51
|
Tian C, Lv Y, Yang Z, Zhang R, Zhu Z, Ma H, Li J, Zhang Y. Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02116-3. [PMID: 36239777 DOI: 10.1007/s00248-022-02116-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities have been identified as the primary inhabitants of Arctic forefields. However, the metabolic potential of microbial communities in these newly exposed soils remains underexplored due to limited access. Here, we sampled the very edge of the glacial forefield in Svalbard and performed the 16S rRNA genes and metagenomic analysis to illustrate the ecosystem characteristics. Burkholderiales and Micrococcales were the dominant bacterial groups at the initial stage of soil development of glacial forefields. 214 metagenome-assembled genomes were recovered from glacier forefield microbiome datasets, including only 2 belonging to archaea. Analysis of these metagenome-assembled genomes revealed that 41% of assembled genomes had the genetic potential to use nitrate and nitrite as electron acceptors. Metabolic pathway reconstruction for these microbes suggested versatility for sulfide and thiosulfate oxidation, H2 and CO utilization, and CO2 fixation. Our results indicate the importance of anaerobic processes in elemental cycling in the glacial forefields. Besides, a range of genes related to adaption to low temperature and other stresses were detected, which revealed the presence of diverse mechanisms of adaption to the extreme environment of Svalbard. This research provides ecological insight into the initial stage of the soil developed during the retreating of glaciers.
Collapse
Affiliation(s)
- Chen Tian
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongxin Lv
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhifeng Yang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Zhuoyi Zhu
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Hongmei Ma
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China
| | - Jing Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yu Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Key Laboratory for Polar Science, MNR, Polar Research Institute of China, Shanghai, People's Republic of China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
52
|
Leung PM, Daebeler A, Chiri E, Hanchapola I, Gillett DL, Schittenhelm RB, Daims H, Greening C. A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen. THE ISME JOURNAL 2022; 16:2213-2219. [PMID: 35752717 PMCID: PMC9381531 DOI: 10.1038/s41396-022-01265-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the canonical nitrite oxidiser Nitrospira moscoviensis oxidises hydrogen (H2) below atmospheric levels using a high-affinity group 2a nickel-iron hydrogenase [Km(app) = 32 nM]. Atmospheric H2 oxidation occurred under both nitrite-replete and nitrite-deplete conditions, suggesting low-potential electrons derived from H2 oxidation promote nitrite-dependent growth and enable survival during nitrite limitation. Proteomic analyses confirmed the hydrogenase was abundant under both conditions and indicated extensive metabolic changes occur to reduce energy expenditure and growth under nitrite-deplete conditions. Thermodynamic modelling revealed that H2 oxidation theoretically generates higher power yield than nitrite oxidation at low substrate concentrations and significantly contributes to growth at elevated nitrite concentrations. Collectively, this study suggests atmospheric H2 oxidation enhances the growth and survival of NOB amid variability of nitrite supply, extends the phenomenon of atmospheric H2 oxidation to an eighth phylum (Nitrospirota), and reveals unexpected new links between the global hydrogen and nitrogen cycles. Long classified as obligate nitrite oxidisers, our findings suggest H2 may primarily support growth and survival of certain NOB in natural environments.
Collapse
Affiliation(s)
- Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Anne Daebeler
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Soil and Water Research Infrastructure, Biology Centre CAS, Budweis, Czechia.
| | - Eleonora Chiri
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Iresha Hanchapola
- Monash Proteomics and Metabolomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - David L Gillett
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility and Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
53
|
Finn DR, Samad MS, Tebbe CC. One-step PCR amplicon sequencing libraries perform better than two-step when assessing soil microbial diversity and community profiles. FEMS Microbiol Lett 2022; 369:6674203. [PMID: 35998308 DOI: 10.1093/femsle/fnac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Despite adoption of high-throughput sequencing of PCR-amplified microbial taxonomic markers for ecological analyses, distinct approaches for preparing amplicon libraries exist. One approach utilises long fusion primers and a single PCR (one-step) while another utilises shorter primers in a first reaction, before transferring diluted amplicons to a second reaction for barcode index incorporation (two-step). We investigated whether transferring diluted amplicons risked creating artificially simplified, poorly diverse communities. In soils from three sites with paired cropland and forest, one-step yielded higher alpha-diversity indices, including detection of two-four times more unique taxa. Modelling expected taxa per sequence observation predicted that one-step reaches full coverage by 104 sequences per sample while two-step needs 105-109. Comparisons of rank abundance demonstrated that two-step covered only 38-69% of distributions. Beta-diversity showed better separation of communities in response to land use change under one-step, although both approaches showed a significant effect. Driving differences was underestimation of relatively minor taxa with the two-step procedure. These taxa were low in abundance, yet play important roles in carbon cycling, secondary metabolite production, anaerobic metabolism, and bacterial predation. We conclude that one-step amplicon libraries are advisable for studies focussed on diversity or relatively minor yet functionally important taxa.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| | - Md Sainur Samad
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| | - Christoph C Tebbe
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| |
Collapse
|
54
|
Cowan DA, Lebre PH, Amon C, Becker RW, Boga HI, Boulangé A, Chiyaka TL, Coetzee T, de Jager PC, Dikinya O, Eckardt F, Greve M, Harris MA, Hopkins DW, Houngnandan HB, Houngnandan P, Jordaan K, Kaimoyo E, Kambura AK, Kamgan-Nkuekam G, Makhalanyane TP, Maggs-Kölling G, Marais E, Mondlane H, Nghalipo E, Olivier BW, Ortiz M, Pertierra LR, Ramond JB, Seely M, Sithole-Niang I, Valverde A, Varliero G, Vikram S, Wall DH, Zeze A. Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. MICROBIOME 2022; 10:131. [PMID: 35996183 PMCID: PMC9396824 DOI: 10.1186/s40168-022-01297-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/15/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Top-soil microbiomes make a vital contribution to the Earth's ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa's top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. Video Abstract.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - P H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Cer Amon
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| | - R W Becker
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - H I Boga
- Taita Taveta University, Voi, Kenya
| | - A Boulangé
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- UMR InterTryp, CIRAD-IRD, 34398, Montpellier, France
| | - T L Chiyaka
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - T Coetzee
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - P C de Jager
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - O Dikinya
- Department of Environmental Science, University of Botswana, Gaborone, Botswana
| | - F Eckardt
- Department of Geography, University of Cape Town, Cape Town, South Africa
| | - M Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M A Harris
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - D W Hopkins
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - H B Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - P Houngnandan
- Université Nationale d'Agriculture, Porto-Novo, Benin (Laboratoire de Microbiologie Des Sols Et d'Ecologie Microbienne), Porto-Novo, Benin
| | - K Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Kaimoyo
- University of Zambia, Lusaka, Zambia
| | | | - G Kamgan-Nkuekam
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - T P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - E Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - H Mondlane
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - E Nghalipo
- Biodiversity Research Centre, Department of Agriculture and Natural Resources Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - B W Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - M Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - L R Pertierra
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - J-B Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Departamento de Genética Molecular Y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Seely
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - I Sithole-Niang
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - A Valverde
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - G Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - S Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, USA
| | - A Zeze
- Institut National Polytechnique Houphouet-Boigny, Cote d'Ivoire, Yamoussoukro, South Africa
| |
Collapse
|
55
|
Ray AE, Zaugg J, Benaud N, Chelliah DS, Bay S, Wong HL, Leung PM, Ji M, Terauds A, Montgomery K, Greening C, Cowan DA, Kong W, Williams TJ, Hugenholtz P, Ferrari BC. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. THE ISME JOURNAL 2022; 16:2547-2560. [PMID: 35933499 PMCID: PMC9561532 DOI: 10.1038/s41396-022-01298-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.
Collapse
|
56
|
Han Y, Wang Q, Li Q, Hu C. Active metabolism and biomass dynamics of biocrusts are shaped by variation in their successional state and seasonal energy sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154756. [PMID: 35339556 DOI: 10.1016/j.scitotenv.2022.154756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Seasonal growth and changes in biomass within communities are the core of ecosystem dynamics. Biocrusts play a prominent role as pioneers in dryland soils. However, the seasonal dynamics of biocrusts remain poorly resolved. In this study, we collected biocrusts across a successional gradient (cyanobacteria, cyanolichen, chlorolichen, and moss-dominated) from southeastern Tengger Desert (China) during the summer and autumn seasons, and explored seasonal changes in metabolism and biomass using multi-omics approaches. We found that Cyanobacteria and Ascomycota were the dominant active taxa and both exhibited higher abundances in autumn. We also found that the dominant primary producers in biocrusts strongly affected community-wide characteristics of metabolism. Along with seasonal differences in light energy utilization, utilization of inorganic energy sources exhibited higher expression in the summer while for organic sources, in the autumn. We found that overall metabolism was significantly regulated by the ratio of intracellular to extracellular polymer degradation, and affected by NO3-, PO43- and EC (in the summer)/NO2- (in the autumn). In summary, biocrust growth varied with seasonal variation in light energy utilization and complementary chemical energy sources, with the most suitable season varying with biocrust successional type.
Collapse
Affiliation(s)
- Yingchun Han
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
57
|
Wu X, Lin Y, Wang Y, Wu S, Li X, Yang C. Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10349-10360. [PMID: 35749664 DOI: 10.1021/acs.est.2c02022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Emissions of n-alkanes are facing increasingly stringent management challenges. Biotrickling filtration in the presence of surfactants is a competitive alternative for the enhanced removal of n-alkanes. Herein, sodium dodecyl benzene sulfonate (SDBS) was added into the liquid phase feeding a biotrickling filter (BTF) to enhance the removal of various short-chain n-alkanes from n-hexane (C6) to methane (C1). The removal performance of C6-C1 and microbial response mechanisms were explored. The results showed that the removal efficiency (RE) of n-alkanes decreased from 77 ± 1.3 to 35 ± 5.6% as the carbon chain number of n-alkanes decreased from C6 to C1, under the conditions of an n-alkane inlet load of 58 ± 3.0 g/m3·h and EBCT of 30 s. The removal performance of n-alkanes was enhanced significantly by the introduction of 15 mg/L SDBS, as the RE of C6 reached 99 ± 0.7% and the RE of C1 reached 74 ± 3.3%. The strengthening mechanisms were that the apparent Henry's law coefficient of n-alkanes decreased by 11 ± 1.4-30 ± 0.3%, and the cell surface hydrophobicity of microorganisms improved from 71 ± 5.6 to 87 ± 4.0% with the existence of SDBS. Moreover, the presence of SDBS promoted the succession and activity of the microbial community. The activities of alkane hydroxylase and alcohol dehydrogenase were 5.8 and 5.9 times higher than those without SDBS, and the concentration of the cytochrome P450 gene was improved 2.2 times. Therefore, the addition of SDBS is an effective strategy that makes BTF suitable for the removal of various n-alkanes from waste gas streams.
Collapse
Affiliation(s)
- Xin Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yongyi Wang
- Qingdao Gold Hisun Environment Protection Equipment Co., Ltd, Qingdao, Shandong 266000, China
| | - Shaohua Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- Maoming Municipal Engineering Research Center for Organic Pollution Control, Academy of Environmental and Resource Sciences, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- Maoming Municipal Engineering Research Center for Organic Pollution Control, Academy of Environmental and Resource Sciences, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| |
Collapse
|
58
|
Bradley JA, Arndt S, Amend JP, Burwicz-Galerne E, LaRowe DE. Sources and Fluxes of Organic Carbon and Energy to Microorganisms in Global Marine Sediments. Front Microbiol 2022; 13:910694. [PMID: 35875517 PMCID: PMC9301249 DOI: 10.3389/fmicb.2022.910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Marine sediments comprise one of the largest microbial habitats and organic carbon sinks on the planet. However, it is unclear how variations in sediment physicochemical properties impact microorganisms on a global scale. Here we investigate patterns in the distribution of microbial cells, organic carbon, and the amounts of power used by microorganisms in global sediments. Our results show that sediment on continental shelves and margins is predominantly anoxic and contains cells whose power utilization decreases with sediment depth and age. Sediment in abyssal zones contains microbes that use low amounts of power on a per cell basis, across large gradients in sediment depth and age. We find that trends in cell abundance, POC storage and degradation, and microbial power utilization are mainly structured by depositional setting and redox conditions, rather than sediment depth and age. We also reveal distinct trends in per-cell power regime across different depositional settings, from maxima of ∼10–16 W cell–1 in recently deposited shelf sediments to minima of <10–20 W cell–1 in deeper and ancient sediments. Overall, we demonstrate broad global-scale connections between the depositional setting and redox conditions of global sediment, and the amounts of organic carbon and activity of deep biosphere microorganisms.
Collapse
Affiliation(s)
- James A. Bradley
- School of Geography, Queen Mary University of London, London, United Kingdom
- GFZ German Research Center for Geosciences, Potsdam, Germany
- *Correspondence: James A. Bradley,
| | - Sandra Arndt
- BGeosys, Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jan P. Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ewa Burwicz-Galerne
- MARUM Center for Marine Environmental Sciences, Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
59
|
Li H, Greening C. Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiol Rev 2022; 46:6631553. [PMID: 35790132 PMCID: PMC9779920 DOI: 10.1093/femsre/fuac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Termites are a prototypical example of the 'extended phenotype' given their ability to shape their environments by constructing complex nesting structures and cultivating fungus gardens. Such engineered structures provide termites with stable, protected habitats, and nutritious food sources, respectively. Recent studies have suggested that these termite-engineered structures harbour Actinobacteria-dominated microbial communities. In this review, we describe the composition, activities, and consequences of microbial communities associated with termite mounds, other nests, and fungus gardens. Culture-dependent and culture-independent studies indicate that these structures each harbour specialized microbial communities distinct from those in termite guts and surrounding soils. Termites select microbial communities in these structures through various means: opportunistic recruitment from surrounding soils; controlling physicochemical properties of nesting structures; excreting hydrogen, methane, and other gases as bacterial energy sources; and pretreating lignocellulose to facilitate fungal cultivation in gardens. These engineered communities potentially benefit termites by producing antimicrobial compounds, facilitating lignocellulose digestion, and enhancing energetic efficiency of the termite 'metaorganism'. Moreover, mound-associated communities have been shown to be globally significant in controlling emissions of methane and enhancing agricultural fertility. Altogether, these considerations suggest that the microbiomes selected by some animals extend much beyond their bodies, providing a new dimension to the 'extended phenotype'.
Collapse
Affiliation(s)
- Hongjie Li
- Corresponding author. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211. China. E-mail:
| | - Chris Greening
- Corresponding author. Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia. E-mail:
| |
Collapse
|
60
|
Responses of Cyanobacterial Crusts and Microbial Communities to Extreme Environments of the Stratosphere. Microorganisms 2022; 10:microorganisms10061252. [PMID: 35744770 PMCID: PMC9230428 DOI: 10.3390/microorganisms10061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
How microbial communities respond to extreme conditions in the stratosphere remains unclear. To test this effect, cyanobacterial crusts collected from Tengger Desert were mounted to high balloons and briefly exposed (140 min) to high UV irradiation and low temperature in the stratosphere at an altitude of 32 km. Freezing and thawing treatments were simulated in the laboratory in terms of the temperature fluctuations during flight. Microbial community composition was characterized by sequencing at the level of DNA and RNA. After exposure to the stratosphere, the RNA relative abundances of Kallotenue and Longimicrobium increased by about 2-fold, while those of several dominant cyanobacteria genera changed slightly. The RNA relative abundances of various taxa declined after freezing, but increased after thawing, whereas cyanobacteria exhibited an opposite change trend. The DNA and RNA relative abundances of Nitrososphaeraceae were increased by 1.4~2.3-fold after exposure to the stratosphere or freezing. Exposure to stratospheric environmental conditions had little impact on the total antioxidant capacity, photosynthetic pigment content, and photosynthetic rate, but significantly increased the content of exopolysaccharides by 16%. The three treatments (stratospheric exposure, freezing, and thawing) increased significantly the activities of N-acetyl-β-D-glucosidase (26~30%) and β-glucosidase (14~126%). Our results indicated cyanobacterial crust communities can tolerate exposure to the stratosphere. In the defense process, extracellular organic carbon degradation and transformation play an important role. This study makes the first attempt to explore the response of microbial communities of cyanobacterial crusts to a Mars-like stratospheric extreme environment, which provides a new perspective for studying the space biology of earth communities.
Collapse
|
61
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
62
|
Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513-528. [PMID: 35414013 DOI: 10.1038/s41579-022-00724-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia. .,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
63
|
Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, Hamard S, Lara E. Contribution of soil algae to the global carbon cycle. THE NEW PHYTOLOGIST 2022; 234:64-76. [PMID: 35103312 DOI: 10.1111/nph.17950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Soil photoautotrophic prokaryotes and micro-eukaryotes - known as soil algae - are, together with heterotrophic microorganisms, a constitutive part of the microbiome in surface soils. Similar to plants, they fix atmospheric carbon (C) through photosynthesis for their own growth, yet their contribution to global and regional biogeochemical C cycling still remains quantitatively elusive. Here, we compiled an extensive dataset on soil algae to generate a better understanding of their distribution across biomes and predict their productivity at a global scale by means of machine learning modelling. We found that, on average, (5.5 ± 3.4) × 106 algae inhabit each gram of surface soil. Soil algal abundance especially peaked in acidic, moist and vegetated soils. We estimate that, globally, soil algae take up around 3.6 Pg C per year, which corresponds to c. 6% of the net primary production of terrestrial vegetation. We demonstrate that the C fixed by soil algae is crucial to the global C cycle and should be integrated into land-based efforts to mitigate C emissions.
Collapse
Affiliation(s)
- Vincent E J Jassey
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Romain Walcker
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6708 PB, Wageningen, the Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, the Netherlands
| | - Thierry Heger
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western, 1260, Nyon, Switzerland
| | - Mariusz Lamentowicz
- Climate Change Ecology Research Unit, Adam Mickiewicz University, 60-001, Poznań, Poland
| | - Samuel Hamard
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062, Toulouse, France
| | - Enrique Lara
- Real Jardin Botanico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
64
|
Buzzard V, Thorne D, Gil-Loaiza J, Cueva A, Meredith LK. Sensitivity of soil hydrogen uptake to natural and managed moisture dynamics in a semiarid urban ecosystem. PeerJ 2022; 10:e12966. [PMID: 35317075 PMCID: PMC8934528 DOI: 10.7717/peerj.12966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
The North American Monsoon season (June-September) in the Sonoran Desert brings thunderstorms and heavy rainfall. These rains bring cooler temperature and account for roughly half of the annual precipitation making them important for biogeochemical processes. The intensity of the monsoon rains also increase flooding in urban areas and rely on green infrastructure (GI) stormwater management techniques such as water harvesting and urban rain gardens to capture runoff. The combination of increased water availability during the monsoon and water management provide a broad moisture regime for testing responses in microbial metabolism to natural and managed soil moisture pulses in drylands. Soil microbes rely on atmospheric hydrogen (H2) as an important energy source in arid and semiarid landscapes with low soil moisture and carbon availability. Unlike mesic ecosystems, transient water availability in arid and semiarid ecosystems has been identified as a key limiting driver of microbe-mediated H2 uptake. We measured soil H2 uptake in rain gardens exposed to three commonly used water harvesting practices during the monsoon season in Tucson AZ, USA. In situ static chamber measurements were used to calculate H2 uptake in each of the three water harvesting treatments passive (stormwater runoff), active (stored rooftop runoff), and greywater (used laundry water) compared to an unaltered control treatment to assess the effects of water management practices on soil microbial activity. In addition, soils were collected from each treatment and brought to the lab for an incubation experiment manipulating the soil moisture to three levels capturing the range observed from field samples. H2 fluxes from all treatments ranged between -0.72 nmol m-2 s-1 and -3.98 nmol m-2 s-1 over the monsoon season. Soil H2 uptake in the greywater treatment was on average 53% greater than the other treatments during pre-monsoon, suggesting that the increased frequency and availability of water in the greywater treatment resulted in higher H2 uptake during the dry season. H2 uptake was significantly correlated with soil moisture (r = -0.393, p = 0.001, df = 62) and temperature (r = 0.345, p = 0.005, df = 62). Our findings suggest that GI managed residential soils can maintain low levels of H2 uptake during dry periods, unlike unmanaged systems. The more continuous H2 uptake associated with GI may help reduce the impacts of drought on H2 cycling in semiarid urban ecosystems.
Collapse
Affiliation(s)
- Vanessa Buzzard
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Dana Thorne
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Alejandro Cueva
- Biosphere2, University of Arizona, Oracle, Arizona, United States
| | - Laura K. Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States,BIO5 Institute, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
65
|
Captivity Shifts Gut Microbiota Communities in White-Lipped Deer (Cervus albirostris). Animals (Basel) 2022; 12:ani12040431. [PMID: 35203139 PMCID: PMC8868073 DOI: 10.3390/ani12040431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Captivity is a common conservation method for endangered animals. However, a growing number of recent studies have shown that some animals in captivity might be in sub-health condition. The gut microbiota has been described as a complex, interactive internal system that has effects on diseases of the host with many interactions, and the occurrence of certain diseases is accompanied by changes and disorder of gut microbiota. We used16S rRNA sequencing technology and a mathematical model to find differences in gut microbiota composition and assembly processes. The results show that captivity might be unfavorable for white-lipped deer by shifting the gut microbiota composition and assembly process. Abstract White-lipped deer (Cervus albirostris) is a nationally protected wild animal species in China, as well as a unique and endangered species, according to the International Union for Conservation of Nature (IUCN) Red List. Captivity may alleviate the pressure from poaching and contribute to the repopulation and conservation of the population in the wild. The gut microbiota is described as a complex, interactive internal system that has effects on diseases of the host, with many interactions. However, the influence of captivity on the composition and assembly process of gut microbiota in white-lipped deer is unclear. This study applied high-throughput 16S rRNA sequencing technology to determine differences in the gut microbiota between captive (CW) and wild (WW) white-lipped deer. We used the null model, neutral community model, and niche width to identify whether captivity affects the composition and assembly process of gut microbiota. The results show that WW has a higher number of Firmicutes and a lower number of Bacteroidetes compared with CW at the phylum level, and it has more opportunistic pathogens and specific decomposition bacteria at the genus level. Principal coordinate analysis also indicated significant differences in the composition and function of gut microbiota in CW and WW. Moreover, the results reveal that captivity shifts the ecological assembly process of gut microbiota by raising the contribution of deterministic processes. In conclusion, our results demonstrate that captivity might potentially have an unfavorable effect on white-lipped deer by continually exerting selective pressure.
Collapse
|
66
|
Cowan DA, Ferrari BC, McKay CP. Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. ASTROBIOLOGY 2022; 22:225-232. [PMID: 35025628 PMCID: PMC8861918 DOI: 10.1089/ast.2021.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
67
|
Elevational Constraints on the Composition and Genomic Attributes of Microbial Communities in Antarctic Soils. mSystems 2022; 7:e0133021. [PMID: 35040702 PMCID: PMC8765064 DOI: 10.1128/msystems.01330-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth.
Collapse
|
68
|
Meredith LK, Tfaily MM. Capturing the microbial volatilome: an oft overlooked 'ome'. Trends Microbiol 2022; 30:622-631. [PMID: 35039213 DOI: 10.1016/j.tim.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
Among the diverse metabolites produced by microbial communities, some are volatile. Volatile organic compounds (VOCs) are vigorously cycled by microbes as metabolic substrates and products and as signaling molecules. Yet, current microbial metabolomic studies predominantly focus on nonvolatile metabolites and overlook VOCs, which therefore represent a missing component of the metabolome. Advances in VOC detection now allow simultaneous observation of the numerous VOCs constituting the 'volatilome' of microbial systems. We present a roadmap for integrating and advancing VOC and other 'omics approaches and highlight the potential for realtime VOC measurements to help overcome limitations in discrete 'omics sampling. Including volatile metabolites in metabolomics, both conceptually and in practice, will build a more comprehensive understanding of microbial processes across ecological communities.
Collapse
Affiliation(s)
- Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Malak M Tfaily
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
69
|
Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA, Greening C. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci U S A 2021; 118:e2025322118. [PMID: 34732568 PMCID: PMC8609440 DOI: 10.1073/pnas.2025322118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.
Collapse
Affiliation(s)
- Maximiliano Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Pok Man Leung
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
| | - Guy Shelley
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Philipp A Nauer
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sean K Bay
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Zahra F Islam
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Karen Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Ian D Hogg
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- School of Science, University of Waikato, Hamilton 3240, New Zealand
- Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay NU X0B 0C0, Canada
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
70
|
Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. THE ISME JOURNAL 2021; 15:3339-3356. [PMID: 34035443 PMCID: PMC8528921 DOI: 10.1038/s41396-021-01001-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.
Collapse
Affiliation(s)
- Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - David W Waite
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
71
|
Hydrodynamic disturbance controls microbial community assembly and biogeochemical processes in coastal sediments. ISME JOURNAL 2021; 16:750-763. [PMID: 34584214 PMCID: PMC8857189 DOI: 10.1038/s41396-021-01111-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide- and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communities and biogeochemical dynamics in sediment profiles from three sites varying in their exposure to hydrodynamic disturbance. Strong variations in sediment geochemistry, biogeochemical activities, and microbial abundance, composition, and capabilities were observed between the sites. Most of these variations, except for microbial abundance and diversity, significantly correlated with the relative disturbance level of each sample. In line with previous findings, metabolically flexible habitat generalists (e.g., Flavobacteriaceae, Woeseaiceae, Rhodobacteraceae) dominated in all samples. However, we present evidence that aerobic specialists such as ammonia-oxidizing archaea (Nitrosopumilaceae) were more abundant and active in more disturbed samples, whereas bacteria capable of sulfate reduction (e.g., uncultured Desulfobacterales), dissimilatory nitrate reduction to ammonium (DNRA; e.g., Ignavibacteriaceae), and sulfide-dependent chemolithoautotrophy (e.g., Sulfurovaceae) were enriched and active in less disturbed samples. These findings are supported by insights from nine deeply sequenced metagenomes and 169 derived metagenome-assembled genomes. Altogether, these findings suggest that hydrodynamic disturbance is a critical factor controlling microbial community assembly and biogeochemical processes in coastal sediments. Moreover, they strengthen our understanding of the relationships between microbial composition and biogeochemical processes in these unique environments.
Collapse
|
72
|
Palmer JL, Hilton S, Picot E, Bending GD, Schäfer H. Tree phyllospheres are a habitat for diverse populations of CO-oxidizing bacteria. Environ Microbiol 2021; 23:6309-6327. [PMID: 34523801 DOI: 10.1111/1462-2920.15770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Carbon monoxide (CO) is both a ubiquitous atmospheric trace gas and an air pollutant. While aerobic CO-degrading microorganisms in soils and oceans are estimated to remove ~370 Tg of CO per year, the presence of CO-degrading microorganisms in above-ground habitats, such as the phyllosphere, and their potential role in CO cycling remains unknown. CO-degradation by leaf washes of two common British trees, Ilex aquifolium and Crataegus monogyna, demonstrated CO uptake in all samples investigated. Based on the analyses of taxonomic and functional genes, diverse communities of candidate CO-oxidizing taxa were identified, including members of Rhizobiales and Burkholderiales which were abundant in the phyllosphere at the time of sampling. Based on predicted genomes of phyllosphere community members, an estimated 21% of phyllosphere bacteria contained CoxL, the large subunit of CO-dehydrogenase. In support of this, data mining of publicly available phyllosphere metagenomes for genes encoding CO-dehydrogenase subunits demonstrated that, on average, 25% of phyllosphere bacteria contained CO-dehydrogenase gene homologues. A CO-oxidizing Phyllobacteriaceae strain was also isolated from phyllosphere samples which contains genes encoding both CO-dehydrogenase as well as a ribulose-1,5-bisphosphate carboxylase-oxygenase. These results suggest that the phyllosphere supports diverse and potentially abundant CO-oxidizing bacteria, which are a potential sink for atmospheric CO.
Collapse
Affiliation(s)
- Jess L Palmer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Emma Picot
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
73
|
Greening C, Islam ZF, Bay SK. Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol 2021; 30:330-337. [PMID: 34462186 DOI: 10.1016/j.tim.2021.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Molecular hydrogen (H2) is available in trace amounts in most ecosystems through atmospheric, biological, geochemical, and anthropogenic sources. Aerobic bacteria use this energy-dense gas, including at atmospheric concentrations, to support respiration and carbon fixation. While it was thought that aerobic H2 consumers are rare community members, here we summarize evidence suggesting that they are dominant throughout soils and other aerated ecosystems. Bacterial cultures from at least eight major phyla can consume atmospheric H2. At the ecosystem scale, H2 consumers are abundant, diverse, and active across diverse soils and are key primary producers in extreme environments such as hyper-arid deserts. On this basis, we propose that H2 is a universally available energy source for the survival of aerobic bacteria.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Zahra F Islam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
74
|
Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Appl Environ Microbiol 2021; 87:e0088121. [PMID: 34288705 PMCID: PMC8388818 DOI: 10.1128/aem.00881-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we showed that CO2 was requisite for RubisCO-encoding Methylococcus capsulatus strain Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO2 assimilation during cultivation with both CH4 and CO2 as carbon sources. Marker exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO2-assimilating metabolic pathways indicated that a complete serine cycle is not required, whereas RubisCO is essential for growth of this bacterium. 13CO2 tracer analysis showed that CH4 and CO2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO2 via RubisCO, which may play a more pivotal role in the Earth's biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO2-assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH4 and CO2. IMPORTANCE The importance of RubisCO and CO2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO2 and RubisCO are essential for M. capsulatus Bath growth. 13CO2 tracing experiments supported that RubisCO mediates CO2 fixation and that a noncanonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dually CH4/CO2-utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases, CH4 and CO2.
Collapse
|
75
|
Bosch J, Varliero G, Hallsworth JE, Dallas TD, Hopkins D, Frey B, Kong W, Lebre P, Makhalanyane TP, Cowan DA. Microbial anhydrobiosis. Environ Microbiol 2021; 23:6377-6390. [PMID: 34347349 DOI: 10.1111/1462-2920.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | | | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pedro Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
76
|
Dong X, Zhang C, Li W, Weng S, Song W, Li J, Wang Y. Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiol Ecol 2021; 97:6327547. [PMID: 34302348 DOI: 10.1093/femsec/fiab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
The seafloor sulfide structures of inactive vents are known to host abundant and diverse microorganisms potentially supported by mineralogy of sulfides. However, little is known about the diversity and distribution of microbial functions. Here, we used genome-resolved metagenomics to predict microbial metabolic functions and the contribution of horizontal gene transfer to the functionality of microorganisms inhabiting several hydrothermally inactive seafloor deposits among globally distributed deep-sea vent fields. Despite of geographically distant vent fields, similar microbial community patterns were observed with the dominance of Gammaproteobacteria, Bacteroidota and previously overlooked Candidatus Patescibacteria. Metabolically flexible Gammaproteobacteria are major potential primary producers utilizing mainly sulfur, iron and hydrogen as electron donors coupled with oxygen and nitrate respiration for chemolithoautotrophic growth. In addition to heterotrophic microorganisms like free-living Bacteroidota, Ca. Patescibacteria potentially perform fermentative recycling of organic carbon. Finally, we provided evidence that many functional genes that are central to energy metabolism have been laterally transferred among members within the community and largely within the same class. Taken together, these findings shed light on microbial ecology and evolution in inactive seafloor sulfide deposits after the cessation of hydrothermal activities.
Collapse
Affiliation(s)
- Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wenli Li
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Weizhi Song
- Centre for Marine Science & Innovation, University of New South Wales, 2052 Sydney, Australia
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|
77
|
Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proc Natl Acad Sci U S A 2021; 118:2102625118. [PMID: 34285074 DOI: 10.1073/pnas.2102625118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R 2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.
Collapse
|
78
|
|
79
|
Rarefied nutrition. Nat Rev Microbiol 2021; 19:138. [PMID: 33473193 DOI: 10.1038/s41579-021-00516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Jordaan K, Lappan R, Dong X, Aitkenhead IJ, Bay SK, Chiri E, Wieler N, Meredith LK, Cowan DA, Chown SL, Greening C. Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration. mSystems 2020; 5:e01131-20. [PMID: 33203691 PMCID: PMC7677003 DOI: 10.1128/msystems.01131-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
How the diverse bacterial communities inhabiting desert soils maintain energy and carbon needs is much debated. Traditionally, most bacteria are thought to persist by using organic carbon synthesized by photoautotrophs following transient hydration events. Recent studies focused on Antarctic desert soils have revealed, however, that some bacteria use atmospheric trace gases, such as hydrogen (H2), to conserve energy and fix carbon independently of photosynthesis. In this study, we investigated whether atmospheric H2 oxidation occurs in four nonpolar desert soils and compared this process to photosynthesis. To do so, we first profiled the distribution, expression, and activities of hydrogenases and photosystems in surface soils collected from the South Australian desert over a simulated hydration-desiccation cycle. Hydrogenase-encoding sequences were abundant in the metagenomes and metatranscriptomes and were detected in actinobacterial, acidobacterial, and cyanobacterial metagenome-assembled genomes. Native dry soil samples mediated H2 oxidation, but rates increased 950-fold following wetting. Oxygenic and anoxygenic phototrophs were also detected in the community but at lower abundances. Hydration significantly stimulated rates of photosynthetic carbon fixation and, to a lesser extent, dark carbon assimilation. Hydrogenase genes were also widespread in samples from three other climatically distinct deserts, the Namib, Gobi, and Mojave, and atmospheric H2 oxidation was also greatly stimulated by hydration at these sites. Together, these findings highlight that H2 is an important, hitherto-overlooked energy source supporting bacterial communities in desert soils. Contrary to our previous hypotheses, however, H2 oxidation occurs simultaneously rather than alternately with photosynthesis in such ecosystems and may even be mediated by some photoautotrophs.IMPORTANCE Desert ecosystems, spanning a third of the earth's surface, harbor remarkably diverse microbial life despite having a low potential for photosynthesis. In this work, we reveal that atmospheric hydrogen serves as a major previously overlooked energy source for a large proportion of desert bacteria. We show that both chemoheterotrophic and photoautotrophic bacteria have the potential to oxidize hydrogen across deserts sampled across four continents. Whereas hydrogen oxidation was slow in native dry deserts, it increased by three orders of magnitude together with photosynthesis following hydration. This study revealed that continual harvesting of atmospheric energy sources may be a major way that desert communities adapt to long periods of water and energy deprivation, with significant ecological and biogeochemical ramifications.
Collapse
Affiliation(s)
- Karen Jordaan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rachael Lappan
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Sean K Bay
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Eleonora Chiri
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|