51
|
Pham HL, Ling H, Chang MW. Design and fabrication of field-deployable microbial biosensing devices. Curr Opin Biotechnol 2022; 76:102731. [DOI: 10.1016/j.copbio.2022.102731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
|
52
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
53
|
A rapid screening platform to coculture bacteria within tumor spheroids. Nat Protoc 2022; 17:2216-2239. [PMID: 35906291 DOI: 10.1038/s41596-022-00723-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
The prevalence of tumor-colonizing bacteria along with advances in synthetic biology are leading to a new generation of living microbial cancer therapies. Because many bacterial systems can be engineered to recombinantly produce therapeutics within tumors, simple and high-throughput experimental platforms are needed to screen the large collections of bacteria candidates and characterize their interactions with cancer cells. Here, we describe a protocol to selectively grow bacteria within the core of tumor spheroids, allowing for their continuous and parallel profiling in physiologically relevant conditions. Specifically, tumor spheroids are incubated with bacteria in a 96-well low-adhesion plate followed by a series of washing steps and an antibiotic selection protocol to confine bacterial growth within the hypoxic and necrotic core of tumor spheroids. This bacteria spheroid coculture (BSCC) system is stable for over 2 weeks, does not require specialized equipment and is compatible with time-lapse microscopy, commercial staining assays and histology that uniquely enable analysis of growth kinetics, viability and spatial distribution of both cellular populations, respectively. We show that the procedure is applicable to multiple tumor cell types and bacterial species by varying protocol parameters and is validated by using animal models. The BSCC platform will allow the study of bacteria-tumor interactions in a continuous manner and facilitate the rapid development of engineered microbial therapies.
Collapse
|
54
|
Akolpoglu MB, Alapan Y, Dogan NO, Baltaci SF, Yasa O, Aybar Tural G, Sitti M. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. SCIENCE ADVANCES 2022; 8:eabo6163. [PMID: 35857516 PMCID: PMC9286503 DOI: 10.1126/sciadv.abo6163] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial biohybrids, composed of self-propelling bacteria carrying micro/nanoscale materials, can deliver their payload to specific regions under magnetic control, enabling additional frontiers in minimally invasive medicine. However, current bacterial biohybrid designs lack high-throughput and facile construction with favorable cargoes, thus underperforming in terms of propulsion, payload efficiency, tissue penetration, and spatiotemporal operation. Here, we report magnetically controlled bacterial biohybrids for targeted localization and multistimuli-responsive drug release in three-dimensional (3D) biological matrices. Magnetic nanoparticles and nanoliposomes loaded with photothermal agents and chemotherapeutic molecules were integrated onto Escherichia coli with ~90% efficiency. Bacterial biohybrids, outperforming previously reported E. coli-based microrobots, retained their original motility and were able to navigate through biological matrices and colonize tumor spheroids under magnetic fields for on-demand release of the drug molecules by near-infrared stimulus. Our work thus provides a multifunctional microrobotic platform for guided locomotion in 3D biological networks and stimuli-responsive delivery of therapeutics for diverse medical applications.
Collapse
Affiliation(s)
- Mukrime Birgul Akolpoglu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH-Zürich, Zürich 8092, Switzerland
| | - Yunus Alapan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH-Zürich, Zürich 8092, Switzerland
| | - Saadet Fatma Baltaci
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
| | - Oncay Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Gulsen Aybar Tural
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH-Zürich, Zürich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
- Corresponding author.
| |
Collapse
|
55
|
Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv Drug Deliv Rev 2022; 187:114363. [PMID: 35649449 DOI: 10.1016/j.addr.2022.114363] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Collapse
|
56
|
Hu CW, Chang YC, Liu CH, Yu YA, Mou KY. Development of a TNF-α-mediated Trojan Horse for Bacteria-based Cancer Therapy. Mol Ther 2022; 30:2522-2536. [PMID: 35440418 DOI: 10.1016/j.ymthe.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
TNF-α is up-regulated in a chronic inflammatory environment, including tumors, and has been recognized as a pro-tumor factor in many cancers. Applying the traditional TNF-α antibodies that neutralize the TNF-α activity, however, only exerts modest anti-tumor efficacy in the clinical studies. Here, we develop an innovative approach to target TNF-α that is distinct from the neutralization mechanism. We employed phage display and yeast display to select non-neutralizing antibodies that can piggyback on TNF-α and co-internalize into cells through the receptor ligation. When conjugating with toxins, the antibody exhibited cytotoxicity to cancer cells in a TNF-α-dependent manner. We further implemented the immunotoxin to an E. coli vehicle specially engineered for a high secretion level. In a syngeneic murine melanoma model, the bacteria stimulated the TNF-α expression that synergized with the secreted immunotoxin and greatly inhibited the tumor growth. The treatment also dramatically remodeled the tumor microenvironment in favor of several anti-tumor immune cells, including the N1 neutrophils, the M1 macrophages, and the activated CD4+ and CD8+ lymphocytes. We anticipate that our new piggyback strategy is generalizable to target other soluble ligands and/or conjugate with different drugs for managing a diverse set of diseases.
Collapse
Affiliation(s)
- Che-Wei Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics, National Taiwan University and Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
57
|
Harimoto T, Hahn J, Chen YY, Im J, Zhang J, Hou N, Li F, Coker C, Gray K, Harr N, Chowdhury S, Pu K, Nimura C, Arpaia N, Leong KW, Danino T. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022; 40:1259-1269. [PMID: 35301496 PMCID: PMC9371971 DOI: 10.1038/s41587-022-01244-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Living bacteria therapies have been proposed as an alternative approach to treating a broad array of cancers. In this study, we developed a genetically encoded microbial encapsulation system with tunable and dynamic expression of surface capsular polysaccharides that enhances systemic delivery. Based on a small RNA screen of capsular biosynthesis pathways, we constructed inducible synthetic gene circuits that regulate bacterial encapsulation in Escherichia coli Nissle 1917. These bacteria are capable of temporarily evading immune attack, whereas subsequent loss of encapsulation results in effective clearance in vivo. This dynamic delivery strategy enabled a ten-fold increase in maximum tolerated dose of bacteria and improved anti-tumor efficacy in murine models of cancer. Furthermore, in situ encapsulation increased the fraction of microbial translocation among mouse tumors, leading to efficacy in distal tumors. The programmable encapsulation system promises to enhance the therapeutic utility of living engineered bacteria for cancer. Transient capsule induction allows engineered bacteria to evade initial immune surveillance in a colorectal cancer model.
Collapse
Affiliation(s)
- Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yu-Yu Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanna Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kelsey Gray
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicole Harr
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sreyan Chowdhury
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kelly Pu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clare Nimura
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University Medical Center, New York, NY, USA.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA. .,Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
58
|
Khan A, Ostaku J, Aras E, Safak Seker UO. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol 2022; 11:528-537. [PMID: 35077138 PMCID: PMC8895449 DOI: 10.1021/acssynbio.1c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Over
the past decades, there have been numerous outbreaks, including
parasitic, fungal, bacterial, and viral infections, worldwide. The
rate at which infectious diseases are emerging is disproportionate
to the rate of development for new strategies that could combat them.
Therefore, there is an increasing demand to develop novel, specific,
sensitive, and effective methods for infectious disease diagnosis
and treatment. Designed synthetic systems and devices are becoming
powerful tools to treat human diseases. The advancement in synthetic
biology offers efficient, accurate, and cost-effective platforms for
detecting and preventing infectious diseases. Herein we focus on the
latest state of living theranostics and its implications.
Collapse
Affiliation(s)
- Anooshay Khan
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Julian Ostaku
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Ebru Aras
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
59
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
60
|
Wang J, Childers WS. The Future Potential of Biosensors to Investigate the Gut-Brain Axis. Front Bioeng Biotechnol 2022; 9:826479. [PMID: 35096802 PMCID: PMC8795891 DOI: 10.3389/fbioe.2021.826479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The multifaceted and heterogeneous nature of depression presents challenges in pinpointing treatments. Among these contributions are the interconnections between the gut microbiome and neurological function termed the gut-brain axis. A diverse range of microbiome-produced metabolites interact with host signaling and metabolic pathways through this gut-brain axis relationship. Therefore, biosensor detection of gut metabolites offers the potential to quantify the microbiome's contributions to depression. Herein we review synthetic biology strategies to detect signals that indicate gut-brain axis dysregulation that may contribute to depression. We also highlight future challenges in developing living diagnostics of microbiome conditions influencing depression.
Collapse
Affiliation(s)
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
61
|
Zúñiga A, Camacho M, Chang HJ, Fristot E, Mayonove P, Hani EH, Bonnet J. Engineered l-Lactate Responding Promoter System Operating in Glucose-Rich and Anoxic Environments. ACS Synth Biol 2021; 10:3527-3536. [PMID: 34851606 PMCID: PMC8689689 DOI: 10.1021/acssynbio.1c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/19/2022]
Abstract
Bacteria equipped with genetically encoded lactate biosensors are promising tools for biopharmaceutical production, diagnostics, and cellular therapies. However, many applications involve glucose-rich and anoxic environments, in which current whole-cell lactate biosensors show low performance. Here we engineer an optimized, synthetic lactate biosensor system by repurposing the natural LldPRD promoter regulated by the LldR transcriptional regulator. We removed glucose catabolite and anoxic repression by designing a hybrid promoter, containing LldR operators and tuned both regulator and reporter gene expressions to optimize biosensor signal-to-noise ratio. The resulting lactate biosensor, termed ALPaGA (A Lactate Promoter Operating in Glucose and Anoxia), can operate in glucose-rich, aerobic and anoxic conditions. We show that ALPaGA works reliably in the probiotic chassisEscherichia coliNissle 1917 and can detect endogenous l-lactate produced by 3D tumor spheroids with an improved dynamic range. In the future, the ALPaGA system could be used to monitor bioproduction processes and improve the specificity of engineered bacterial cancer therapies by restricting their activity to the lactate-rich microenvironment of solid tumors.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Miguel Camacho
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Hung-Ju Chang
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Elsa Fristot
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - El-Habib Hani
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| |
Collapse
|