51
|
Abstract
Scalable quantum information systems would store, manipulate, and transmit quantum information locally and across a quantum network, but no single qubit technology is currently robust enough to perform all necessary tasks. Defect centers in solid-state materials have emerged as potential intermediaries between other physical manifestations of qubits, such as superconducting qubits and photonic qubits, to leverage their complementary advantages. It remains an open question, however, how to design and to control quantum interfaces to defect centers. Such interfaces would enable quantum information to be moved seamlessly between different physical systems. Understanding and constructing the required interfaces would, therefore, unlock the next big steps in quantum computing, sensing, and communications. In this Perspective, we highlight promising coupling mechanisms, including dipole-, phonon-, and magnon-mediated interactions, and discuss how contributions from nanotechnologists will be paramount in realizing quantum information processors in the near-term.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Haas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
52
|
Nizovtsev AP, Pushkarchuk AL, Kilin SY, Kargin NI, Gusev AS, Smirnova MO, Jelezko F. Hyperfine Interactions in the NV- 13C Quantum Registers in Diamond Grown from the Azaadamantane Seed. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1303. [PMID: 34069205 PMCID: PMC8156205 DOI: 10.3390/nano11051303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Nanostructured diamonds hosting optically active paramagnetic color centers (NV, SiV, GeV, etc.) and hyperfine-coupled with them quantum memory 13C nuclear spins situated in diamond lattice are currently of great interest to implement emerging quantum technologies (quantum information processing, quantum sensing and metrology). Current methods of creation such as electronic-nuclear spin systems are inherently probabilistic with respect to mutual location of color center electronic spin and 13C nuclear spins. A new bottom-up approach to fabricate such systems is to synthesize first chemically appropriate diamond-like organic molecules containing desired isotopic constituents in definite positions and then use them as a seed for diamond growth to produce macroscopic diamonds, subsequently creating vacancy-related color centers in them. In particular, diamonds incorporating coupled NV-13C spin systems (quantum registers) with specific mutual arrangements of NV and 13C can be obtained from anisotopic azaadamantane molecule. Here we predict the characteristics of hyperfine interactions (hfi) for the NV-13C systems in diamonds grown from various isotopically substituted azaadamantane molecules differing in 13C position in the seed, as well as the orientation of the NV center in the post-obtained diamond. We used the spatial and hfi data simulated earlier for the H-terminated cluster C510[NV]-H252. The data obtained can be used to identify (and correlate with the seed used) the specific NV-13C spin system by measuring, e.g., the hfi-induced splitting of the mS = ±1 sublevels of the NV center in optically detected magnetic resonance (ODMR) spectra being characteristic for various NV-13C systems.
Collapse
Affiliation(s)
- Alexander P. Nizovtsev
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (A.L.P.); (N.I.K.); (A.S.G.); (M.O.S.)
| | - Aliaksandr L. Pushkarchuk
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (A.L.P.); (N.I.K.); (A.S.G.); (M.O.S.)
| | - Sergei Ya. Kilin
- Institute of Physics, Nat. Acad. Sci. of Belarus, 220072 Minsk, Belarus;
| | - Nikolai I. Kargin
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (A.L.P.); (N.I.K.); (A.S.G.); (M.O.S.)
| | - Alexander S. Gusev
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (A.L.P.); (N.I.K.); (A.S.G.); (M.O.S.)
| | - Marina O. Smirnova
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia; (A.L.P.); (N.I.K.); (A.S.G.); (M.O.S.)
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89069 Ulm, Germany;
| |
Collapse
|
53
|
High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat Commun 2021; 12:1529. [PMID: 33750779 PMCID: PMC7943573 DOI: 10.1038/s41467-021-21781-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 12/03/2022] Open
Abstract
High fidelity single-shot readout of qubits is a crucial component for fault-tolerant quantum computing and scalable quantum networks. In recent years, the nitrogen-vacancy (NV) center in diamond has risen as a leading platform for the above applications. The current single-shot readout of the NV electron spin relies on resonance fluorescence method at cryogenic temperature. However, the spin-flip process interrupts the optical cycling transition, therefore, limits the readout fidelity. Here, we introduce a spin-to-charge conversion method assisted by near-infrared (NIR) light to suppress the spin-flip error. This method leverages high spin-selectivity of cryogenic resonance excitation and flexibility of photoionization. We achieve an overall fidelity > 95% for the single-shot readout of an NV center electron spin in the presence of high strain and fast spin-flip process. With further improvements, this technique has the potential to achieve spin readout fidelity exceeding the fault-tolerant threshold, and may also find applications on integrated optoelectronic devices. The NV centre in diamond has been used extensively in quantum information processing; however fault-tolerant readout of its spin remains challenging. Here, Zhang et al demonstrate a robust scheme that achieves high-fidelity readout via spin to charge conversion.
Collapse
|
54
|
Blanchard JW, Budker D, Trabesinger A. Lower than low: Perspectives on zero- to ultralow-field nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106886. [PMID: 33518173 DOI: 10.1016/j.jmr.2020.106886] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The less-traveled low road in nuclear magnetic resonance is discussed, honoring the contributions of Prof. Bernhard Blümich, aspiring towards reaching 'a new low.' A history of the subject and its current status are briefly reviewed, followed by an effort to prophesy possible directions for future developments.
Collapse
Affiliation(s)
- John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany.
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany; Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany; Department of Physics, University of California, Berkeley, CA 94720-7300, USA
| | | |
Collapse
|
55
|
Guo H, Gao Y, Qin Y, Wang S, Liu Y, Zhang Z, Li Z, Wen H, Tang J, Ma Z, Li Y, Liu J. NV center pumped and enhanced by nanowire ring resonator laser to integrate a 10 μm-scale spin-based sensor structure. NANOTECHNOLOGY 2021; 32:055502. [PMID: 33065555 DOI: 10.1088/1361-6528/abc20b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we propose a 10 μm-scale spin-based sensor structure, which mainly consists of a nanowire (NW) ring resonator laser, nitrogen-vacancy (NV) defects in a nanodiamond (ND) and a microwave (MW) antenna. The NW laser was bent into a ring with a gap to pump the NV defects in the ND which was assembled in the gap with the diameter of ∼8 μm. And the fluorescent light of NV defects was enhanced by the NW ring resonator about 8 times. Furthermore, the NW laser pulse was produced by the optical switch and a simple plus-sequences was designed to get the Rabi oscillation signal. Based on the Rabi oscillation, a Ramsey-type sequence was used to detect the magnetic field with the sensitivity of 83 nT √Hz-1 for our 10 μm-scale spin-based sensor structure. It proves the spin state in our structure allows for coherent spin manipulation for more complex quantum control schemes. And our structure fulfills the fundamental requirements to develop chip-scale spin-based sensors.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanjie Gao
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Yue Qin
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Shixin Wang
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Yusong Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhenrong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhonghao Li
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Huanfei Wen
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Jun Tang
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Zongmin Ma
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanjun Li
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Jun Liu
- Key Laboratory of Instrumentation Science and Dynamic Measurement. School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
56
|
Bourassa A, Anderson CP, Miao KC, Onizhuk M, Ma H, Crook AL, Abe H, Ul-Hassan J, Ohshima T, Son NT, Galli G, Awschalom DD. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. NATURE MATERIALS 2020; 19:1319-1325. [PMID: 32958880 DOI: 10.1038/s41563-020-00802-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F = 99.984(1)%), alongside extended coherence times (Hahn-echo T2 = 2.3 ms, dynamical decoupling T2DD > 14.5 ms), and a >40-fold increase in Ramsey spin dephasing time (T2*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and links single photon emitters with nuclear registers in an industrially scalable material.
Collapse
Affiliation(s)
- Alexandre Bourassa
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Christopher P Anderson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Kevin C Miao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Mykyta Onizhuk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - He Ma
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Alexander L Crook
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Hiroshi Abe
- National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Jawad Ul-Hassan
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Takeshi Ohshima
- National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Nguyen T Son
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Department of Physics, University of Chicago, Chicago, IL, USA.
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
57
|
Fataftah MS, Bayliss SL, Laorenza DW, Wang X, Phelan BT, Wilson CB, Mintun PJ, Kovos BD, Wasielewski MR, Han S, Sherwin MS, Awschalom DD, Freedman DE. Trigonal Bipyramidal V 3+ Complex as an Optically Addressable Molecular Qubit Candidate. J Am Chem Soc 2020; 142:20400-20408. [PMID: 33210910 DOI: 10.1021/jacs.0c08986] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic chemistry enables a bottom-up approach to quantum information science, where atoms can be deterministically positioned in a quantum bit or qubit. Two key requirements to realize quantum technologies are qubit initialization and read-out. By imbuing molecular spins with optical initialization and readout mechanisms, analogous to solid-state defects, molecules could be integrated into existing quantum infrastructure. To mimic the electronic structure of optically addressable defect sites, we designed the spin-triplet, V3+ complex, (C6F5)3trenVCNtBu (1). We measured the static spin properties as well as the spin coherence time of 1 demonstrating coherent control of this spin qubit with a 240 GHz electron paramagnetic resonance spectrometer powered by a free electron laser. We found that 1 exhibited narrow, near-infrared photoluminescence (PL) from a spin-singlet excited state. Using variable magnetic field PL spectroscopy, we resolved emission into each of the ground-state spin sublevels, a crucial component for spin-selective optical initialization and readout. This work demonstrates that trigonally symmetric, heteroleptic V3+ complexes are candidates for optical spin addressability.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sam L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel W Laorenza
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaoling Wang
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Brian T Phelan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - C Blake Wilson
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Peter J Mintun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Berk D Kovos
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Mark S Sherwin
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
58
|
Bayliss SL, Laorenza DW, Mintun PJ, Kovos BD, Freedman DE, Awschalom DD. Optically addressable molecular spins for quantum information processing. Science 2020; 370:1309-1312. [PMID: 33184235 DOI: 10.1126/science.abb9352] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Spin-bearing molecules are promising building blocks for quantum technologies as they can be chemically tuned, assembled into scalable arrays, and readily incorporated into diverse device architectures. In molecular systems, optically addressing ground-state spins would enable a wide range of applications in quantum information science, as has been demonstrated for solid-state defects. However, this important functionality has remained elusive for molecules. Here, we demonstrate such optical addressability in a series of synthesized organometallic, chromium(IV) molecules. These compounds display a ground-state spin that can be initialized and read out using light and coherently manipulated with microwaves. In addition, through atomistic modification of the molecular structure, we vary the spin and optical properties of these compounds, indicating promise for designer quantum systems synthesized from the bottom-up.
Collapse
Affiliation(s)
- S L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D W Laorenza
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - P J Mintun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - B D Kovos
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - D D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Department of Physics, University of Chicago, Chicago, IL 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
59
|
Chen B, Hou X, Ge F, Zhang X, Ji Y, Li H, Qian P, Wang Y, Xu N, Du J. Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam. NANO LETTERS 2020; 20:8267-8272. [PMID: 33135901 DOI: 10.1021/acs.nanolett.0c03377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new method to determine the orientation of individual nitrogen-vacancy (NV) centers in a bulk diamond and use them to realize a calibration-free vector magnetometer with nanoscale resolution. Optical vortex beam is used for optical excitation and scanning the NV center in a [111]-oriented diamond. The scanning fluorescence patterns of NV center with different orientations are completely different. Thus, the orientation information on each NV center in the lattice can be known directly without any calibration process. Further, we use three differently oriented NV centers to form a magnetometer and reconstruct the complete vector information on the magnetic field based on the optically detected magnetic resonance(ODMR) technique. Compared with previous schemes to realize vector magnetometry using an NV center, our method is much more efficient and is easily applied in other NV-based quantum sensing applications.
Collapse
Affiliation(s)
- Bing Chen
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xianfei Hou
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Feifei Ge
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaohan Zhang
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunlan Ji
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hongju Li
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Peng Qian
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ya Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- School of Electronic Science and Applied Physics,Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
60
|
Baier S, Bradley CE, Middelburg T, Dobrovitski VV, Taminiau TH, Hanson R. Orbital and Spin Dynamics of Single Neutrally-Charged Nitrogen-Vacancy Centers in Diamond. PHYSICAL REVIEW LETTERS 2020; 125:193601. [PMID: 33216607 DOI: 10.1103/physrevlett.125.193601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The neutral charge state plays an important role in quantum information and sensing applications based on nitrogen-vacancy centers. However, the orbital and spin dynamics remain unexplored. Here, we use resonant excitation of single centers to directly reveal the fine structure, enabling selective addressing of spin-orbit states. Through pump-probe experiments, we find the orbital relaxation time (430 ns at 4.7 K) and measure its temperature dependence up to 11.8 K. Finally, we reveal the spin relaxation time (1.5 s) and realize projective high-fidelity single-shot readout of the spin state (≥98%).
Collapse
Affiliation(s)
- S Baier
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - C E Bradley
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - T Middelburg
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - V V Dobrovitski
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - T H Taminiau
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - R Hanson
- QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands
| |
Collapse
|
61
|
Oh H, Yun J, Abobeih MH, Jung KH, Kim K, Taminiau TH, Kim D. Algorithmic decomposition for efficient multiple nuclear spin detection in diamond. Sci Rep 2020; 10:14884. [PMID: 32913230 PMCID: PMC7483528 DOI: 10.1038/s41598-020-71339-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Efficiently detecting and characterizing individual spins in solid-state hosts is an essential step to expand the fields of quantum sensing and quantum information processing. While selective detection and control of a few 13C nuclear spins in diamond have been demonstrated using the electron spin of nitrogen-vacancy (NV) centers, a reliable, efficient, and automatic characterization method is desired. Here, we develop an automated algorithmic method for decomposing spectral data to identify and characterize multiple nuclear spins in diamond. We demonstrate efficient nuclear spin identification and accurate reproduction of hyperfine interaction components for both virtual and experimental nuclear spectroscopy data. We conduct a systematic analysis of this methodology and discuss the range of hyperfine interaction components of each nuclear spin that the method can efficiently detect. The result demonstrates a systematic approach that automatically detects nuclear spins with the aid of computational methods, facilitating the future scalability of devices.
Collapse
Affiliation(s)
- Hyunseok Oh
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jiwon Yun
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - M H Abobeih
- QuTech, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.,Kavli Institute of Nanoscience Delft, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Kyung-Hoon Jung
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Kiho Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - T H Taminiau
- QuTech, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.,Kavli Institute of Nanoscience Delft, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - Dohun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
62
|
Enhancing the Robustness of Dynamical Decoupling Sequences with Correlated Random Phases. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We show that the addition of correlated phases to the recently developed method of randomized dynamical decoupling pulse sequences can improve its performance in quantum sensing. In particular, by correlating the relative phases of basic pulse units in dynamical decoupling sequences, we are able to improve the suppression of the signal distortion due to π pulse imperfections and spurious responses due to finite-width π pulses. This enhances the selectivity of quantum sensors such as those based on NV centers in diamond.
Collapse
|