51
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond‐Range Time‐Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
52
|
Xu W, Chen Y, Lu Y, Qin Y, Zhang H, Xu X, Liu Y. Tunable Second‐Level Room‐Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen‐Wen Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yi‐Lin Lu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yue‐Xiu Qin
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hui Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xiufang Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
53
|
Acharya N, Dey S, Deka R, Ray D. Molecular-Level Understanding of Dual-RTP via Host-Sensitized Multiple Triplet-to-Triplet Energy Transfers and Data Security Application. ACS OMEGA 2022; 7:3722-3730. [PMID: 35128280 PMCID: PMC8811933 DOI: 10.1021/acsomega.1c06390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
Dual-room-temperature phosphorescence (DRTP) from organic molecules is of utmost importance in chemical physics. The Dexter-type triplet-to-triplet energy transfer mechanism can therefore be used to achieve DRTP at ambient conditions. Here, we report two donor-acceptor (D-A)-based guests (CQN1, CQN2) in which the donor (D) and acceptor (A) parts are held in angular orientation around the C-N single bond. Spectroscopic analysis along with computational calculations revealed that both guests are incapable of emitting either thermally activated delayed fluorescence (TADF) or RTP at ambient conditions due to large singlet-triplet gaps, which are presented to show host (benzophenone, BP)-sensitized DRTP via multiple intermolecular triplet-to-triplet energy transfer (TTET) channels that originate from the triplet state (T1 BP) of BP to the triplet states (T1 D, T1 A) of the D and A parts (TTET-I:T1 BP → T1 D; TTET-II:T1 BP → T1 A). In addition, an intramolecular TTET channel that occurs from the T1 D to T1 A states of the D and A parts of CQN2 is also activated due to the low triplet (T1 D)-triplet (T1 A) gap at ambient conditions. The efficiency of TTET processes was found to be 100%. The phosphorescence quantum yields (ϕP) and lifetimes (τP) were shown to be 13-20% and 0.48-0.55 s, respectively. Given the high lifetime of the DRTP feature of both host-guest systems (1000:1 molar ratio), a data security application is achieved. This design principle provides the first solid proof that DRTP via radiative decay of the dark triplet states of the D and A parts of D-A-based non-TADF systems is possible, revealing a method to increase the efficiency and lifetime of DRTP.
Collapse
|
54
|
Yang Z, Zhao S, Zhang X, Liu M, Liu H, Yang B. Efficient Room-Temperature Phosphorescence from Discrete Molecules Based on Thianthrene Derivatives for Oxygen Sensing and Detection. Front Chem 2022; 9:810304. [PMID: 35155381 PMCID: PMC8828495 DOI: 10.3389/fchem.2021.810304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, two thianthrene (TA) derivatives, 1-phenylthianthrene (TA1P) and 2-phenylthianthrene (TA2P), were synthesized with single-phenyl modification for pure organic discrete-molecule room-temperature phosphorescence (RTP). They both show the dual emission of fluorescence and RTP in amorphous polymer matrix after deoxygenation, as a result of a new mechanism of folding-induced spin-orbit coupling (SOC) enhancement. Compared with TA1P, TA2P exhibits a higher RTP efficiency and a larger spectral separation between fluorescence and RTP, which is ascribed to the substituent effect of TA at the 2-position. With decreasing oxygen concentration from 1.61% to 0%, the discrete-molecule TA2P shows an about 18-fold increase in RTP intensity and an almost constant fluorescence intensity, which can make TA2P as a self-reference ratiometric optical oxygen sensing probe at low oxygen concentrations. The oxygen quenching constant (KSV) of TA2P is estimated as high as 10.22 KPa−1 for polymethyl methacrylate (PMMA)-doped film, and even reach up to 111.86 KPa−1 for Zeonex®-doped film, which demonstrates a very high sensitivity in oxygen sensing and detection. This work provides a new idea to design pure organic discrete-molecule RTP materials with high efficiency, and TA derivatives show a potential to be applied in quantitative detection of oxygen as a new-generation optical oxygen-sensing material.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Yang
- *Correspondence: Haichao Liu, ; Bing Yang,
| |
Collapse
|
55
|
Zhang X, Wang D, Lei Y, Liu M, Cai Z, Wu H, Shen G, Huang X, Dong Y. Selenium atoms induce organic doped systems to produce pure phosphorescence emission. Chem Commun (Camb) 2022; 58:1179-1182. [PMID: 34981105 DOI: 10.1039/d1cc06380d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A host-guest system is constructed using a guest containing two selenium atoms. The selenium atoms can increase the spin-orbit coupling constant and the conjugation degree, thereby increasing the emission wavelength, and making the materials show only phosphorescence emission.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Dan Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Guoming Shen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.
| | - Yuping Dong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
| |
Collapse
|
56
|
Li K, Ren TB, Huan S, Yuan L, Zhang XB. Progress and Perspective of Solid-State Organic Fluorophores for Biomedical Applications. J Am Chem Soc 2021; 143:21143-21160. [PMID: 34878771 DOI: 10.1021/jacs.1c10925] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent organic dyes have been extensively used as raw materials for the development of versatile imaging tools in the field of biomedicine. Particularly, the development of solid-state organic fluorophores (SSOFs) in the past 20 years has exhibited an upward trend. In recent years, studies on SSOFs have focused on the development of advanced tools, such as optical contrast agents and phototherapy agents, for biomedical applications. However, the practical application of these tools has been hindered owing to several limitations. Thus, in this Perspective, we have provided insights that could aid researchers to further develop these tools and overcome the limitations such as limited aqueous dispersibility, low biocompatibility, and uncontrolled emission. First, we described the inherent photophysical properties and fluorescence mechanisms of conventional, aggregation-induced emissive, and precipitating SSOFs with respect to their biomedical applications. Subsequently, we highlighted the recent development of functionalized SSOFs for bioimaging, biosensing, and theranostics. Finally, we elucidated the potential prospects and limitations of current SSOF-based tools associated with biomedical applications.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
57
|
Ren Y, Dai W, Guo S, Dong L, Huang S, Shi J, Tong B, Hao N, Li L, Cai Z, Dong Y. Clusterization-Triggered Color-Tunable Room-Temperature Phosphorescence from 1,4-Dihydropyridine-Based Polymers. J Am Chem Soc 2021; 144:1361-1369. [PMID: 34937344 DOI: 10.1021/jacs.1c11607] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of poly(1,4-dihydropyridine)s (PDHPs) were successfully synthesized via one-pot metal-free multicomponent polymerization of diacetylenic esters, benzaldehyde, and aniline derivatives. These PDHPs without traditional luminescent units were endowed with tunable triplet energy levels by through-space conjugation from the formation of different cluster sizes. The large and compact clusters can effectively extend the phosphorescence wavelength. The triplet excitons can be stabilized by using benzophenone as a rigid matrix to achieve room-temperature phosphorescence. The nonconjugated polymeric clusters can show a phosphorescence emission up to 645 nm. A combination of static and dynamic laser light scattering was conducted for insight into the structural information on formed clusters in the host matrix melt. Moreover, both the fluorescence and phosphorescence emission can be easily tuned by the variation of the excitation wavelength, the concentration, and the molecular weight of the guest polymers. This work provides a unique insight for designing polymeric host-guest systems and a new strategy for the development of long wavelength phosphorescence materials.
Collapse
Affiliation(s)
- Yue Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lichao Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siqi Huang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nairong Hao
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
58
|
Huo M, Dai X, Liu Y. Ultrahigh Supramolecular Cascaded Room‐Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Man Huo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xian‐Yin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
59
|
Xu WW, Chen Y, Lu YL, Qin YX, Zhang H, Xu X, Liu Y. Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide-Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2021; 61:e202115265. [PMID: 34874598 DOI: 10.1002/anie.202115265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/30/2022]
Abstract
A series of solid supramolecules based on acrylamide-phenylpyridium copolymers with various substituent groups (P-R: R=-CN, -CO2 Et, -Me, -CF3 ) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P-R/CB[7] (R=-CN, -CO2 Et, -Me), P-CF3 /CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host-guest interaction between 4-phenylpyridium with -CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Lin Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue-Xiu Qin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
60
|
Huo M, Dai XY, Liu Y. Ultrahigh Supramolecular Cascaded Room-Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021; 60:27171-27177. [PMID: 34704341 DOI: 10.1002/anie.202113577] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/06/2022]
Abstract
An ultrahigh supramolecular cascaded phosphorescence-capturing aggregate was constructed by multivalent co-assembly of cucurbit[7]uril (CB[7]) and amphipathic sulfonatocalix[4]arene (SC4AD). The initial dibromophthalimide derivative (G) generated a weak phosphorescent emission at 505 nm by host-guest interaction with CB[7], which further assembled with SC4AD to form homogeneously spherical nanoparticles with a dramatic enhancement of both phosphorescence lifetime to 1.13 ms and emission intensity by 40-fold. Notably, this G⊂CB[7]@SC4AD aggregate exhibited efficient phosphorescence energy transfer to Rhodamine B (RhB) and benzothiadiazole (DBT) with high efficiency (ϕET ) of 84.4 % and 76.3 % and an antenna effect (AE) of 289.4 and 119.5, respectively, and then each of these can function as a bridge to further transfer their energy to second near-IR acceptors Cy5 or Nile blue (NiB) to achieve cascaded phosphorescence energy transfer. The final aggregate with long-range effect from 425 nm to 800 nm and long-lived photoluminescence was further employed as an imaging agent for multicolour cell labeling.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|