51
|
Fenizia S, Weissflog J, Pohnert G. Cysteinolic Acid Is a Widely Distributed Compatible Solute of Marine Microalgae. Mar Drugs 2021; 19:md19120683. [PMID: 34940682 PMCID: PMC8703288 DOI: 10.3390/md19120683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
Phytoplankton rely on bioactive zwitterionic and highly polar small metabolites with osmoregulatory properties to compensate changes in the salinity of the surrounding seawater. Dimethylsulfoniopropionate (DMSP) is a main representative of this class of metabolites. Salinity-dependent DMSP biosynthesis and turnover contribute significantly to the global sulfur cycle. Using advanced chromatographic and mass spectrometric techniques that enable the detection of highly polar metabolites, we identified cysteinolic acid as an additional widely distributed polar metabolite in phytoplankton. Cysteinolic acid belongs to the class of marine sulfonates, metabolites that are commonly produced by algae and consumed by bacteria. It was detected in all dinoflagellates, haptophytes, diatoms and prymnesiophytes that were surveyed. We quantified the metabolite in different phytoplankton taxa and revealed that the cellular content can reach even higher concentrations than the ubiquitous DMSP. The cysteinolic acid concentration in the cells of the diatom Thalassiosira weissflogii increases significantly when grown in a medium with elevated salinity. In contrast to the compatible solute ectoine, cysteinolic acid is also found in high concentrations in axenic algae, indicating biosynthesis by the algae and not the associated bacteria. Therefore, we add this metabolite to the family of highly polar metabolites with osmoregulatory characteristics produced by phytoplankton.
Collapse
Affiliation(s)
- Simona Fenizia
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743 Jena, Germany;
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Jerrit Weissflog
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, D-07743 Jena, Germany;
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
- Correspondence:
| |
Collapse
|
52
|
An Z, Gao D, Chen F, Wu L, Zhou J, Zhang Z, Dong H, Yin G, Han P, Liang X, Liu M, Hou L, Zheng Y. Crab bioturbation alters nitrogen cycling and promotes nitrous oxide emission in intertidal wetlands: Influence and microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149176. [PMID: 34346369 DOI: 10.1016/j.scitotenv.2021.149176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Intertidal wetlands provide important ecosystem functions by acting as nitrogen (N) cycling hotspots, which can reduce anthropogenic N loading from land to coastal waters. Benthic bioturbations are thought to play an important role in mediating N cycling in intertidal marshes. However, how the burrowing activity of benthos and their microbial symbionts affect N transformation and greenhouse gas nitrous oxide (N2O) emission remains unclear in these environments. Here, we show that bioturbation of crabs reshaped the structure of intertidal microbial communities and their N cycling function. Molecular analyses suggested that the microbially-driven N cycling might be accelerated by crab bioturbation, as the abundances of most of the N related functional genes were higher on the burrow wall than those in the surrounding bulk sediments, except for genes involved in N fixation, dissimilatory nitrate reduction to ammonium (DNRA), and N2O reduction, which were further confirmed by isotope-tracing experiments. Especially, the potential rates of the main N2O production pathways, nitrification and denitrification, were 2-3 times higher in the burrow wall sediments. However, even higher N2O emission rates (approximately 6 times higher) were observed in this unique microhabitat, which was due to a disproportionate increase in N2O production over N2O consumption driven by burrowing activity. In addition, the sources of N2O were also significantly affected by crab bioturbation, which increased the contribution of hydroxylamine oxidation pathway. This study reveals the mechanism through which benthic bioturbations mediate N cycling and highlights the importance of considering burrowing activity when evaluating the ecological function of intertidal wetlands.
Collapse
Affiliation(s)
- Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
53
|
De Corte D, Muck S, Tiroch J, Mena C, Herndl GJ, Sintes E. Microbes mediating the sulfur cycle in the Atlantic Ocean and their link to chemolithoautotrophy. Environ Microbiol 2021; 23:7152-7167. [PMID: 34490972 DOI: 10.1111/1462-2920.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Only about 10%-30% of the organic matter produced in the epipelagic layers reaches the dark ocean. Under these limiting conditions, reduced inorganic substrates might be used as an energy source to fuel prokaryotic chemoautotrophic and/or mixotrophic activity. The aprA gene encodes the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase, present in sulfate-reducing (SRP) and sulfur-oxidizing prokaryotes (SOP). The sulfur-oxidizing pathway can be coupled to inorganic carbon fixation via the Calvin-Benson-Bassham cycle. The abundances of aprA and cbbM, encoding RuBisCO form II (the key CO2 fixing enzyme), were determined over the entire water column along a latitudinal transect in the Atlantic from 64°N to 50°S covering six oceanic provinces. The abundance of aprA and cbbM genes significantly increased with depth reaching the highest abundances in meso- and upper bathypelagic layers. The contribution of cells containing these genes also increased from mesotrophic towards oligotrophic provinces, suggesting that under nutrient limiting conditions alternative energy sources are advantageous. However, the aprA/cbbM ratios indicated that only a fraction of the SOP is associated with inorganic carbon fixation. The aprA harbouring prokaryotic community was dominated by Pelagibacterales in surface and mesopelagic waters, while Candidatus Thioglobus, Chromatiales and the Deltaproteobacterium_SCGC dominated the bathypelagic realm. Noticeably, the contribution of the SRP to the prokaryotic community harbouring aprA gene was low, suggesting a major utilization of inorganic sulfur compounds either as an energy source (occasionally coupled with inorganic carbon fixation) or in biosynthesis pathways.
Collapse
Affiliation(s)
- Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
| | - Simone Muck
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Johanna Tiroch
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Catalina Mena
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Eva Sintes
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| |
Collapse
|
54
|
Groussman RD, Coesel SN, Durham BP, Armbrust EV. Diel-Regulated Transcriptional Cascades of Microbial Eukaryotes in the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:682651. [PMID: 34659137 PMCID: PMC8511712 DOI: 10.3389/fmicb.2021.682651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Open-ocean surface waters host a diverse community of single-celled eukaryotic plankton (protists) consisting of phototrophs, heterotrophs, and mixotrophs. The productivity and biomass of these organisms oscillate over diel cycles, and yet the underlying transcriptional processes are known for few members of the community. Here, we examined a 4-day diel time series of transcriptional abundance profiles for the protist community (0.2-100 μm in cell size) in the North Pacific Subtropical Gyre near Station ALOHA. De novo assembly of poly-A+ selected metatranscriptomes yielded over 30 million contigs with taxonomic and functional annotations assigned to 54 and 25% of translated contigs, respectively. The completeness of the resulting environmental eukaryotic taxonomic bins was assessed, and 48 genera were further evaluated for diel patterns in transcript abundances. These environmental transcriptome bins maintained reproducible temporal partitioning of total gene family abundances, with haptophyte and ochrophyte genera generally showing the greatest diel partitioning of their transcriptomes. The haptophyte Phaeocystis demonstrated the highest proportion of transcript diel periodicity, while most other protists had intermediate levels of periodicity regardless of their trophic status. Dinoflagellates, except for the parasitoid genus Amoebophrya, exhibit the fewest diel oscillations of transcript abundances. Diel-regulated gene families were enriched in key metabolic pathways; photosynthesis, carbon fixation, and fatty acid biosynthesis gene families had peak times concentrated around dawn, while gene families involved in protein turnover (proteasome and protein processing) are most active during the high intensity daylight hours. TCA cycle, oxidative phosphorylation and fatty acid degradation predominantly peaked near dusk. We identified temporal pathway enrichments unique to certain taxa, including assimilatory sulfate reduction at dawn in dictyophytes and signaling pathways at early evening in haptophytes, pointing to possible taxon-specific channels of carbon and nutrients through the microbial community. These results illustrate the synchrony of transcriptional regulation to the diel cycle and how the protist community of the North Pacific Subtropical Gyre structures their transcriptomes to guide the daily flux of matter and energy through the gyre ecosystem.
Collapse
Affiliation(s)
- Ryan D. Groussman
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Sacha N. Coesel
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Bryndan P. Durham
- School of Oceanography, University of Washington, Seattle, WA, United States
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
55
|
Abstract
Microbes are omnipresent in the biosphere and perform biological and chemical processes critical to ecosystem function, nutrient cycling, and global climate regulation. In the ocean, microbes constitute more than two-thirds of biomass with abundances reaching over one million microbial cells per milliliter of seawater. Our understanding of the marine microbial world has rapidly expanded with use of innovative molecular and chemical 'omics tools to uncover previously hidden taxonomic diversity, spatiotemporal distributions, and novel metabolic functions. Recognition that specific microbial taxa cooccur in consistent patterns in the ocean has implicated microbe-microbe interactions as important, but poorly constrained, regulators of microbial activity. Here, I examine cooperative interactions among marine plankton, with a focus on the metabolic "currencies" that establish microbial partnerships in the surface-ocean trade economy. I discuss current and future directions to study microbial metabolic interactions in order to strengthen our understanding of ecosystem interdependencies and their impact on ocean biogeochemistry.
Collapse
Affiliation(s)
- Bryndan P. Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
56
|
Harke MJ, Frischkorn KR, Hennon GMM, Haley ST, Barone B, Karl DM, Dyhrman ST. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ Microbiol 2021; 23:4807-4822. [PMID: 34309154 DOI: 10.1111/1462-2920.15677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Gloucester Marine Genomics Institute, Gloucester, MA, USA
| | - Kyle R Frischkorn
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, USA
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA
| | - Benedetto Barone
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
57
|
Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc Natl Acad Sci U S A 2021; 118:2011038118. [PMID: 33547239 PMCID: PMC8017926 DOI: 10.1073/pnas.2011038118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most organisms coordinate key biological events to coincide with the day/night cycle. These diel oscillations are entrained through the activity of light-sensitive photoreceptors that allow organisms to respond rapidly to changes in light exposure. In the ocean, the plankton community must additionally contend with dramatic changes in the quantity and quality of light over depth. Here, we show that the predominantly blue-light field in the open-ocean environment may have driven expansion of blue light-sensitive regulatory elements in open-ocean eukaryotic plankton derived from secondary and tertiary endosymbiosis. The diel transcription of genes encoding light-sensitive elements indicate that photosynthetic and heterotrophic marine protists respond to and anticipate fluctuating light conditions in the dynamic marine environment. The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Collapse
|
58
|
Roth Rosenberg D, Haber M, Goldford J, Lalzar M, Aharonovich D, Al-Ashhab A, Lehahn Y, Segrè D, Steindler L, Sher D. Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors. Environ Microbiol 2021; 23:4295-4308. [PMID: 34036706 DOI: 10.1111/1462-2920.15611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Dalit Roth Rosenberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Maya Lalzar
- Bioinformatics Support Unit, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Yoav Lehahn
- Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
59
|
Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ, Grossart HP, Dekas AE. Characterizing the "fungal shunt": Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc Natl Acad Sci U S A 2021; 118:e2102225118. [PMID: 34074785 PMCID: PMC8201943 DOI: 10.1073/pnas.2102225118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial interactions in aquatic environments profoundly affect global biogeochemical cycles, but the role of microparasites has been largely overlooked. Using a model pathosystem, we studied hitherto cryptic interactions between microparasitic fungi (chytrid Rhizophydiales), their diatom host Asterionella, and cell-associated and free-living bacteria. We analyzed the effect of fungal infections on microbial abundances, bacterial taxonomy, cell-to-cell carbon transfer, and cell-specific nitrate-based growth using microscopy (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon sequencing, and secondary ion mass spectrometry. Bacterial abundances were 2 to 4 times higher on individual fungal-infected diatoms compared to healthy diatoms, particularly involving Burkholderiales. Furthermore, taxonomic compositions of both diatom-associated and free-living bacteria were significantly different between noninfected and fungal-infected cocultures. The fungal microparasite, including diatom-associated sporangia and free-swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria (32%). Likewise, nitrate-based growth for the diatom and fungi was synchronized and faster than for diatom-associated and free-living bacteria. In a natural lacustrine system, where infection prevalence reached 54%, we calculated that 20% of the total diatom-derived photosynthetic carbon was shunted to the parasitic fungi, which can be grazed by zooplankton, thereby accelerating carbon transfer to higher trophic levels and bypassing the microbial loop. The herein termed "fungal shunt" can thus significantly modify the fate of photosynthetic carbon and the nature of phytoplankton-bacteria interactions, with implications for diverse pelagic food webs and global biogeochemical cycles.
Collapse
Affiliation(s)
- Isabell Klawonn
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | | | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
| |
Collapse
|
60
|
Particulate Metabolites and Transcripts Reflect Diel Oscillations of Microbial Activity in the Surface Ocean. mSystems 2021; 6:6/3/e00896-20. [PMID: 33947808 PMCID: PMC8269247 DOI: 10.1128/msystems.00896-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Light fuels photosynthesis and organic matter production by primary producers in the sunlit ocean. The quantity and quality of the organic matter produced influence community function, yet in situ measurements of metabolites, the products of cellular metabolism, over the diel cycle are lacking. We evaluated community-level biochemical consequences of oscillations of light in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter from 15 m every 4 h over 8 days. Total particulate metabolite concentration peaked at dusk and represented up to 2% of total particulate organic carbon (POC). The concentrations of 55/79 (70%) individual metabolites exhibited significant 24-h periodicity, with daily fold changes from 1.6 to 12.8, often greater than those of POC and flow cytometry-resolvable biomass, which ranged from 1.2 to 2.8. Paired metatranscriptome analysis revealed the taxa involved in production and consumption of a subset of metabolites. Primary metabolites involved in anabolism and redox maintenance had significant 24-h periodicity and diverse organisms exhibited diel periodicity in transcript abundance associated with these metabolites. Compounds with osmotic properties displayed the largest oscillations in concentration, implying rapid turnover and supporting prior evidence of functions beyond cell turgor maintenance. The large daily oscillation of trehalose paired with metatranscriptome and culture data showed that trehalose is produced by the nitrogen-fixing cyanobacterium Crocosphaera, likely to store energy for nighttime metabolism. Together, paired measurements of particulate metabolites and transcripts resolve strategies that microbes use to manage daily energy and redox oscillations and highlight dynamic metabolites with cryptic roles in marine microbial ecosystems.IMPORTANCE Fueled by light, phytoplankton produce the organic matter that supports ocean ecosystems and carbon sequestration. Ocean change impacts microbial metabolism with repercussions for biogeochemical cycling. As the small molecule products of cellular metabolism, metabolites often change rapidly in response to environmental conditions and form the basis of energy and nutrient management and storage within cells. By pairing measurements of metabolites and gene expression in the stratified surface ocean, we reveal strategies of microbial energy management over the day-night cycle and hypothesize that oscillating metabolites are important substrates for dark respiration by phytoplankton. These high-resolution diel measurements of in situ metabolite concentrations form the basis for future work into the specific roles these compounds play in marine microbial communities.
Collapse
|
61
|
Abstract
Phytoplankton transform inorganic carbon into thousands of biomolecules that represent an important pool of fixed carbon, nitrogen, and sulfur in the surface ocean. Metabolite production differs between phytoplankton, and the flux of these molecules through the microbial food web depends on compound-specific bioavailability to members of a wider microbial community. Yet relatively little is known about the diversity or concentration of metabolites within marine plankton. Here, we compare 313 polar metabolites in 21 cultured phytoplankton species and in natural planktonic communities across environmental gradients to show that bulk community metabolomes reflect the chemical composition of the phytoplankton community. We also show that groups of compounds have similar patterns across space and taxonomy, suggesting that the concentrations of these compounds in the environment are controlled by similar sources and sinks. We quantify several compounds in the surface ocean that represent substantial understudied pools of labile carbon. For example, the N-containing metabolite homarine was up to 3% of particulate carbon and is produced in high concentrations by cultured Synechococcus, and S-containing gonyol accumulated up to 2.5 nM in surface particles and likely originates from dinoflagellates or haptophytes. Our results show that phytoplankton composition directly shapes the carbon composition of the surface ocean. Our findings suggest that in order to access these pools of bioavailable carbon, the wider microbial community must be adapted to phytoplankton community composition. IMPORTANCE Microscopic phytoplankton transform 100 million tons of inorganic carbon into thousands of different organic compounds each day. The structure of each chemical is critical to its biological and ecosystem function, yet the diversity of biomolecules produced by marine microbial communities remained mainly unexplored, especially small polar molecules which are often considered the currency of the microbial loop. Here, we explore the abundance and diversity of small biomolecules in planktonic communities across ecological gradients in the North Pacific and within 21 cultured phytoplankton species. Our work demonstrates that phytoplankton diversity is an important determinant of the chemical composition of the highly bioavailable pool of organic carbon in the ocean, and we highlight understudied yet abundant compounds in both the environment and cultured organisms. These findings add to understanding of how the chemical makeup of phytoplankton shapes marine microbial communities where the ability to sense and use biomolecules depends on the chemical structure.
Collapse
|
62
|
Abstract
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Collapse
Affiliation(s)
- Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology; and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| |
Collapse
|
63
|
Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 2021; 16:e0241960. [PMID: 33760840 PMCID: PMC7990286 DOI: 10.1371/journal.pone.0241960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
Collapse
|
64
|
A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME JOURNAL 2021; 15:2440-2453. [PMID: 33750904 PMCID: PMC8319176 DOI: 10.1038/s41396-021-00933-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.
Collapse
|
65
|
Zaynab M, Chen H, Chen Y, Ouyang L, Yang X, Hu Z, Li S. Signs of biofilm formation in the genome of Labrenzia sp . PO1. Saudi J Biol Sci 2020; 28:1900-1912. [PMID: 33732076 PMCID: PMC7938128 DOI: 10.1016/j.sjbs.2020.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Labrenzia sp. are important components of marine ecology which play a key role in biochemical cycling. In this study, we isolated the Labrenzia sp. PO1 strain capable of forming biofilm, from the A. sanguinea culture. Growth analysis revealed that strain reached a logarithmic growth period at 24 hours. The whole genome of 6.21813 Mb of Labrezia sp. PO1 was sequenced and assembled into 15 scaffolds and 16 contigs, each with minimum and maximum lengths of 644 and 1,744,114 Mb. A total of 3,566 genes were classified into five pathways and 31 pathway groups. Of them, 521 genes encoded biofilm formation proteins, quorum sensing (QS) proteins, and ABC transporters. Gene Ontology annotation identified 49,272 genes that were involved in biological processes (33,425 genes), cellular components (7,031genes), and molecular function (7,816 genes). We recognised genes involved in bacterial quorum sensing, attachment, motility, and chemotaxis to investigate bacteria's ability to interact with the diatom phycosphere. As revealed by KEGG pathway analysis, several genes encoding ABC transporters exhibited a significant role during the growth and development of Labrenzia sp. PO1, indicating that ABC transporters may be involved in signalling pathways that enhance growth and biofilm formation.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Huirong Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Yufei Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Liao Ouyang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
66
|
Yu X, Zhou J, Song W, Xu M, He Q, Peng Y, Tian Y, Wang C, Shu L, Wang S, Yan Q, Liu J, Tu Q, He Z. SCycDB: A curated functional gene database for metagenomic profiling of sulphur cycling pathways. Mol Ecol Resour 2020. [DOI: 10.1111/1755-0998.13306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoli Yu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jiayin Zhou
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Wen Song
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Mengzhao Xu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qiang He
- Department of Civil and Environmental Engineering The University of Tennessee Knoxville TN USA
| | - Yisheng Peng
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Xiamen University Xiamen China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Shanquan Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jihua Liu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qichao Tu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
- College of Agronomy Hunan Agricultural University Changsha China
| |
Collapse
|
67
|
Abstract
While marine microorganisms are frequently studied in their natural environment, isolated strains are invaluable resources that can be used in controlled experiments to expand upon direct observations from natural systems. Here, we sought a means to enhance culture collections of SAR11 marine bacteria by testing the use of seawater cryopreserved with glycerol as an inoculum. Using a raw seawater sample collected from the tropical Pacific Ocean, a subsample was diluted in seawater growth medium to create 576 2-ml dilution cultures containing 5 cells each and incubated for a high-throughput culturing (HTC) experiment, while another portion was cryopreserved in 10% glycerol. After 10 months, a cryopreserved aliquot was thawed and used to create a second cultivation experiment of 480 2-ml cultures containing 5 cells each and 470 cultures containing 105 cells each. The raw seawater cultivation experiment resulted in the successful isolation of 54 monocultures and 29 mixed cultures, while cryopreserved seawater resulted in 59 monocultures and 29 mixed cultures. Combined, the cultures included 51 SAR11 isolates spanning 11 unique 16S rRNA gene amplicon sequence variants (ASVs) from the raw seawater inoculum and 74 SAR11 isolates spanning 13 unique ASVs from cryopreserved seawater. A vast majority (92%) of SAR11 isolates from the two HTC experiments were members of SAR11 subclade Ia, though subclades IIIa and Va were also recovered from cryopreserved seawater and subclade Ib was recovered from both. The four most abundant SAR11 subclade Ia ASVs found in the initial seawater environmental sample were isolated by both approaches.IMPORTANCE High-throughput dilution culture has proved to be a successful approach to bring some difficult-to-isolate planktonic microorganisms into culture, including the highly abundant SAR11 lineage of marine bacteria. While the long-term preservation of bacterial isolates by freezing them in the presence of cryoprotectants, such as glycerol, has been shown to be an effective method of storing viable cells over long time periods (i.e., years), to our knowledge it had not previously been tested for its efficacy in preserving raw seawater for later use as an inoculum for high-throughput cultivation experiments. We found that SAR11 and other abundant marine bacteria could be isolated from seawater that was previously cryopreserved for nearly 10 months at a rate of culturability similar to that of the same seawater used fresh, immediately after collection. Our findings (i) expand the potential of high-throughput cultivation experiments to include testing when immediate isolation experiments are impractical, (ii) allow for targeted isolation experiments from specific samples based on analyses such as microbial community structure, and (iii) enable cultivation experiments across a wide range of other conditions that would benefit from having source inocula available over extended periods of time.
Collapse
|
68
|
Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms 2020; 8:microorganisms8121957. [PMID: 33317109 PMCID: PMC7764121 DOI: 10.3390/microorganisms8121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
The Arctic and Antarctic regions constitute 14% of the total biosphere. Although they differ in their physiographic characteristics, both are strongly affected by snow and ice cover changes, extreme photoperiods and low temperatures, and are still largely unexplored compared to more accessible sites. This review focuses on microalgae and bacteria from polar marine environments and, in particular, on their physiological and molecular responses to harsh environmental conditions. The data reported in this manuscript show that exposure to cold, increase in CO2 concentration and salinity, high/low light, and/or combination of stressors induce variations in species abundance and distribution for both polar bacteria and microalgae, as well as changes in growth rate and increase in cryoprotective compounds. The use of -omics techniques also allowed to identify specific gene losses and gains which could have contributed to polar environmental adaptation, and metabolic shifts, especially related to lipid metabolism and defence systems, such as the up-regulation of ice binding proteins, chaperones and antioxidant enzymes. However, this review also provides evidence that -omics resources for polar species are still few and several sequences still have unknown functions, highlighting the need to further explore polar environments, the biology and ecology of the inhabiting bacteria and microalgae, and their interactions.
Collapse
|
69
|
Kuhlisch C, Althammer J, Sazhin AF, Jakobsen HH, Nejstgaard JC, Pohnert G. Metabolomics-derived marker metabolites to characterize Phaeocystis pouchetii physiology in natural plankton communities. Sci Rep 2020; 10:20444. [PMID: 33235278 PMCID: PMC7686483 DOI: 10.1038/s41598-020-77169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3β-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.,Department of Plant and Environmental Sciences, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel
| | - Julia Althammer
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.,JenaBios GmbH, Löbstedter Straße 80, 07749, Jena, Germany
| | - Andrey F Sazhin
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Prospect 36, Moscow, Russia
| | - Hans H Jakobsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jens C Nejstgaard
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Dep. 3, Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany.
| |
Collapse
|
70
|
New structural insights into bacterial sulfoacetaldehyde and taurine metabolism. Biochem J 2020; 477:1367-1371. [PMID: 32322897 DOI: 10.1042/bcj20200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
In last year's issue 4 of Biochemical Journal, Zhou et al. (Biochem J. 476, 733-746) kinetically and structurally characterized the reductase IsfD from Klebsiella oxytoca that catalyzes the reversible reduction in sulfoacetaldehyde to the corresponding alcohol isethionate. This is a key step in detoxification of the carbonyl intermediate formed in bacterial nitrogen assimilation from the α-aminoalkanesulfonic acid taurine. In 2019, the work on sulfoacetaldehyde reductase IsfD was the exciting start to a quite remarkable series of articles dealing with structural elucidation of proteins involved in taurine metabolism as well as the discovery of novel degradation pathways in bacteria.
Collapse
|
71
|
Clifford EL, De Corte D, Amano C, Paliaga P, Ivančić I, Ortiz V, Najdek M, Herndl GJ, Sintes E. Mesozooplankton taurine production and prokaryotic uptake in the northern Adriatic Sea. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:2730-2747. [PMID: 33664530 PMCID: PMC7891661 DOI: 10.1002/lno.11544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Dissolved free taurine, an important osmolyte in phytoplankton and metazoans, has been shown to be a significant carbon and energy source for prokaryotes in the North Atlantic throughout the water column. However, the extent of the coupling between taurine production and consumption over a seasonal cycle has not been examined yet. We determined taurine production by abundant crustacean zooplankton and its role as a carbon and energy source for several prokaryotic taxa in the northern Adriatic Sea over a seasonal cycle. Taurine concentrations were generally in the low nanomolar range, reaching a maximum of 22 nmol L-1 in fall during a Pseudonitzschia bloom and coinciding with the highest zooplankton taurine release rates. Taurine accounted for up to 5% of the carbon, 11% of the nitrogen, and up to 71% of the sulfur requirements of heterotrophic prokaryotes. Members of the Roseobacter clade, Alteromonas, Thaumarchaeota, and Euryarchaeota exhibited higher cell-specific taurine assimilation rates than SAR11 cells. However, cell-specific taurine and leucine assimilation were highly variable in all taxa, suggesting species and/or ecotype specific utilization patterns of taurine and dissolved free amino acids. Copepods were able to cover the bulk taurine requirements of the prokaryotic communities in fall and winter and partly in the spring-summer period. Overall, our study emphasizes the significance of taurine as a carbon and energy source for the prokaryotic community in the northern Adriatic Sea and the importance of crustacean zooplankton as a significant source of taurine and other organic compounds for the heterotrophic prokaryotic community.
Collapse
Affiliation(s)
| | - Daniele De Corte
- Research and Development Center for Marine BiosciencesJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Chie Amano
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Paolo Paliaga
- Department of Natural and Health SciencesJuraj Dobrila University of PulaPulaCroatia
| | - Ingrid Ivančić
- Center for Marine ResearchRuđer Bošković InstituteRovinjCroatia
| | - Victor Ortiz
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Mirjana Najdek
- Center for Marine ResearchRuđer Bošković InstituteRovinjCroatia
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and BiogeochemistryUtrecht UniversityDen BurgThe Netherlands
| | - Eva Sintes
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Instituto Español de Oceanografía (IEO)Centro Oceanográfico de BalearesPalma de MallorcaSpain
| |
Collapse
|
72
|
Dawson HM, Heal KR, Torstensson A, Carlson LT, Ingalls AE, Young JN. Large Diversity in Nitrogen- and Sulfur-Containing Compatible Solute Profiles in Polar and Temperate Diatoms. Integr Comp Biol 2020; 60:1401-1413. [PMID: 32960956 DOI: 10.1093/icb/icaa133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.
Collapse
Affiliation(s)
- H M Dawson
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - K R Heal
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - A Torstensson
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - L T Carlson
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - A E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - J N Young
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
73
|
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing regulates 'swim-or-stick' lifestyle in the phycosphere. Environ Microbiol 2020; 22:4761-4778. [PMID: 32896070 PMCID: PMC7693213 DOI: 10.1111/1462-2920.15228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell–cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC–MS/MS, we identified three QS molecules produced by both bacteria of which only 3‐oxo‐C16:1‐HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed A Shibl
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen, Germany
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Shady A Amin
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
74
|
Young JN, Schmidt K. It's what's inside that matters: physiological adaptations of high-latitude marine microalgae to environmental change. THE NEW PHYTOLOGIST 2020; 227:1307-1318. [PMID: 32391569 DOI: 10.1111/nph.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.
Collapse
Affiliation(s)
- Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Katrin Schmidt
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
75
|
Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host-virus interactions in SAR11 marine bacteria. Nat Microbiol 2020; 5:1011-1015. [PMID: 32424337 PMCID: PMC7387148 DOI: 10.1038/s41564-020-0725-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Host-virus interactions structure microbial communities, drive biogeochemical cycles and enhance genetic diversity in nature1,2. Hypotheses proposed to explain the range of interactions that mediate these processes often invoke lysogeny3-6, a latent infection strategy used by temperate bacterial viruses to replicate in host cells until an induction event triggers the production and lytic release of free viruses. Most cultured bacteria harbour temperate viruses in their genomes (prophage)7. The absence of prophages in cultures of the dominant lineages of marine bacteria has contributed to an ongoing debate over the ecological significance of lysogeny and other viral life strategies in nature6,8-15. Here, we report the discovery of prophages in cultured SAR11, the ocean's most abundant clade of heterotrophic bacteria16,17. We show the concurrent production of cells and viruses, with enhanced virus production under carbon-limiting growth conditions. Evidence that related prophages are broadly distributed in the oceans suggests that similar interactions have contributed to the evolutionary success of SAR11 in nutrient-limited systems.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, USA.
| | - Kelsy R Cain
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
76
|
Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A 2020; 117:15599-15608. [PMID: 32571930 DOI: 10.1073/pnas.2003434117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
2(S)-dihydroxypropanesulfonate (DHPS) is a microbial degradation product of 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose), a component of plant sulfolipid with an estimated annual production of 1010 tons. DHPS is also at millimolar levels in highly abundant marine phytoplankton. Its degradation and sulfur recycling by microbes, thus, play important roles in the biogeochemical sulfur cycle. However, DHPS degradative pathways in the anaerobic biosphere are not well understood. Here, we report the discovery and characterization of two O2-sensitive glycyl radical enzymes that use distinct mechanisms for DHPS degradation. DHPS-sulfolyase (HpsG) in sulfate- and sulfite-reducing bacteria catalyzes C-S cleavage to release sulfite for use as a terminal electron acceptor in respiration, producing H2S. DHPS-dehydratase (HpfG), in fermenting bacteria, catalyzes C-O cleavage to generate 3-sulfopropionaldehyde, subsequently reduced by the NADH-dependent sulfopropionaldehyde reductase (HpfD). Both enzymes are present in bacteria from diverse environments including human gut, suggesting the contribution of enzymatic radical chemistry to sulfur flux in various anaerobic niches.
Collapse
|
77
|
Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci U S A 2020; 117:3656-3662. [PMID: 32015111 PMCID: PMC7035482 DOI: 10.1073/pnas.1917265117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the nutrient-rich region surrounding marine phytoplankton cells, heterotrophic bacterioplankton transform a major fraction of recently fixed carbon through the uptake and catabolism of phytoplankton metabolites. We sought to understand the rules by which marine bacterial communities assemble in these nutrient-enhanced phycospheres, specifically addressing the role of host resources in driving community coalescence. Synthetic systems with varying combinations of known exometabolites of marine phytoplankton were inoculated with seawater bacterial assemblages, and communities were transferred daily to mimic the average duration of natural phycospheres. We found that bacterial community assembly was predictable from linear combinations of the taxa maintained on each individual metabolite in the mixture, weighted for the growth each supported. Deviations from this simple additive resource model were observed but also attributed to resource-based factors via enhanced bacterial growth when host metabolites were available concurrently. The ability of photosynthetic hosts to shape bacterial associates through excreted metabolites represents a mechanism by which microbiomes with beneficial effects on host growth could be recruited. In the surface ocean, resource-based assembly of host-associated communities may underpin the evolution and maintenance of microbial interactions and determine the fate of a substantial portion of Earth's primary production.
Collapse
Affiliation(s)
- He Fu
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
| | - Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Jeff Gore
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602;
| |
Collapse
|
78
|
Sharma M, Abayakoon P, Lingford JP, Epa R, John A, Jin Y, Goddard-Borger ED, Davies GJ, Williams SJ. Dynamic Structural Changes Accompany the Production of Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Palika Abayakoon
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| | - James P. Lingford
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ruwan Epa
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan John
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Jin
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
79
|
Hernández Limón MD, Hennon GMM, Harke MJ, Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional patterns of
Emiliania huxleyi
in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential. Environ Microbiol 2019; 22:381-396. [DOI: 10.1111/1462-2920.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023]
Affiliation(s)
- María D. Hernández Limón
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Gwenn M. M. Hennon
- University of Alaska Fairbanks College of Fisheries and Ocean Sciences Fairbanks AK USA
| | - Matthew J. Harke
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Kyle R. Frischkorn
- Department of Earth and Environmental Science Columbia University New York NY USA
| | - Sheean T. Haley
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment Columbia University Palisades NY USA
| | - Sonya T. Dyhrman
- Department of Earth and Environmental Science Columbia University New York NY USA
| |
Collapse
|
80
|
Affiliation(s)
- Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
81
|
Abstract
Marine microorganisms play crucial roles in Earth's element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Collapse
|