | - Françoise S Le Guyader
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, BP 21105, 44311, Nantes Cedex 3, France.
| |
Collapse
|
54
|
Le Pendu J, Ruvoën-Clouet N. Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Hum Genet 2019; 139:903-910. [PMID: 31760489 DOI: 10.1007/s00439-019-02090-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
|
55
|
Armah GE, Cortese MM, Dennis FE, Yu Y, Morrow AL, McNeal MM, Lewis KDC, Awuni DA, Armachie J, Parashar UD. Rotavirus Vaccine Take in Infants Is Associated With Secretor Status. J Infect Dis 2019; 219:746-749. [PMID: 30357332 DOI: 10.1093/infdis/jiy573] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023] Open
Abstract
Rotaviruses bind to enterocytes in a genotype-specific manner via histo-blood group antigens (HBGAs), which are also detectable in saliva. We evaluated antirotavirus immunoglobulin A seroconversion ('vaccine take") among 166 Ghanaian infants after 2-3 doses of G1P[8] rotavirus vaccine during a vaccine trial, by HBGA status from saliva collected at age 4.1 years. Only secretor status was associated with seroconversion: 41% seroconversion for secretors vs 13% for nonsecretors; relative risk, 3.2 (95% confidence interval, 1.2-8.1; P = .016). Neither Lewis antigen nor salivary antigen blood type was associated with seroconversion. Likelihood of "take" for any particular rotavirus vaccine may differ across populations based on HBGAs.
Collapse
Affiliation(s)
- George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Margaret M Cortese
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Francis E Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Ying Yu
- Department of Pediatrics, Perinatal Institute, Ohio
| | | | - Monica M McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Ohio
| | | | - Denis A Awuni
- Navrongo Health Research Centre, Ministry of Health, Ghana
| | - Joseph Armachie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
56
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
57
|
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. J Virol 2019; 93:JVI.00941-19. [PMID: 31243129 PMCID: PMC6714814 DOI: 10.1128/jvi.00941-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023] Open
Abstract
Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human. Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission. IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Collapse
|
58
|
Feng N, Hu L, Ding S, Sanyal M, Zhao B, Sankaran B, Ramani S, McNeal M, Yasukawa LL, Song Y, Prasad BV, Greenberg HB. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J Clin Invest 2019; 129:3839-3851. [PMID: 31403468 PMCID: PMC6715378 DOI: 10.1172/jci128382] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.
Collapse
Affiliation(s)
- Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Siyuan Ding
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California, USA
| | - Boyang Zhao
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Monica McNeal
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Yanhua Song
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,Institute of Veterinary Medicine, Jiangsu Academy of Agriculture Science, Nanjing, China
| | - B.V. Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
59
|
Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog 2019; 15:e1007865. [PMID: 31226167 PMCID: PMC6609034 DOI: 10.1371/journal.ppat.1007865] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 07/03/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-β1,3-GlcNAc; H1), and to its precursor lacto-N-biose (Gal-β1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus. The interaction of viruses with host glycans has become an important topic in the study of enteric virus infectivity. This interaction modulates several aspects of the viral cycle, including viral attachment, which in most cases depends on the host glycobiology dictated by the secretor and Lewis genotypes. The capacity to synthesize secretory type-I antigen H (fucose-α1,2-galactose-β1,3-N-acetylglucosamine; H1) at the mucosae, dictated by the presence of one or two functional copies of the fucosyl-transferase FUT2 gene (secretor status), has been clearly linked to infectivity in important enteric viruses such as the noroviruses. However, a big controversy existed about the contribution of H1 antigen to infection in the leading cause of viral gastroenteritis in young children (rotavirus). It has not been until recently that epidemiological data evidenced a diminished incidence of rotavirus in non-secretor individuals unable to produce H1. In the present manuscript we offer the evidence that P[8] RV bind H1 via a binding site common for the P[II] RV genogroup and that the H1 precursor lacto-N-biose (galactose-β1,3-N-acetylglucosamine; LNB) is also bound to this pocket with diminished affinity. The P[8] VP8* structures show a marginal role for the L-fucose moiety from H1 in protein interaction. However, its presence provides conformational changes in the LNB moiety that increase the affinity of VP8* for the H1 ligand and would account for a stronger RV binding to mucosa in individuals expressing H1 (secretors). We thus offer a mechanistic explanation for the different incidence of P[8] RV infection in different secretor phenotypes.
Collapse
|
60
|
Pérez-Ortín R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellón C, Rodríguez-Díaz J, Buesa J. Histo-Blood Group Antigens in Children with Symptomatic Rotavirus Infection. Viruses 2019; 11:E339. [PMID: 30974776 PMCID: PMC6520971 DOI: 10.3390/v11040339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Group A rotaviruses are a major cause of acute gastroenteritis in children. The diversity and unequal geographical prevalence of rotavirus genotypes have been linked to histo-blood group antigens (HBGAs) in different human populations. In order to evaluate the role of HBGAs in rotavirus infections in our population, secretor status (FUT2+), ABO blood group, and Lewis antigens were determined in children attended for rotavirus gastroenteritis in Valencia, Spain. During three consecutive years (2013-2015), stool and saliva samples were collected from 133 children with rotavirus infection. Infecting viral genotypes and HBGAs were determined in patients and compared to a control group and data from blood donors. Rotavirus G9P[8] was the most prevalent strain (49.6%), followed by G1P[8] (20.3%) and G12P[8] (14.3%). Rotavirus infected predominantly secretor (99%) and Lewis b positive (91.7%) children. Children with blood group A and AB were significantly more prone to rotavirus gastroenteritis than those with blood group O. Our results confirm that a HBGA genetic background is linked to rotavirus P[8] susceptibility. Rotavirus P[8] symptomatic infection is manifestly more frequent in secretor-positive (FUT2+) than in non-secretor individuals, although no differences between rotavirus G genotypes were found.
Collapse
Affiliation(s)
- Raúl Pérez-Ortín
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|