51
|
Denu RA, Moyers JT, Gouda MA, Conley AP, Lazar AJ, Subbiah V. The Landscape of Alterations from 1407 Ultra-Rare Sarcomas from the AACR GENIE Database: Clinical Implications. Clin Cancer Res 2023; 29:4669-4678. [PMID: 37643131 DOI: 10.1158/1078-0432.ccr-23-0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Ultra-rare sarcomas (URS) comprise a group of orphan diseases with an incidence of ≤1/1,000,000 people per year. We aimed to assess clinically actionable genomic alterations in URS. EXPERIMENTAL DESIGN Data were extracted from the GENIE database using cBioPortal. OncoKB was used to assess for clinical actionability of mutations. Tumor mutational burden (TMB) was inferred from clinical sequencing data. RESULTS Soft tissue (ST) URS made up 23.5% of ST sarcoma cases, and bone URS made up 16.5% of bone sarcoma cases. The most commonly mutated gene in all four groups was TP53. The most common fusions involved EWSR1. The most common copy-number variations included deletions of CDKN2A and CDKN2B and amplifications of MDM2 and CDK4. TMB was generally low across all four categories of sarcoma, though there was considerable heterogeneity, with 3.8% of ST URS and 0.55% of bone URS having high TMB. We find Level 1 alterations (FDA-recognized biomarker predictive of response to an FDA-approved drug) in 10.0% of ST URS compared with 7.1% of ST non-URS, 1.1% of bone URS, and 4.5% of bone non-URS. Level 1-3 alterations (also include alterations for which there are standard-of-care drugs or clinical evidence supporting a drug) were seen in 27.8% of ST URS, 25.2% of ST non-URS, 20.9% of bone URS, and 17.4% of bone non-URS. CONCLUSIONS Clinically actionable genomic alterations are seen in a substantial fraction of URS. Clinical sequencing in advanced URS has the potential to guide the treatment of a significant portion of patients with URS.
Collapse
Affiliation(s)
- Ryan A Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justin T Moyers
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Division of Pathology & Laboratory Medicine, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Cancer Medicine, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sarah Cannon Research Institute, Nashville, Tennessee
| |
Collapse
|
52
|
Kobayashi H, Zhang L, Okajima K, Ishibashi Y, Hirai T, Tsuda Y, Ikegami M, Kage H, Shinozaki-Ushiku A, Oda K, Tanaka S. BRAF mutations and concurrent alterations in patients with soft tissue sarcoma. Genes Chromosomes Cancer 2023; 62:648-654. [PMID: 37293958 DOI: 10.1002/gcc.23182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
BRAF alterations, including V600E and non-V600E mutations and fusions, in soft tissue sarcoma (STS) have been identified in a limited case series. Here, we aimed to evaluate the frequency of BRAF mutations and concurrent alterations in STS to understand their therapeutic action. In this retrospective analysis, we included data from 1964 patients with advanced STS who underwent comprehensive genomic profiling tests at hospitals in Japan between June 2019 and March 2023. The prevalence of BRAF and recurrent concurrent gene alterations were also investigated. BRAF mutations were detected in 24 (1.2%) of 1964 STS patients, with a median age of 47 (range 1-69) years. BRAF V600E was detected in 11 (0.6%) of the 1964 patients with STS, BRAF non-V600E mutations in 9 (4.6%), and BRAF fusions were detected in 4 (0.2%). BRAF V600E was identified in 4 (0.2%) cases of malignant peripheral nerve sheath tumors. The most common concurrent alteration was CDKN2A (11 cases, 45.8%), and the frequency was equivalent to that of the BRAF V600E (5/11 cases, 45.5%) and non-V600E (5/9 cases, 55.6%) groups. Recurrent concurrent alterations, such as TERT promoter mutations (7 cases, 29.2%), were detected at the same frequency in the V600E and non-V600E groups. In contrast, TP53 alterations (4/9 cases, 44.4%) and mitogen-activated protein kinase (MAPK)-activating genes, including NF1, GNAQ, and GNA11 (3/9 cases, 33.3%), were identified as relatively higher in the non-V600E group than in the V600E group (each 1/11 case, 9.1%). We identified BRAF alterations at a rate of 1.2% in all patients with advanced STS. Among them, BRAF V600E and BRAF fusions account for 45.8% and 16.7%, respectively. Collectively, our findings support the clinical characteristics and therapeutic strategies for patients with BRAF-altered advanced STS.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Liuzhe Zhang
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Koichi Okajima
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Ishibashi
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshihide Hirai
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Yusuke Tsuda
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Masachika Ikegami
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Department of Musculoskeletal Oncology, Tokyo, Japan
| | - Hidenori Kage
- Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gynecology, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
53
|
Sasi A, Rastogi S. Current stand on systemic therapy in localized soft tissue sarcomas: a clinician's perspective. Future Oncol 2023; 19:2135-2145. [PMID: 37860850 DOI: 10.2217/fon-2023-0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare heterogenous tumors derived from mesenchymal tissue. While surgery represents the primary treatment modality, the high recurrence rates following surgery alone necessitate consideration for systemic therapy in high-risk sarcomas. Despite multiple trials and meta-analyses over the last 3 decades, the role of chemotherapy remains controversial. It is crucial to accurately identify patients with high-risk diseases who may benefit the most from adjuvant and/or neoadjuvant chemotherapy. There is renewed interest in the potential to improve outcomes in localized resectable STSs with the addition of targeted and immunotherapeutic strategies. The review presented here is a summary of current evidence on systemic therapy in resectable localized STSs of the trunk and extremities to facilitate clinician decision-making.
Collapse
Affiliation(s)
- Archana Sasi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sameer Rastogi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
54
|
Stelloo E, Meijers RWJ, Swennenhuis JF, Allahyar A, Hajo K, Cangiano M, de Leng WWJ, van Helvert S, Van der Meulen J, Creytens D, van Kempen LC, Cleton-Jansen AM, Bovee JVMG, de Laat W, Splinter E, Feitsma H. Formalin-Fixed, Paraffin-Embedded-Targeted Locus Capture: A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors. J Mol Diagn 2023; 25:758-770. [PMID: 37517473 DOI: 10.1016/j.jmoldx.2023.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal rearrangements are important drivers in cancer, and their robust detection is essential for diagnosis, prognosis, and treatment selection, particularly for bone and soft tissue tumors. Current diagnostic methods are hindered by limitations, including difficulties with multiplexing targets and poor quality of RNA. A novel targeted DNA-based next-generation sequencing method, formalin-fixed, paraffin-embedded-targeted locus capture (FFPE-TLC), has shown advantages over current diagnostic methods when applied on FFPE lymphomas, including the ability to detect novel rearrangements. We evaluated the utility of FFPE-TLC in bone and soft tissue tumor diagnostics. FFPE-TLC sequencing was successfully applied on noncalcified and decalcified FFPE samples (n = 44) and control samples (n = 19). In total, 58 rearrangements were identified in 40 FFPE tumor samples, including three previously negative samples, and none was identified in the FFPE control samples. In all five discordant cases, FFPE-TLC could identify gene fusions where other methods had failed due to either detection limits or poor sample quality. FFPE-TLC achieved a high specificity and sensitivity (no false positives and negatives). These results indicate that FFPE-TLC is applicable in cancer diagnostics to simultaneously analyze many genes for their involvement in gene fusions. Similar to the observation in lymphomas, FFPE-TLC is a good DNA-based alternative to the conventional methods for detection of rearrangements in bone and soft tissue tumors.
Collapse
Affiliation(s)
| | - Ruud W J Meijers
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Amin Allahyar
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd van Helvert
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Léon C van Kempen
- Department of Pathology, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Judith V M G Bovee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | |
Collapse
|
55
|
Lebow ES, Lobaugh SM, Zhang Z, Dickson MA, Rosenbaum E, D'Angelo SP, Nacev BA, Shepherd AF, Shaverdian N, Wolden S, Wu AJ, Gelblum DY, Simone CB, Gomez DR, Alektiar K, Tap WD, Rimner A. Stereotactic body radiation therapy for sarcoma pulmonary metastases. Radiother Oncol 2023; 187:109824. [PMID: 37532104 PMCID: PMC11225867 DOI: 10.1016/j.radonc.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND/PURPOSE Stereotactic body radiation therapy (SBRT) is standard for patients with inoperable early-stage NSCLC. We hypothesized that SBRT for sarcoma pulmonary metastases would achieve high rates of local control with acceptable toxicity and that patients with oligometastatic disease may achieve prolonged survival following SBRT. MATERIALS/METHODS This retrospective review included consecutive patients at our institution treated with SBRT for sarcoma pulmonary metastases. Cumulative incidence of local failure (LF) was estimated using a competing risks framework. RESULTS We identified 66 patients treated to 95 pulmonary metastases with SBRT. The median follow-up from the time of SBRT was 36 months (95% CI 34 - 53 months). The cumulative incidence of LF at 12 and 24 months was 3.1% (95% CI 0.9 - 10.6%) and 7.4% (95% CI 4.0% - 13.9%), respectively. The 12- and 24-month overall survival was 74% (95% CI 64 - 86%) and 49% (38 - 63%), respectively. Oligometastatic disease, intrathoracic only disease, and performance status were associated with improved survival on univariable analysis. Three patients had grade 2 pneumonitis, and one patient had grade 2 esophagitis. No patients had ≥ grade 3+ toxicities. CONCLUSION To the best of our knowledge, this is the largest series of patients treated with SBRT for pulmonary sarcoma metastases. We observed that SBRT offers an effective alternative to surgical resection with excellent local control and low proportions of toxicity.
Collapse
Affiliation(s)
- Emily S Lebow
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Stephanie M Lobaugh
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Zhigang Zhang
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Annemarie F Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Suzanne Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Kaled Alektiar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
56
|
Siozopoulou V, Smits E, Zwaenepoel K, Liu J, Pouliakis A, Pauwels PA, Marcq E. PD-1, PD-L1, IDO, CD70 and microsatellite instability as potential targets to prevent immune evasion in sarcomas. Immunotherapy 2023; 15:1257-1273. [PMID: 37661910 DOI: 10.2217/imt-2022-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background: Soft tissue and bone sarcomas are rare entities, hence, standardized therapeutic strategies are difficult to assess. Materials & methods: Immunohistochemistry was performed on 68 sarcoma samples to assess the expression of PD-1, PD-L1, IDO and CD70 in different tumor compartments and molecular analysis was performed to assess microsatellite instability status. Results: PD-1/PD-L1, IDO and CD70 pathways are at play in the immune evasion of sarcomas in general. Soft tissue sarcomas more often show an inflamed phenotype compared with bone sarcomas. Specific histologic sarcoma types show high expression levels of different markers. Finally, this is the first presentation of a microsatellite instability-high Kaposi sarcoma. Discussion/conclusion: Immune evasion occurs in sarcomas. Specific histologic types might benefit from immunotherapy, for which further investigation is needed.
Collapse
Affiliation(s)
- Vasiliki Siozopoulou
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jimmy Liu
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Abraham Pouliakis
- Second Department of Pathology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens, 12464, Greece
| | - Patrick A Pauwels
- Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| | - Elly Marcq
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
57
|
Blanchi J, Taleb S, Bayle A, Verret B, Toulmonde M, Spalato‐ceruso M, Dubos P, Laizet Y, Alame M, Khalifa E, Italiano A. Clinical utility of circulating tumor DNA sequencing with a large panel in patients with advanced soft-tissue sarcomas. Cancer Commun (Lond) 2023; 43:1051-1054. [PMID: 37405935 PMCID: PMC10508143 DOI: 10.1002/cac2.12461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Julie Blanchi
- INSERMUnité 1312, SARCOTARGET teamBordeauxFrance
- Department of BioPathologyInstitut BergoniéBordeauxFrance
| | - Sofiane Taleb
- Drug Developpement DepartmentGustave RoussyVillejuifFrance
| | - Arnaud Bayle
- Drug Developpement DepartmentGustave RoussyVillejuifFrance
| | | | | | | | - Paul Dubos
- Sarcoma UnitInstitut BergoniéBordeauxFrance
| | | | - Melissa Alame
- Department of BioPathologyInstitut BergoniéBordeauxFrance
| | | | - Antoine Italiano
- INSERMUnité 1312, SARCOTARGET teamBordeauxFrance
- Drug Developpement DepartmentGustave RoussyVillejuifFrance
- Sarcoma UnitInstitut BergoniéBordeauxFrance
- Faculty of MedicineUniversity of BordeauxBordeauxFrance
| |
Collapse
|
58
|
Musa J, Willis F, Harnoss JM, Rompen IF, Sauerteig C, Kochendoerfer SM, Grünewald TGP, Al-Saeedi M, Schneider M, Harnoss JC. A century of retroperitoneal soft-tissue sarcoma research: From single center experience to precision oncology? A bibliometric analysis of past, present, and future perspectives. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106948. [PMID: 37286428 DOI: 10.1016/j.ejso.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Increasing publication numbers in the biomedical field led to an improvement of patient care in many aspects but are challenging for scientists when integratively processing data of their fields. Using bibliometric analyses, the present study assesses the productivity and predominant topics in retroperitoneal soft-tissue sarcoma (RPS) research across the past 122 years, thereby identifying crucial questions to address in future RPS research. METHODS Using the Web of Science Core Collection, 1018 RPS-associated publications from 1900 to 2022 were identified and analyzed regarding key bibliometric variables using the Bibliometrix R package and the VOSviewer software. RESULTS A continuous increase in RPS-associated publication numbers can be noticed over the time, which is strongly pronounced from 2005 onwards, and is characterized by a multinationally driven collaborative clinical research focus. The research primarily reflects progression regarding surgical techniques, histology-based therapy, radiotherapy regimens, and identification of prognostic clinicopathological factors. This progression is accompanied with improved overall survival of RPS patients. However, a paucity of RPS-specific basic/translational research indicates that such research might be additionally needed to better understand the pathophysiology of RPS and with that to enable the development of personalized therapies and to further improve patient outcome. CONCLUSION Increasing publication numbers of multinationally driven clinical RPS research are accompanied with improved overall survival of RPS patients, highlighting the importance of international collaborations to facilitate future clinical trials. However, this bibliometric analysis reveals a lack of RPS-specific basic/translational research which is needed to further improve patient outcome in the context of precision oncology.
Collapse
Affiliation(s)
- Julian Musa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Franziska Willis
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ingmar F Rompen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Sauerteig
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah M Kochendoerfer
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research (B410), German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian-C Harnoss
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
59
|
Xu S, Tan S, Guo L. Patient-Derived Organoids as a Promising Tool for Multimodal Management of Sarcomas. Cancers (Basel) 2023; 15:4339. [PMID: 37686615 PMCID: PMC10486520 DOI: 10.3390/cancers15174339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The management of sarcomas, a diverse group of cancers arising from connective tissues, presents significant challenges due to their heterogeneity and limited treatment options. Patient-derived sarcoma organoids (PDSOs) have emerged as a promising tool in the multimodal management of sarcomas, offering unprecedented opportunities for personalized medicine and improved treatment strategies. This review aims to explore the potential of PDSOs as a promising tool for multimodal management of sarcomas. We discuss the establishment and characterization of PDSOs, which realistically recapitulate the complexity and heterogeneity of the original tumor, providing a platform for genetic and molecular fidelity, histological resemblance, and functional characterization. Additionally, we discuss the applications of PDSOs in pathological and genetic evaluation, treatment screening and development, and personalized multimodal management. One significant advancement of PDSOs lies in their ability to guide personalized treatment decisions, enabling clinicians to assess the response and efficacy of different therapies in a patient-specific manner. Through continued research and development, PDSOs hold the potential to revolutionize sarcoma management and drive advancements in personalized medicine, biomarker discovery, preclinical modeling, and therapy optimization. The integration of PDSOs into clinical practice can ultimately improve patient outcomes and significantly impact the field of sarcoma treatment.
Collapse
Affiliation(s)
- Songfeng Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen 518116, China;
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - ShihJye Tan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Blvd, Biology Building 402, Shenzhen 518055, China
| | - Ling Guo
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Blvd, Biology Building 402, Shenzhen 518055, China
| |
Collapse
|
60
|
Iluz A, Maoz M, Lavi N, Charbit H, Or O, Olshinka N, Demma JA, Adileh M, Wygoda M, Blumenfeld P, Gliner-Ron M, Azraq Y, Moss J, Peretz T, Eden A, Zick A, Lavon I. Rapid Classification of Sarcomas Using Methylation Fingerprint: A Pilot Study. Cancers (Basel) 2023; 15:4168. [PMID: 37627196 PMCID: PMC10453223 DOI: 10.3390/cancers15164168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoma classification is challenging and can lead to treatment delays. Previous studies used DNA aberrations and machine-learning classifiers based on methylation profiles for diagnosis. We aimed to classify sarcomas by analyzing methylation signatures obtained from low-coverage whole-genome sequencing, which also identifies copy-number alterations. DNA was extracted from 23 suspected sarcoma samples and sequenced on an Oxford Nanopore sequencer. The methylation-based classifier, applied in the nanoDx pipeline, was customized using a reference set based on processed Illumina-based methylation data. Classification analysis utilized the Random Forest algorithm and t-distributed stochastic neighbor embedding, while copy-number alterations were detected using a designated R package. Out of the 23 samples encompassing a restricted range of sarcoma types, 20 were successfully sequenced, but two did not contain tumor tissue, according to the pathologist. Among the 18 tumor samples, 14 were classified as reported in the pathology results. Four classifications were discordant with the pathological report, with one compatible and three showing discrepancies. Improving tissue handling, DNA extraction methods, and detecting point mutations and translocations could enhance accuracy. We envision that rapid, accurate, point-of-care sarcoma classification using nanopore sequencing could be achieved through additional validation in a diverse tumor cohort and the integration of methylation-based classification and other DNA aberrations.
Collapse
Affiliation(s)
- Aviel Iluz
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Myriam Maoz
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Nir Lavi
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Hanna Charbit
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Omer Or
- Orthopedic Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Noam Olshinka
- Orthopedic Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Jonathan Abraham Demma
- Surgical Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mohammad Adileh
- Surgical Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Marc Wygoda
- Radiotherapy Institute, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Philip Blumenfeld
- Radiotherapy Institute, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Masha Gliner-Ron
- Radiology Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yusef Azraq
- Radiology Department, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Joshua Moss
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Tamar Peretz
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Amir Eden
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Aviad Zick
- Oncology Department, Sharett Institute of Oncology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
- Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
61
|
LoRusso P, Yamamoto N, Patel MR, Laurie SA, Bauer TM, Geng J, Davenport T, Teufel M, Li J, Lahmar M, Gounder MM. The MDM2-p53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced or Metastatic Solid Tumors: Results of a Phase Ia, First-in-Human, Dose-Escalation Study. Cancer Discov 2023; 13:1802-1813. [PMID: 37269344 PMCID: PMC10401071 DOI: 10.1158/2159-8290.cd-23-0153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Brigimadlin (BI 907828) is an oral MDM2-p53 antagonist that has shown encouraging antitumor activity in vivo. We present phase Ia results from an open-label, first-in-human, phase Ia/Ib study investigating brigimadlin in patients with advanced solid tumors (NCT03449381). Fifty-four patients received escalating doses of brigimadlin on day 1 of 21-day cycles (D1q3w) or days 1 and 8 of 28-day cycles (D1D8q4w). Based on dose-limiting toxicities during cycle 1, the maximum tolerated dose was selected as 60 mg for D1q3w and 45 mg for D1D8q4w. The most common treatment-related adverse events (TRAE) were nausea (74.1%) and vomiting (51.9%); the most common grade ≥3 TRAEs were thrombocytopenia (25.9%) and neutropenia (24.1%). As evidence of target engagement, time- and dose-dependent increases in growth differentiation factor 15 levels were seen. Preliminary efficacy was encouraging (11.1% overall response and 74.1% disease control rates), particularly in patients with well-differentiated or dedifferentiated liposarcoma (100% and 75% disease control rates, respectively). SIGNIFICANCE We report phase Ia data indicating that the oral MDM2-p53 antagonist brigimadlin has a manageable safety profile and shows encouraging signs of efficacy in patients with solid tumors, particularly those with MDM2-amplified advanced/metastatic well-differentiated or dedifferentiated liposarcoma. Further clinical investigation of brigimadlin is ongoing. See related commentary by Italiano, p. 1765. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Patricia LoRusso
- Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - Noboru Yamamoto
- National Cancer Center Hospital, Department of Experimental Therapeutics, Tokyo, Japan
| | - Manish R. Patel
- Sarah Cannon Research Institute, Florida Cancer Specialists and Research Institute, Sarasota, Florida
| | | | - Todd M. Bauer
- Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee
| | - Junxian Geng
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | | | - Michael Teufel
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Jian Li
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mehdi Lahmar
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Mrinal M. Gounder
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical School, New York, New York
| |
Collapse
|
62
|
Ludwig MP, Galbraith MD, Eduthan NP, Hill AA, Clay MR, Tellez CM, Wilky BA, Elias A, Espinosa JM, Sullivan KD. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway. Cancer Res 2023; 83:2543-2556. [PMID: 37205634 PMCID: PMC10391328 DOI: 10.1158/0008-5472.can-22-3173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Liposarcoma is the most commonly occurring soft-tissue sarcoma and is frequently characterized by amplification of chromosome region 12q13-15 harboring the oncogenes MDM2 and CDK4. This unique genetic profile makes liposarcoma an attractive candidate for targeted therapeutics. While CDK4/6 inhibitors are currently employed for treatment of several cancers, MDM2 inhibitors have yet to attain clinical approval. Here, we report the molecular characterization of the response of liposarcoma to the MDM2 inhibitor nutlin-3. Treatment with nutlin-3 led to upregulation of two nodes of the proteostasis network: the ribosome and the proteasome. CRISPR/Cas9 was used to perform a genome-wide loss of function screen that identified PSMD9, which encodes a proteasome subunit, as a regulator of response to nutlin-3. Accordingly, pharmacologic studies with a panel of proteasome inhibitors revealed strong combinatorial induction of apoptosis with nutlin-3. Mechanistic studies identified activation of the ATF4/CHOP stress response axis as a potential node of interaction between nutlin-3 and the proteasome inhibitor carfilzomib. CRISPR/Cas9 gene editing experiments confirmed that ATF4, CHOP, and the BH3-only protein, NOXA, are all required for nutlin-3 and carfilzomib-induced apoptosis. Furthermore, activation of the unfolded protein response using tunicamycin and thapsigargin was sufficient to activate the ATF4/CHOP stress response axis and sensitize to nutlin-3. Finally, cell line and patient-derived xenograft models demonstrated combinatorial effects of treatment with idasanutlin and carfilzomib on liposarcoma growth in vivo. Together, these data indicate that targeting of the proteasome could improve the efficacy of MDM2 inhibitors in liposarcoma. SIGNIFICANCE Targeting the proteasome in combination with MDM2 inhibition activates the ATF4/CHOP stress response axis to induce apoptosis in liposarcoma, providing a potential therapeutic approach for the most common soft-tissue sarcoma.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cristiam Moreno Tellez
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Breelyn A. Wilky
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
63
|
Saleban M, Harris EL, Poulter JA. D-Type Cyclins in Development and Disease. Genes (Basel) 2023; 14:1445. [PMID: 37510349 PMCID: PMC10378862 DOI: 10.3390/genes14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
D-type cyclins encode G1/S cell cycle checkpoint proteins, which play a crucial role in defining cell cycle exit and progression. Precise control of cell cycle exit is vital during embryonic development, with defects in the pathways regulating intracellular D-type cyclins resulting in abnormal initiation of stem cell differentiation in a variety of different organ systems. Furthermore, stabilisation of D-type cyclins is observed in a wide range of disorders characterized by cellular over-proliferation, including cancers and overgrowth disorders. In this review, we will summarize and compare the roles played by each D-type cyclin during development and provide examples of how their intracellular dysregulation can be an underlying cause of disease.
Collapse
Affiliation(s)
- Mostafa Saleban
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
64
|
Qi L, Chen F, Wang L, Yang Z, Zhang W, Li Z. Integration analysis of senescence-related genes to predict prognosis and immunotherapy response in soft-tissue sarcoma: evidence based on machine learning and experiments. Front Pharmacol 2023; 14:1229233. [PMID: 37497116 PMCID: PMC10367114 DOI: 10.3389/fphar.2023.1229233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Soft tissue sarcoma (STS) is the malignancy that exhibits remarkable histologic diversity. The diagnosis and treatment of STS is currently challenging, resulting in a high lethality. Chronic inflammation has also been identified as a key characteristic of tumors, including sarcomas. Although senescence plays an important role in the progression of various tumors, its molecular profile remains unclear in STS. Methods: We identified the senescence-related genes (SRGs) in database and depicted characteristics of genomic and transcriptomic profiling using cohort within TCGA and GEO database. In order to investigate the expression of SRGs in different cellular subtypes, single-cell RNA sequencing data was applied. The qPCR and our own sequencing data were utilized for further validation. We used unsupervised consensus clustering analysis to establish senescence-related clusters and subtypes. A senescence scoring system was established by using principal component analysis (PCA). The evaluation of clinical and molecular characteristics was conducted among distinct groups. Results: These SRGs showed differences in SCNV, mutation and mRNA expression in STS tissues compared to normal tissues. Across several cancer types, certain shared features of SRGs were identified. Several SRGs closely correlated with immune cell infiltration. Four clusters related to senescence and three subtypes related to senescence, each with unique clinical and biological traits, were established. The senescence scoring system exhibited effectiveness in predicting outcomes, clinical traits, infiltrations of immune cells and immunotherapy responses. Conclusion: Overall, the current study provided a comprehensive review of molecular profiling for SRGs in STS. The SRGs based clustering and scoring model could help guiding the clinical management of STS.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Fangyue Chen
- Department of General Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Lu Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
65
|
Li CC, Chen TWW. New targeted treatments for advanced sarcomas. Curr Opin Oncol 2023; 35:309-314. [PMID: 37222206 DOI: 10.1097/cco.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide the rationale and results behind recent clinical trials regarding molecular-targeted agents for advanced sarcomas. RECENT FINDINGS Tazemetostat, a first-in-class EZH2 inhibitor, was approved to treat advanced epithelioid sarcoma. In synovial sarcoma, the interaction between pathognomonic SS18-SSX fusion protein and the BAF complex has brought insight in using BRD9 inhibitors as a treatment based on synthetic lethality. MDM2 overexpression is an important mechanism to suppress p53 function, and MDM2 gene amplification is pathognomonic in well differentiated and dedifferentiated liposarcoma. Two MDM2 inhibitors, milademetan and BI907828, have both reached the optimal dosing and have shown promising efficacy in MDM2-amplified liposarcoma. Late-stage pivotal studies are ongoing for both of these MDM2 inhibitors. The co-amplification of CDK4 and MDM2 in liposarcoma also provided a rationale for CDK4/6 inhibitors as a potential therapy. Selinexor, an exportin-1 inhibitor, has shown single-agent activity in dedifferentiated liposarcoma and action in gastrointestinal stromal tumour in combination with imatinib. Lastly, a new formulation of mTOR inhibitor, nab-sirolimus, was recently approved for perivascular epithelioid cell tumour (PEComa). SUMMARY Molecular-guided precision medicine holds a bright future in bringing more active treatments for advanced sarcoma patients.
Collapse
Affiliation(s)
- Chia-Chen Li
- Department of Medical Oncology, National Taiwan University Cancer Center
- Department of Oncology, National Taiwan University Hospital
| | - Tom Wei-Wu Chen
- Department of Medical Oncology, National Taiwan University Cancer Center
- Department of Oncology, National Taiwan University Hospital
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
66
|
Mae H, Outani H, Imura Y, Chijimatsu R, Inoue A, Kotani Y, Yasuda N, Nakai S, Nakai T, Takenaka S, Okada S. Targeting the Clear Cell Sarcoma Oncogenic Driver Fusion Gene EWSR1::ATF1 by HDAC Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1152-1165. [PMID: 37405123 PMCID: PMC10317042 DOI: 10.1158/2767-9764.crc-22-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Clear cell sarcoma (CCS), a rare but extremely aggressive malignancy with no effective therapy, is characterized by the expression of the oncogenic driver fusion gene EWSR1::ATF1. In this study, we performed a high-throughput drug screening, finding that the histone deacetylase inhibitor vorinostat exerted an antiproliferation effect with the reduced expression of EWSR1::ATF1. We expected the reduced expression of EWSR1::ATF1 to be due to the alteration of chromatin accessibility; however, assay for transposase-accessible chromatin using sequencing and a cleavage under targets and release using nuclease assay revealed that chromatin structure was only slightly altered, despite histone deacetylation at the EWSR1::ATF1 promoter region. Alternatively, we found that vorinostat treatment reduced the level of BRD4, a member of the bromodomain and extraterminal motif protein family, at the EWSR1::ATF1 promoter region. Furthermore, the BRD4 inhibitor JQ1 downregulated EWSR1::ATF1 according to Western blotting and qPCR analyses. In addition, motif analysis revealed that vorinostat treatment suppressed the transcriptional factor SOX10, which directly regulates EWSR1::ATF1 expression and is involved in CCS proliferation. Importantly, we demonstrate that a combination therapy of vorinostat and JQ1 synergistically enhances antiproliferation effect and EWSR1::ATF1 suppression. These results highlight a novel fusion gene suppression mechanism achieved using epigenetic modification agents and provide a potential therapeutic target for fusion gene-related tumors. Significance This study reveals the epigenetic and transcriptional suppression mechanism of the fusion oncogene EWSR1::ATF1 in clear cell sarcoma by histone deacetylase inhibitor treatment as well as identifying SOX10 as a transcription factor that regulates EWSR1::ATF1 expression.
Collapse
Affiliation(s)
- Hirokazu Mae
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetatsu Outani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Imura
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Akitomo Inoue
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Kotani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naohiro Yasuda
- Department of Orthopedic Surgery, Osaka National Hospital, Osaka, Japan
| | - Sho Nakai
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takenaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
67
|
Carmagnani Pestana R, Moyers JT, Roszik J, Sen S, Hong DS, Naing A, Herzog CE, Fu S, Piha-Paul SA, Rodon J, Yap TA, Karp DD, Tsimberidou AM, Pant S, Zarzour MA, Ratan R, Ravi V, Benjamin RS, Lazar AJ, Wang WL, Daw N, Gill JB, Harrison DJ, Lewis VO, Roland CL, Patel SR, Livingston JA, Somaiah N, Ludwig JA, Conley AP, Hamerschlak N, Gorlick R, Meric-Bernstam F, Subbiah V. Impact of Biomarker-Matched Therapies on Outcomes in Patients with Sarcoma Enrolled in Early-Phase Clinical Trials (SAMBA 101). Clin Cancer Res 2023; 29:1708-1718. [PMID: 37058010 PMCID: PMC10150251 DOI: 10.1158/1078-0432.ccr-22-3629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 02/24/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Developing new therapeutics for any of the more than 100 sarcoma subtypes presents a challenge. After progression from standard therapies, patients with sarcoma may be referred for enrollment in early-phase trials. This study aimed to investigate whether enrollment in biomarker-matched early-phase clinical trials leads to better outcomes for patients with advanced sarcoma. EXPERIMENTAL DESIGN In this retrospective analysis, investigational treatment characteristics and longitudinal survival outcomes were analyzed in patients with biopsy-confirmed sarcoma enrolled in early-phase trials at MD Anderson Cancer Center from May 2006 to July 2021. RESULTS Five hundred eighty-seven patients were included [405 soft tissue, 122 bone, 60 gastrointestinal stromal tumor (GIST); median of three prior lines of therapy]. Most common subtypes were leiomyosarcoma (17.2%), liposarcoma (14.0%), and GIST (10.2%). Molecular testing was available for 511 patients (87.1%); 221 patients (37.6%) were treated in matched trials. Overall response rate was 13.1% matched compared with 4.9% in unmatched (P < 0.001); the clinical benefit rate at 6 months was 43.9% vs. 19.9% (P < 0.001). Progression-free survival was longer for patients in matched trials (median, 5.5 vs. 2.4 months; P < 0.001), and overall survival was also superior for patients in matched trials (median, 21.5 vs. 12.3 months; P < 0.001). The benefit of enrollment in matched trials was maintained when patients with GIST were excluded from the analysis. CONCLUSIONS Enrollment in biomarker-matched early-phase trials is associated with improved outcomes in heavily pretreated patients with metastatic sarcoma. Molecular testing of tumors from patients with advanced sarcoma and enrollment in matched trials is a reasonable therapeutic strategy.
Collapse
Affiliation(s)
- Roberto Carmagnani Pestana
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Justin T. Moyers
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medicine, Division of Hematology and Oncology, The University of California, Irvine, Orange, California
| | - Jason Roszik
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiraj Sen
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - David S. Hong
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia E. Herzog
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel D. Karp
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shubham Pant
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria A. Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert S. Benjamin
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Najat Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan B. Gill
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Douglas J. Harrison
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Valerae O. Lewis
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shreyaskumar R. Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph A. Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
68
|
Xie L, Cai Z, Lu H, Meng F, Zhang X, Luo K, Su X, Lei Y, Xu J, Lou J, Wang H, Du Z, Wang Y, Li Y, Ren T, Xu J, Sun X, Tang X, Guo W. Distinct genomic features between osteosarcomas firstly metastasing to bone and to lung. Heliyon 2023; 9:e15527. [PMID: 37205995 PMCID: PMC10189180 DOI: 10.1016/j.heliyon.2023.e15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Osteosarcoma initially metastasing to bone only shows distinct biological features compared to osteosarcoma that firstly metastasizes to the lung, which suggests us underlying different genomic pathogenetic mechanism. Methods We analyzed whole-exome sequencing (WES) data for 38 osteosarcoma with paired samples in different relapse patterns. We also sought to redefine disease subclassifications for osteosarcoma based on genetic alterations and correlate these genetic profiles with clinical treatment courses to elucidate potential evolving cladograms. Results We investigated WES of 12/38 patients with high-grade osteosarcoma (31.6%) with initial bone metastasis (group A) and 26/38 (68.4%) with initial pulmonary metastasis (group B), of whom 15/38 (39.5%) had paired samples of primary lesions and metastatic lesions. We found that osteosarcoma in group A mainly carries single-nucleotide variations displaying higher tumor mutation burden and neoantigen load and more tertiary lymphoid structures, while those in group B mainly exhibits structural variants. High conservation of reported genetic sequencing over time in their evolving cladograms. Conclusions Osteosarcoma with mainly single-nucleotide variations other than structural variants might exhibit biological behavior predisposing toward bone metastases as well as better immunogenicity in tumor microenvironment.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhenyu Cai
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. A3 Datun Road, Chaoyang District, Beijing 100101, China
| | - Fanfei Meng
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xin Zhang
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Kun Luo
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xiaoxing Su
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Yan Lei
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Han Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yunfan Wang
- Pathology Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, China
| | - Yuan Li
- Radiology Department & Nuclear Medicine Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| |
Collapse
|
69
|
Wu C, Gong S, Duan Y, Deng C, Kallendrusch S, Berninghausen L, Osterhoff G, Schopow N. A tumor microenvironment-based prognostic index for osteosarcoma. J Biomed Sci 2023; 30:23. [PMID: 37055822 PMCID: PMC10099847 DOI: 10.1186/s12929-023-00917-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) has a central role in the oncogenesis of osteosarcomas. The composition of the TME is essential for the interaction between tumor and immune cells. The aim of this study was to establish a prognostic index (TMEindex) for osteosarcoma based on the TME, from which estimates about patient survival and individual response to immune checkpoint inhibitor (ICI) therapy can be deduced. METHODS Based on osteosarcoma samples from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, the ESTIMATE algorithm was used to estimate ImmuneScore and StromalScore. Combined differentially expressed gene analysis, weighted gene co-expression network analyses, the Least Absolute Shrinkage and Selection Operator regression and stepwise regression to construct the TMEindex. The prognostic role of TMEindex was validated in three independent datasets. The molecular and immune characteristics of TMEindex and the impact on immunotherapy were then comprehensively investigated. The expression of TMEindex genes in different cell types and its effects on osteosarcoma cells were explored by scRNA-Seq analysis and molecular biology experiments. RESULTS Fundamental is the expression of MYC, P4HA1, RAMP1 and TAC4. Patients with high TMEindex had worse overall survival, recurrence-free survival, and metastasis-free survival. TMEindex is an independent prognostic factor in osteosarcoma. TMEindex genes were mainly expressed in malignant cells. The knockdown of MYC and P4HA1 significantly inhibited the proliferation, invasion and migration of osteosarcoma cells. A high TME index is related to the MYC, mTOR, and DNA replication-related pathways. In contrast, a low TME index is related to immune-related signaling pathways such as the inflammatory response. The TMEindex was negatively correlated with ImmuneScore, StromalScore, immune cell infiltration, and various immune-related signature scores. Patients with a higher TMEindex had an immune-cold TME and higher invasiveness. Patients with a low TME index were more likely to respond to ICI therapy and achieve clinical benefit. In addition, the TME index correlated with response to 29 oncologic drugs. CONCLUSIONS The TMEindex is a promising biomarker to predict the prognosis of patients with osteosarcoma and their response to ICI therapy, and to distinguish the molecular and immune characteristics.
Collapse
Affiliation(s)
- Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany.
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103, Leipzig, Germany
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
- Faculty of Medicine, Health and Medical University Potsdam, 14471, Potsdam, Germany
| | - Laura Berninghausen
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Nikolas Schopow
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
70
|
Planas‐Paz L, Pliego‐Mendieta A, Hagedorn C, Aguilera‐Garcia D, Haberecker M, Arnold F, Herzog M, Bankel L, Guggenberger R, Steiner S, Chen Y, Kahraman A, Zoche M, Rubin MA, Moch H, Britschgi C, Pauli C. Unravelling homologous recombination repair deficiency and therapeutic opportunities in soft tissue and bone sarcoma. EMBO Mol Med 2023; 15:e16863. [PMID: 36779660 PMCID: PMC10086583 DOI: 10.15252/emmm.202216863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.
Collapse
Affiliation(s)
- Lara Planas‐Paz
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Alicia Pliego‐Mendieta
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Catherine Hagedorn
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Martina Haberecker
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Fabian Arnold
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marius Herzog
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Lorenz Bankel
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Roman Guggenberger
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Sabrina Steiner
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Yanjiang Chen
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Martin Zoche
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Mark A Rubin
- Precision Oncology Laboratory, Department for Biomedical ResearchBern Center for Precision MedicineBernSwitzerland
| | - Holger Moch
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Chantal Pauli
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Medical FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
71
|
Vanni S, Fausti V, Fonzi E, Liverani C, Miserocchi G, Spadazzi C, Cocchi C, Calabrese C, Gurrieri L, Riva N, Recine F, Casadei R, Pieri F, Guerrieri AN, Serra M, Ibrahim T, Mercatali L, De Vita A. Unveiling the Genomic Basis of Chemosensitivity in Sarcomas of the Extremities: An Integrated Approach for an Unmet Clinical Need. Int J Mol Sci 2023; 24:ijms24086926. [PMID: 37108089 PMCID: PMC10138892 DOI: 10.3390/ijms24086926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50-60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis. Differential diagnosis is challenging due to their heterogeneous morphology, with UPS remaining a diagnosis of exclusion for sarcomas with unknown differentiation lineage. Moreover, both lesions suffer from the unavailability of diagnostic and prognostic biomarkers. In this context, a genomic approach combined with pharmacological profiling could allow the identification of new predictive biomarkers that may be exploited for differential diagnosis, prognosis and targeted therapy, with the aim to improve the management of STS patients. RNA-Seq analysis identified the up-regulation of MMP13 and WNT7B in UPS and the up-regulation of AKR1C2, AKR1C3, BMP7, and SGCG in MFS, which were confirmed by in silico analyses. Moreover, we identified the down-regulation of immunoglobulin genes in patient-derived primary cultures that responded to anthracycline treatment compared to non-responder cultures. Globally, the obtained data corroborated the clinical observation of UPS as an histotype refractory to chemotherapy and the key role of the immune system in determining chemosensitivity of these lesions. Moreover, our results confirmed the validity of genomic approaches for the identification of predictive biomarkers in poorly characterized neoplasms as well as the robustness of our patient-derived primary culture models in recapitulating the chemosensitivity features of STS. Taken as a whole, this body of evidence may pave the way toward an improvement of the prognosis of these rare diseases through a treatment modulation driven by a biomarker-based patient stratification.
Collapse
Affiliation(s)
- Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Valentina Fausti
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Eugenio Fonzi
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Claudia Cocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Chiara Calabrese
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Lorena Gurrieri
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Nada Riva
- Clinical and Experimental Oncology, Immunotherapy, Rare Cancers and Biological Resource Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Federica Recine
- Medical Oncology Unit, Azienda Ospedaliera "San Giovanni Addolorata", 00184 Roma, Italy
| | - Roberto Casadei
- General and Oncologic Surgery, "Morgagni-Pierantoni" Hospital, 47121 Forlì, Italy
| | - Federica Pieri
- Pathology Unit, "Morgagni-Pierantoni" Hospital, 47121 Forlì, Italy
| | - Ania Naila Guerrieri
- Osteoncologia, Sarcomi dell'osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Massimo Serra
- Osteoncologia, Sarcomi dell'osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Toni Ibrahim
- Osteoncologia, Sarcomi dell'osso e dei tessuti molli, e Terapie Innovative, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Laura Mercatali
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| |
Collapse
|
72
|
Graves L, Jeck WR, Grilley-Olson JE. A League of Its Own? Established and Emerging Therapies in Undifferentiated Pleomorphic Sarcoma. Curr Treat Options Oncol 2023; 24:212-228. [PMID: 36729198 DOI: 10.1007/s11864-023-01054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 02/03/2023]
Abstract
OPINION STATEMENT Over the last decade in soft tissue sarcoma (STS) research, the shifting landscape towards more precise subtype classification and the increasing study of novel therapeutic strategies has prompted a need to highlight current knowledge of effective subtype specific therapies. Undifferentiated pleomorphic sarcoma (UPS), formerly known as malignant fibrous histiocytoma (MFH), is among the most common subtypes of STS arising in the trunk or extremities of adults. Administration of systemic chemotherapy is the primary management in locally advanced and metastatic UPS. While anthracycline-based chemotherapy continues to be standard of care in this setting, outcomes in locally advanced or metastatic UPS remain poor. Recent studies highlight the unique characteristics of UPS that may contribute to its greater sensitivity to immune checkpoint inhibition (ICI) compared to other STS subtypes. With the promise of benefit from novel therapies, including ICI or ICI plus chemotherapy, for a subset of patients with UPS comes the need to identify biomarkers predictive of response to therapy. Ongoing and future clinical trials should place strong emphasis on correlative biomarker studies to learn more about the unique biology of UPS and to identify patients for whom ICI-based therapy will be effective.
Collapse
Affiliation(s)
- Laurie Graves
- Division of Pediatric Hematology & Oncology, Duke University, Hanes House, Room 378, DUMC Box 102382, 315 Trent Drive, Durham, NC, 27710, USA.
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Juneko E Grilley-Olson
- Duke Cancer Institute, Durham, NC, 27710, USA
- Division of Medical Oncology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
73
|
Combined low-pass whole genome and targeted sequencing in liquid biopsies for pediatric solid tumors. NPJ Precis Oncol 2023; 7:21. [PMID: 36805676 PMCID: PMC9941464 DOI: 10.1038/s41698-023-00357-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
We designed a liquid biopsy (LB) platform employing low-pass whole genome sequencing (LP-WGS) and targeted sequencing of cell-free (cf) DNA from plasma to detect genome-wide copy number alterations (CNAs) and gene fusions in pediatric solid tumors. A total of 143 plasma samples were analyzed from 19 controls and 73 patients, including 44 bone or soft-tissue sarcomas and 12 renal, 10 germ cell, five hepatic, and two thyroid tumors. cfDNA was isolated from plasma collected at diagnosis, during and after therapy, and/or at relapse. Twenty-six of 37 (70%) patients enrolled at diagnosis without prior therapy (radiation, surgery, or chemotherapy) had circulating tumor DNA (ctDNA), based on the detection of CNAs from LP-WGS, including 18 of 27 (67%) patients with localized disease and eight of 10 (80%) patients with metastatic disease. None of the controls had detectable somatic CNAs. There was a high concordance of CNAs identified by LP-WGS to CNAs detected by chromosomal microarray analysis in the matching tumors. Mutations identified in tumor samples with our next-generation sequencing (NGS) panel, OncoKids®, were also detected by LP-WGS of ctDNA in 14 of 26 plasma samples. Finally, we developed a hybridization-based capture panel to target EWSR1 and FOXO1 fusions from patients with Ewing sarcoma or alveolar rhabdomyosarcoma (ARMS), respectively. Fusions were detected in the plasma from 10 of 12 patients with Ewing sarcoma and in two of two patients with ARMS. Combined, these data demonstrate the clinical applicability of our LB platform to evaluate pediatric patients with a variety of solid tumors.
Collapse
|
74
|
Fostier W, Holt G, Sampson J, Rajan N. Folliculin inactivation and cutaneous leiomyosarcoma in Birt-Hogg-Dubé syndrome. Br J Dermatol 2023; 188:571-572. [PMID: 36715612 DOI: 10.1093/bjd/ljac138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Cutaneous leiomyosarcoma (cLMS) is a rare soft tissue sarcoma where the genetic drivers implicated in carcinogenesis are not completely characterized despite extensive genomic profiling. The presentation of cLMS in Birt-Hogg-Dube (BHD) syndrome, which is caused by heterozygous pathogenic variants in FLCN, adds to our mechanistic understanding of the pathogenesis of cLMS and implicates FLCN loss. In this report, we demonstrate loss of heterozygosity (LOH) of FLCN in BHD cLMS, providing novel genetic evidence that a subset of cLMS may be driven by FLCN loss and that cLMS is an infrequent but recurrent element of the BHD phenotype.
Collapse
Affiliation(s)
- William Fostier
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Georgie Holt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Sampson
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
75
|
Connolly EA, Grimison PS, Horvath LG, Robinson PJ, Reddel RR. Quantitative proteomic studies addressing unmet clinical needs in sarcoma. Front Oncol 2023; 13:1126736. [PMID: 37197427 PMCID: PMC10183589 DOI: 10.3389/fonc.2023.1126736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcoma is a rare and complex disease comprising over 80 malignant subtypes that is frequently characterized by poor prognosis. Challenges in clinical management include uncertainties in diagnosis and disease classification, limited prognostic and predictive biomarkers, incompletely understood disease heterogeneity among and within subtypes, lack of effective treatment options, and limited progress in identifying new drug targets and novel therapeutics. Proteomics refers to the study of the entire complement of proteins expressed in specific cells or tissues. Advances in proteomics have included the development of quantitative mass spectrometry (MS)-based technologies which enable analysis of large numbers of proteins with relatively high throughput, enabling proteomics to be studied on a scale that has not previously been possible. Cellular function is determined by the levels of various proteins and their interactions, so proteomics offers the possibility of new insights into cancer biology. Sarcoma proteomics therefore has the potential to address some of the key current challenges described above, but it is still in its infancy. This review covers key quantitative proteomic sarcoma studies with findings that pertain to clinical utility. Proteomic methodologies that have been applied to human sarcoma research are briefly described, including recent advances in MS-based proteomic technology. We highlight studies that illustrate how proteomics may aid diagnosis and improve disease classification by distinguishing sarcoma histologies and identify distinct profiles within histological subtypes which may aid understanding of disease heterogeneity. We also review studies where proteomics has been applied to identify prognostic, predictive and therapeutic biomarkers. These studies traverse a range of histological subtypes including chordoma, Ewing sarcoma, gastrointestinal stromal tumors, leiomyosarcoma, liposarcoma, malignant peripheral nerve sheath tumors, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, and undifferentiated pleomorphic sarcoma. Critical questions and unmet needs in sarcoma which can potentially be addressed with proteomics are outlined.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- *Correspondence: Elizabeth A. Connolly,
| | - Peter S. Grimison
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phillip J. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R. Reddel
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
76
|
Crombé A, Kind M, Fadli D, Miceli M, Linck PA, Bianchi G, Sambri A, Spinnato P. Soft-tissue sarcoma in adults: Imaging appearances, pitfalls and diagnostic algorithms. Diagn Interv Imaging 2022; 104:207-220. [PMID: 36567193 DOI: 10.1016/j.diii.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
This article provides an overview of the current knowledge regarding diagnostic imaging of patients with soft-tissue sarcomas, which is a heterogeneous group of rare mesenchymal malignancies. After an initial contextualization, diagnostic flow-chart based on initial radiological findings of soft-tissue masses (with specific focus on adipocytic soft-tissue tumors [STTs], hemorragic STTs and retroperitoneal STTs) are provided considering relevant results from novel researches, guidelines, and experts' viewpoints, with the aim to help radiologists and clinicians in their practice. Particularly, the central place of sarcoma reference centers in the diagnostic and therapeutic management is highlighted, as well as the pivotal role that radiologists should play to correctly identify patients with soft-tissue sarcoma at the initial stage of the disease. Indications and methods for performing imaging-guided biopsies are also discussed, as well as clues to improve soft-tissue sarcoma grading with conventional and quantitative imaging.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, Bordeaux 33076, France; Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France; Models in Oncology (MONC) Team, INRIA Bordeaux Sud-Ouest, CNRS UMR 5251 & Bordeaux University, 33400 Talence, France.
| | - Michèle Kind
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France
| | - David Fadli
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, Bordeaux 33076, France
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Pierre-Antoine Linck
- Department of Diagnostic and Interventional Oncological Imaging, Institut Bergonié, Regional Comprehensive Cancer of Nouvelle-Aquitaine, Bordeaux 33076, France
| | - Giuseppe Bianchi
- Orthopedic Musculoskeletal Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Andrea Sambri
- Orthopedics and Traumatology Department, IRCCS Azienda Ospedaliero Universitaria di Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| |
Collapse
|
77
|
Huang Z, Yi L, Jin L, Chen J, Han Y, Zhang Y, Shi L. Systematic analysis of virus nucleic acid sensor DDX58 in malignant tumor. Front Microbiol 2022; 13:1085086. [PMID: 36601407 PMCID: PMC9807228 DOI: 10.3389/fmicb.2022.1085086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction In December 2019, a novel epidemic of coronavirus pneumonia (COVID-19) was reported,and population-based studies had shown that cancer was a risk factor for death from COVID-19 infection. However, the molecular mechanism between COVID-19 and cancer remains indistinct. In this paper, we analyzed the nucleic acid sensor (DDX58) of SARS-CoV-2 virus, which is a significant gene related to virus infection. For purpose of clarifying the characteristics of DDX58 expression in malignant tumors, this study began to systematically analyze the DDX58 expression profile in the entire cancer type spectrum. Methods Using TCGA pan-cancer database and related data resources, we analyzed the expression, survival analysis, methylation expression, mutation status, microsatellite instability (MSI), immune related microenvironment, gene related network, function and drug sensitivity of DDX58. Results The expression level of DDX58 mRNA in most cancers was higher than the expression level in normal tissues. Through TIMER algorithm mining, we found that DDX58 expression was closely related to various levels of immune infiltration in pan-cancer. The promoter methylation level of DDX58 was significantly increased in multiple cancers. In addition, abnormal expression of DDX58 was related to MSI and TMB in multiple cancers, and the most common type of genomic mutation was "mutation." In the protein-protein interaction (PPI) network, we found that type I interferon, phagocytosis, ubiquitinase, and tumor pathways were significantly enriched. Finally, according to the expression of DDX58 indicated potential sensitive drugs such as Cediranib, VE-821, Itraconazole, JNJ-42756493, IWR-1, and Linsitinib. Discussion In conclusion, we had gained new insights into how DDX58 might contribute to tumor development, and DDX58 could be used as an immune-related biomarker and as a potential immunotherapeutic target for COVID-19 infected cancer patients.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Limu Yi
- Department of Pathology, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, China
| | - Liangzi Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jian Chen
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China,*Correspondence: Yuanyuan Han,
| | - Yan Zhang
- Department of Pathology, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, China,Department of Pathology, Maternity and Child Healthcare Hospital of Longhua District, Shenzhen, China,Yan Zhang,
| | - Libin Shi
- Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Libin Shi,
| |
Collapse
|
78
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
79
|
Batra U, Nathany S, Sachdeva R, Sharma M, Amrith BP, Vaidya S. ROS1 in non-small-cell lung carcinoma: A narrative review. CANCER RESEARCH, STATISTICS, AND TREATMENT 2022. [DOI: 10.4103/crst.crst_322_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|