51
|
Zhao Y, Liu P, Ying Y, Wei K, Zhao D, Liu D. Heating-driven assembly of covalent organic framework nanosheets for gas separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119326] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Yuan H, Liu G, Qiao Z, Li N, Buenconsejo PJS, Xi S, Karmakar A, Li M, Cai H, Pennycook SJ, Zhao D. Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101257. [PMID: 34057259 DOI: 10.1002/adma.202101257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guoliang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Nanxi Li
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Jurong Island, Singapore, 627833, Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
53
|
Liu G, Tu J, Wu C, Fu Y, Chu C, Zhu Z, Wang X, Yan M. High-Yield Two-Dimensional Metal-Organic Framework Derivatives for Wideband Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20459-20466. [PMID: 33890473 DOI: 10.1021/acsami.1c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional metal-organic frameworks (2D-MOFs) and their derivatives are promising for catalysis, energy storage, gas separation, etc. due to their unique microstructure and physicochemical properties. Many efforts have been devoted to fabricating 2D-MOFs with challenges remaining in yield and fine control of their thickness and lateral size. Here a versatile strategy has been used involving epitaxial, anisotropic, and confined growth of CoNi-MOF-71 nanosheet arrays, giving rise to excellent quantity and controllability of the 2D-MOFs. Electromagnetic (EM) wave absorption performance has been investigated for the resultant 2D Co/Ni/C derivatives. Compared with the bulk counterpart, significantly increased surface area, conductivity, and shape anisotropy for the 2D derivatives result in enhanced interfacial polarization, conductive loss, and magnetic resonance. As such, optimum EM wave absorption of minimum reflection loss RLmin = -49.8 dB and an ultrawide effective adsorption bandwidth EAB = 7.6 GHz can be achieved at a thickness of 2.6 mm. This work not only sheds light on the performance enhancement for 2D absorbers via synergistic effects of multiple attenuation mechanisms but also provides an effective fabrication route of ultrathin MOFs with high yield and uniform size for extended applications in catalysis, electrochemistry, and optoelectronics fields.
Collapse
Affiliation(s)
- Guang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaqi Tu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chen Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujie Fu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chenghao Chu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zihao Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinhua Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
54
|
Ren X, Liao G, Li Z, Qiao H, Zhang Y, Yu X, Wang B, Tan H, Shi L, Qi X, Zhang H. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213781] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
55
|
Zhang L, Wang H, Zhao G, Li N, Wang X, Li Y, Jia Y, Qiao X. Anti-Tim4 Grafting Strongly Hydrophilic Metal-Organic Frameworks Immunoaffinity Flake for High-Efficiency Capture and Separation of Exosomes. Anal Chem 2021; 93:6534-6543. [PMID: 33851819 DOI: 10.1021/acs.analchem.1c00528] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes have become the most ideal analysis target for liquid biopsy since they carry a large amount of genetic materials. The study on exosomes has great significance for cancer diagnosis and prognosis. However, the extremely low concentration renders the development of a robust exosomes enrichment technique, with the merits of low nonspecific cell adhesion, high-capture efficiency, and easy nondestructive release of captured exosomes, of vital significance. We successfully designed and developed a novel Tim4@ILI-01 immunoaffinity flake material. First, a strongly hydrophilic ILI-01 MOFs matrix material was fabricated with cationic ionic liquid 1,3-bis(4-carboxybutyl)imidazolium bromide as the organic ligand. The nonspecific adsorption of the ILI-01 MOFs material was only 0.7% after two washings with a neutral buffer. Moreover, based on the inherent abundant carboxyl groups on the ILI-01 MOFs flake, they can be facilely functionalized with an anti-Tim4 antibody with the bonding efficiency of 82.4%. The capture efficiency of the developed Tim4@ILI-01 immunoaffinity material for exosomes reached 85.2%, which is 5.2 times higher than that via the gold standard ultracentrifugation method. Furthermore, based on the Ca2+-dependent characteristic of the binding between the Tim4@ILI-01 immunoaffinity material and phosphatidylserine (PS) on the surfaces of exosomes, the captured exosomes can be easily released with the addition of a chelating agent under neutral eluent conditions. Thus, the captured exosomes maintained good biological activity. The developed Tim4@ILI-01 immunoaffinity flake was successfully applied for enrichment of exosomes from serums of healthy persons and lung adenocarcinoma patients. The levels of the expressed CD44 gene significantly changed under different stages of lung adenocarcinoma cancer. All these results demonstrate that the Tim4@ILI-01 immunoaffinity flake is a robust enrichment material and has a good potential in practical clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Haiyan Wang
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Guofa Zhao
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Nan Li
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Xiaofang Wang
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Yumiao Li
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Youchao Jia
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
56
|
Wang M, Dong X, Meng Z, Hu Z, Lin Y, Peng C, Wang H, Pao C, Ding S, Li Y, Shao Q, Huang X. An Efficient Interfacial Synthesis of Two‐Dimensional Metal–Organic Framework Nanosheets for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mengjun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xu Dong
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Jiangsu 215123 China
| | - Zhaodong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids Nöthnitzer Street 40 01187 Dresden Germany
| | - Yan‐Gu Lin
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Chun‐Kuo Peng
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hongshuai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Jiangsu 215123 China
| | - Chih‐Wen Pao
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Songyuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Jiangsu 215123 China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
57
|
Wang M, Dong X, Meng Z, Hu Z, Lin YG, Peng CK, Wang H, Pao CW, Ding S, Li Y, Shao Q, Huang X. An Efficient Interfacial Synthesis of Two-Dimensional Metal-Organic Framework Nanosheets for Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2021; 60:11190-11195. [PMID: 33694245 DOI: 10.1002/anie.202100897] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) metal-organic framework nanosheets (MOF NSs) play a vital role in catalysis, but the most preparation is ultrasonication or solvothermal. Herein, a liquid-liquid interfacial synthesis method has been developed for the efficient fabrication of a series of 2D Ni MOF NSs. The active sites could be modulated by readily tuning the ratios of metal precursors and organic linkers (RM/L ). The Ni MOF NSs display highly RM/L dependent activities towards 2e oxygen reduction reaction (ORR) to hydrogen peroxide (H2 O2 ), where the Ni MOF NSs with the RM/L of 6 exhibit the optimal near-zero overpotential, ca. 98 % H2 O2 selectivity and production rate of ca. 80 mmol gcat -1 h-1 in 0.1 M KOH. As evidenced by X-ray absorption fine structure spectroscopy, the coordination environment of active sites changed from saturation to unsaturation, and the partially unsaturated metal atoms are crucial to create optimal sites for enhancing the electrocatalysis.
Collapse
Affiliation(s)
- Mengjun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Zhaodong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187, Dresden, Germany
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chun-Kuo Peng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.,Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hongshuai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Songyuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China.,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
58
|
Tang W, Zhao Y, Xu M, Xu J, Meng S, Yin Y, Zhang Q, Gu L, Liu D, Gu Z. Controlling the Stacking Modes of Metal–Organic Framework Nanosheets through Host–Guest Noncovalent Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Qi Tang
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| | - Ying‐Jie Zhao
- State Key Laboratory of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ming Xu
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| | - Jin‐Ya Xu
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| | - Sha‐Sha Meng
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| | - Yun‐Dong Yin
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| | - Qing‐Hua Zhang
- Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Lin Gu
- Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Da‐Huan Liu
- State Key Laboratory of Organic-Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhi‐Yuan Gu
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
59
|
Meng SS, Xu M, Han T, Gu YH, Gu ZY. Regulating metal-organic frameworks as stationary phases and absorbents for analytical separations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1318-1331. [PMID: 33629983 DOI: 10.1039/d0ay02310h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are highly ordered framework systems composed of metal centers and organic linkers formed through coordination bonds. The diversity of metal elements and easily modified organic ligands, together with controllable synthetic approaches, gives rise to the designability of various MOF structures and topologies and the capability of MOFs to be functionalized. Their structural diversity provides MOFs with many unique properties, such as permanent porosity, flexible structures, thermostability, and high adsorption capacity, leading to great practicability in technical applications. In this review, we concentrate on the applications of MOFs in the field of gas chromatography, high-performance liquid chromatography, and the enrichment of biomolecules, based on rational arrangements in the structures and functions of MOFs. Moreover, we emphasize the importance of structural and chemical regulations for the improvement of separation efficiency.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
60
|
Zhu L, Liu N, Lv X, Zhang Z, Yu L, Li X. A novel metal-organic framework derived carbon nanoflower with effective electromagnetic microwave absorption and high-performance electrochemical energy storage properties. Chem Commun (Camb) 2021; 57:2539-2542. [PMID: 33585843 DOI: 10.1039/d1cc00253h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report on the electrochemical performance and electromagnetic microwave absorption (EMWA) properties of a novel metal-organic framework derived carbon nanomaterial. This carbon material shows high-performance electrochemical energy storage, and has a maximum reflection loss of 27.6 dB with an effective absorption bandwidth of 2.24 GHz.
Collapse
Affiliation(s)
- Liwei Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China. and College of Chemistry and Chemical Engineering, Qilu Normal University, Shandong 266100, P. R. China
| | - Ning Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Xincheng Lv
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Ziqiu Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Xia Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| |
Collapse
|
61
|
Zhou Y, Han L. Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213665] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
62
|
Xiao J, Yang SS, Wu JX, Wu N, Yu X, Shang W, Gu ZY. Sn-based metal-organic framework for highly selective capture of monophosphopeptides. Talanta 2021; 224:121812. [PMID: 33379037 DOI: 10.1016/j.talanta.2020.121812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022]
Abstract
Sn-based metal-organic framework (MOF) was utilized to effectively capture monophosphopeptides due to the unique affinity. The Sn-based MOF demonstrated the good sensitivity and selectivity in the model phosphoproteins enrichment and was successfully applied in the biological fluids.
Collapse
Affiliation(s)
- Jing Xiao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shi-Shu Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Xiang Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Nan Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
63
|
Tang WQ, Zhao YJ, Xu M, Xu JY, Meng SS, Yin YD, Zhang QH, Gu L, Liu DH, Gu ZY. Controlling the Stacking Modes of Metal-Organic Framework Nanosheets through Host-Guest Noncovalent Interactions. Angew Chem Int Ed Engl 2021; 60:6920-6925. [PMID: 33480119 DOI: 10.1002/anie.202014673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/28/2020] [Indexed: 12/11/2022]
Abstract
The tuning of metal-organic framework (MOF) nanosheet stacking modes from molecular level was rarely explored although it significantly affected the properties and applications of nanosheets. Here, the different stacking modes of Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework nanosheets were synthesized through the induction of different host-guest noncovalent interactions. The solvents of methyl benzene and ethyl acetate induced twisted stacking of nanosheets with the specific rotation angles of 12°, 18°, 24° and 6°, 18°, 24°, 30°, respectively, which was in agreement with theoretical calculations. Meanwhile, the alkanes were likely to vertically enter the pores of Zr-BTB nanosheets because of steric hindrance and hydrophobic interactions, resulting in the untwisted stacking of nanosheets. The untwisted ordered nanopores showed the excellent gas chromatographic separations of benzene derivative isomers, which was better than twisted nanosheets stacking and commercial columns. This work uncovers a rational strategy to control the stacking of two-dimensional MOF nanosheets.
Collapse
Affiliation(s)
- Wen-Qi Tang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Ying-Jie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Xu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Jin-Ya Xu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Sha-Sha Meng
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Yun-Dong Yin
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Qing-Hua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Da-Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhi-Yuan Gu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
64
|
Xu M, Meng SS, Cai P, Tang WQ, Yin YD, Powell JA, Zhou HC, Gu ZY. Modulating the stacking modes of nanosized metal-organic frameworks by morphology engineering for isomer separation. Chem Sci 2021; 12:4104-4110. [PMID: 34163681 PMCID: PMC8179526 DOI: 10.1039/d0sc06747d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Modulating different stacking modes of nanoscale metal-organic frameworks (MOFs) introduces different properties and functionalities but remains a great challenge. Here, we describe a morphology engineering method to modulate the stacking modes of nanoscale NU-901. The nanoscale NU-901 is stacked through solvent removal after one-pot solvothermal synthesis, in which different morphologies from nanosheets (NS) to interpenetrated nanosheets (I-NS) and nanoparticles (NP) were obtained successfully. The stacked NU-901-NS, NU-901-I-NS, and NU-901-NP exhibited relatively aligned stacking, random stacking, and close packing, respectively. The three stacked nanoscale NU-901 exhibited different separation abilities and all showed better performance than bulk phase NU-901. Our work provides a new morphology engineering route for the modulation of the stacking modes of nano-sized MOFs and improves the separation abilities of MOFs.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yun-Dong Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Joshua A Powell
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
- Department of Materials Science and Engineering, Texas A&M University College Station Texas 77842 USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
65
|
Nicks J, Boer SA, White NG, Foster JA. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem Sci 2021; 12:3322-3327. [PMID: 34164102 PMCID: PMC8179369 DOI: 10.1039/d0sc06906j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials.
Collapse
Affiliation(s)
- Joshua Nicks
- Department of Chemistry, University of Sheffield Sheffield UK
| | - Stephanie A Boer
- Research School of Chemistry, The Australian National University Canberra ACT 2600 Australia
| | - Nicholas G White
- Research School of Chemistry, The Australian National University Canberra ACT 2600 Australia
| | | |
Collapse
|
66
|
Yoo MJ, Lee MH, Szulejko JE, Vikrant K, Kim KH. A quantitation method for gaseous formaldehyde based on gas chromatography with metal–organic framework cold-trap sorbent as an effective alternative for HPLC-based standard protocol. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Cao L, Wang C. Metal-Organic Layers for Electrocatalysis and Photocatalysis. ACS CENTRAL SCIENCE 2020; 6:2149-2158. [PMID: 33376778 PMCID: PMC7760065 DOI: 10.1021/acscentsci.0c01150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic layers (MOLs) are two-dimensional analogues of metal-organic frameworks (MOFs) with a high aspect ratio and thickness down to a monolayer. Active sites on MOLs are more accessible than those on MOFs thanks to the two-dimensional feature of MOLs, which allows easier chemical modification around the catalytic center. MOLs can also be assembled with other functional materials through surface anchoring sites that can facilitate charge/energy transport through the hybrid material. MOLs are thus quite suitable for interfacial catalysis like electrocatalysis and photocatalysis. In this outlook, we focus on representative progress of constructing unique interfacial sites on MOLs with designer paths for charge separation and energy transfer, as well as cooperative cavities for superior substrate adsorption and activation. We also discuss challenges and potentials in the future development of MOL catalysts and catalysts beyond MOLs.
Collapse
Affiliation(s)
- Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
68
|
Gao WY, Ngo HT, Niu Z, Zhang W, Pan Y, Yang Z, Bhethanabotla VR, Joseph B, Aguila B, Ma S. A Mixed-Metal Porphyrinic Framework Promoting Gas-Phase CO 2 Photoreduction without Organic Sacrificial Agents. CHEMSUSCHEM 2020; 13:6273-6277. [PMID: 32743964 DOI: 10.1002/cssc.202001610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Indexed: 06/11/2023]
Abstract
A photoactive porphyrinic metal-organic framework (MOF) has been prepared by exchanging Ti into a Zr-based MOF precursor. The resultant mixed-metal Ti/Zr porphyrinic MOF demonstrates much-improved efficiency for gas-phase CO2 photoreduction into CH4 and CO under visible-light irradiation using water vapor compared to the parent Zr-MOF. Insightful studies have been conducted to probe the photocatalysis processes. This work provides the first example of gas-phase CO2 photoreduction into methane without organic sacrificial agents on a MOF platform, thereby paving an avenue for developing MOF-based photocatalysts for application in CO2 photoreduction and other types of photoreactions.
Collapse
Affiliation(s)
- Wen-Yang Gao
- Department of Chemistry, New Mexico Institute of Mining & Technology, 801 Leroy Place, Socorro, New Mexico, 87801, United States
| | - Huong T Ngo
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Weijie Zhang
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, 1231 Albrecht Bld., Fargo, ND 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, 1231 Albrecht Bld., Fargo, ND 58108, United States
| | - Venkat R Bhethanabotla
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Babu Joseph
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Briana Aguila
- Department of Chemistry, Francis Marion University, 4822 E. Palmetto St, Florence, SC 29506, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, United States
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States)
| |
Collapse
|
69
|
Duo H, Lu X, Wang S, Liang X, Guo Y. Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116093] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
70
|
Preparation of sheet-like covalent organic frameworks and their application for efficient preconcentration of 4-(tert-octyl)-phenol and 4-nonylphenol in textiles. J Chromatogr A 2020; 1635:461765. [PMID: 33285418 DOI: 10.1016/j.chroma.2020.461765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
In the design of highly ordered (covalent organic frameworks) COFs with "ordered domains size and orientation" construction in a well-defined arrangement, the molecular monomers are the key factors. Here, the effect of molecular monomers on the construction of COFs has been studied, and two kinds of molecular monomers, i.e., ethanediamine (flexible amine ligand) and 4,4'-diaminobiphenyl (rigid amine ligand) have been used for developing sheet-like COFs-I and sheet-like COFs-II, respectively. Furthermore, they have been evaluated in the dispersive solid phase extraction (dSPE) procedure for textiles prior to the analysis of alkylphenol by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). The results showed that, the optimal usage amount of sheet-like COFs-II used in the dSPE procedure was less than that of sheet-like COFs-I, which may be explained by much higher adsorption capacity of sheet-like COFs via hydrogen-bonding and π-π stacking interactions. Rectilinear calibration graphs were obtained for 4-(tert-octyl)-phenol (4-tOP) and 4-nonylphenol (4-NP) in the range 0.2-20 µg/kg with determination coefficient (r2) higher than 0.9990, and the limits of detection (LODs) of 4-tOP and 4-NP were 0.039 µg/kg and 0.048 µg/kg, respectively. The developed method has been successfully applied to analysis of 50 textile samples, in which 4-tOP and 4-NP were found in six samples with concentrations in the range of 1.6 μg/kg-20.9 μg/kg.
Collapse
|
71
|
Gong K, Fang T, Wan T, Yan Y, Li W, Zhang J. Voltage-gated multilayer graphene nanochannel for K+/Na+ separation: A molecular dynamics study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Ultramicroporous metal-organic frameworks for capillary gas chromatographic separation. J Chromatogr A 2020; 1632:461604. [DOI: 10.1016/j.chroma.2020.461604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022]
|
73
|
Mohammadi L, Khavasi HR. Anthracene-Tagged UiO-67-MOF as Highly Selective Aqueous Sensor for Nanoscale Detection of Arginine Amino Acid. Inorg Chem 2020; 59:13091-13097. [PMID: 32869635 DOI: 10.1021/acs.inorgchem.0c01045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present paper, new functionalized UiO-67 metal-organic frameworks (MOF) which contain aromatic tagged groups such as phenyl, naphthyl, and anthracene have been synthesized, characterized, and used for sensing water-soluble amino acids. The results show that anthracene-tagged UiO-67-MOF is shown to act as a highly efficient and selective aqueous sensor for arginine over other water-soluble amino acids in nanoscale. Upon adding an increasing amount of arginine, PL bands of the anth-UiO-67 MOF quenched completely, while there is no perturbation in the PL bands for other amino acid observed. This MOF allows a selective ratiometric detection of arginine without any interference from other amino acids.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Hamid Reza Khavasi
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| |
Collapse
|
74
|
Wang MM, Chen S, Yu YL, Wang JH. Polyoxometalate-functionalized macroporous microspheres for selective separation/enrichment of glycoproteins. Chem Commun (Camb) 2020; 56:9870-9873. [PMID: 32840531 DOI: 10.1039/d0cc04244g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycoproteins always participate in various biological processes. Selective separation and enrichment of glycoproteins are of great significance for the research of pathogenesis. Herein, macroporous polymer microspheres were fabricated, and further functionalized by polyoxometalate. Thus, a simple, efficient and highly selective approach was constructed for glycoprotein enrichment from a complex matrix. The as-prepared material shows promise as a potential adsorbent in bio-separation and downstream clinical applications.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
75
|
Wang D, Zeng F, Hu X, Li C, Su Z. Synthesis of a Magnetic 2D Co@NC-600 Material by Designing a MOF Precursor for Efficient Catalytic Reduction of Water Pollutants. Inorg Chem 2020; 59:12672-12680. [PMID: 32805997 DOI: 10.1021/acs.inorgchem.0c01760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2D metal-organic framework (MOFs) can be ideal sacrificial templates for fabricating nanomaterials because of active sites exposed on the surface rather than in pores and channels, often exhibiting improved performance in catalysis applications. In this study, the novel 2D layered cobalt-based MOF [Co(TPT)(fma)(H2O)2]·3H2O (Co-MOF) has been constructed by the selection of high N atom content ligands. On this basis, a 2D nitrogen-doped carbon-coated cobalt nanoparticle composite (Co@NC) was prepared by using this MOF as a precursor. Magnetic Co@NC has excellent catalytic activity and recycling features regarding the reaction of 4-nitrophenol (4-NP) reducing to 4-aminophenol (4-AP) in the presence of NaBH4 at ambient temperature. 2D Co@NC-600 can reach nearly 100% conversion within 120 s and its stability remains almost unchanged after five reaction cycles. Moreover, this Co@NC catalyst also is highly active for catalytic reduction of dyes such as Rhodamine B (RhB) and Methylene blue (MB).
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Fanming Zeng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Xiaoli Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| | - Chun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun 130022, People's Republic of China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, People's Republic of China
| |
Collapse
|
76
|
Wen Y, Liu Q, Su S, Yang Y, Li X, Zhu QL, Wu X. Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. NANOSCALE 2020; 12:12767-12772. [PMID: 32542271 DOI: 10.1039/d0nr02956d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel coordination tailoring top-down delamination strategy involving the controllable partial disassembly of water-labile 3D MOFs has been explored to fabricate ultrathin 2D MOF nanosheets, and it exhibits many advantages such as green, convenience and high efficiency. Accordingly, 2D ultrathin MOF nanosheets with a two-fold interpenetrated architecture have been rapidly obtained from a 3D pillar-layered MOF, and they show distinguished fluorescence responses to different solvents.
Collapse
Affiliation(s)
- Yuehong Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | | | | | | | | | | | | |
Collapse
|
77
|
Ding X, Liu H, Chen J, Wen M, Li G, An T, Zhao H. In situ growth of well-aligned Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile organic compounds. NANOSCALE 2020; 12:9462-9470. [PMID: 32347273 DOI: 10.1039/d0nr01027h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploitation of highly efficient catalysts for photocatalytic degradation of volatile organic compounds (VOCs) under visible light irradiation is highly desirable yet challenging. Herein, well-aligned 2D Ni-MOF nanosheet arrays vertically grown on porous nickel foam (Ni-MOF/NF) without lateral stacking were successfully prepared via a facile in situ solvothermal strategy. In this process, Ni foam could serve as both a skeleton to vertically support the Ni-MOF nanosheets and a self-sacrificial template to afford Ni ions for MOF growth. The Ni-MOF/NF nanosheet arrays with highly exposed active sites and light harvesting centres as well as fast mass and e- transport channels exhibited excellent photocatalytic oxidation activity and mineralization efficiency to typical VOCs emitted from the paint spray industry, which was almost impossible for their three-dimensional (3D) bulk Ni-MOF counterparts. A mineralization efficiency of 86.6% could be achieved at 98.1% of ethyl acetate removal. The related degradation mechanism and possible reaction pathways were also attempted based on the electron paramagnetic resonance (EPR) and online Time-of-Flight Mass Spectrometer (PTR-ToF-MS) results.
Collapse
Affiliation(s)
- Xin Ding
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. and Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. and Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. and Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Huijun Zhao
- Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
78
|
Ashworth DJ, Foster JA. Blending functionalised ligands to form multivariate metal-organic framework nanosheets (MTV-MONs) with tuneable surface chemistry. NANOSCALE 2020; 12:7986-7994. [PMID: 32232304 DOI: 10.1039/d0nr01009j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a new approach to tuning the properties of metal-organic framework nanosheets (MONs) by blending functionalised ligands to produce multivariate MONs (MTV-MONs). This approach enabled not only fine tuning of the MONs properties, but also resulted in MTV-MONs that show enhanced performance compared to their single-ligand counterparts. Layered copper paddle-wheel based MOFs were synthesised incorporating two or more 2,5-difunctionalised-benzene-1,4-dicarboxylate (fu-BDC) ligands. Liquid ultrasonic exfoliation resulted in the formation of nanosheets down to monolayer thickness presenting multiple functional moieties. Blending of ligands with relatively hydrophilic (methoxy-propoxy) and hydrophobic (pentoxy) moieties resulted in MTV-MONs that showed enhanced dispersion in both polar and apolar solvents compared to either single-ligand parent MON as well as intermediary binding properties. Blending of different fu-BDC ligands with different length alkoxy chains (methoxy-pentoxy) allowed incorporation of up to five different ligands within a single MTV-MON, including ligands which do not form this structure individually. This study demonstrates the potential of blending multiple ligands within an MTV-MON to enable fine-tuning of their structure and properties but also create new nanosheets which are more than the sum of their parts.
Collapse
Affiliation(s)
- David J Ashworth
- Department of Chemistry, The University of Sheffield, Sheffield, UKS3 7HF.
| | - Jonathan A Foster
- Department of Chemistry, The University of Sheffield, Sheffield, UKS3 7HF.
| |
Collapse
|
79
|
Wei MJ, Zhang JH, Liao WM, Wei ZW, Pan M, Su CY. A novel Co-O cluster based coordination polymer for efficient hydrogen production photocatalysis. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
80
|
Tang W, Xu J, Gu Z. Metal–Organic‐Framework‐based Gas Chromatographic Separation. Chem Asian J 2019; 14:3462-3473. [DOI: 10.1002/asia.201900738] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Wen‐Qi Tang
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jin‐Ya Xu
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Zhi‐Yuan Gu
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| |
Collapse
|