51
|
Biddle A. In vitro cancer models as an approach to identify targetable developmental phenotypes in cancer stem cells. IN VITRO MODELS 2023; 2:83-88. [PMID: 37808201 PMCID: PMC10550853 DOI: 10.1007/s44164-023-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 10/10/2023]
Abstract
Cancer therapeutics are often highly toxic to the patient, and they often elicit rapid resistance in the tumour. Recent advances have suggested a potential new way in which we may improve on this, through two important concepts: (1) that multitudinous pathway alterations converge on a limited number of cancer cellular phenotypes, and (2) that these cancer cellular phenotypes depend on reactivation of developmental processes that are only minimally active in adult tissues. This provides a rationale for pursuing an approach of 'drugging the phenotype' focussed on targeting reactivated cellular processes from embryonic development. In this concepts paper, we cover these recent developments and their implications for the development of new cancer therapeutics that can avoid patient toxicity and acquired resistance. We then propose that in vitro tumour and developmental models can provide an experimental approach to identify and target the specific developmental processes at play, with a focus on the reactivation of developmental processes in the cancer stem cells that drive tumour progression and spread. Ultimately, the aim is to identify cellular processes that are specific to developmental phenotypes, are reactivated in cancer stem cells, and are essential to tumour progression. Therapeutically targeting these cellular processes could represent a new approach of 'drugging the phenotype' that treats the tumour whilst avoiding patient toxicity or the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Adrian Biddle
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
52
|
Wang L, Tang Y. N6-methyladenosine (m6A) in cancer stem cell: From molecular mechanisms to therapeutic implications. Biomed Pharmacother 2023; 163:114846. [PMID: 37167725 DOI: 10.1016/j.biopha.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of drug resistance and metastasis has long been a difficult problem for cancer treatment. Recent studies have shown that cancer stem cell populations are key factors in the regulation of cancer aggressiveness, relapse and drug resistance. Cancer stem cell (CSC) populations are highly plastic and self-renewing, giving them unique metabolic, metastatic, and chemotherapy resistance properties. N6-methyladenosine (m6A) is the most abundant internal modification of mRNA and is involved in a variety of cell growth and development processes, including RNA transcription, alternative splicing, degradation, and translation. It has also been linked to the development of various cancers. At present, the important role of m6A in tumour progression is gradually attracting attention, especially in the tumour stemness regulation process. Abnormal m6A modifications regulate tumour metastasis, recurrence and drug resistance. This paper aims to explore the regulatory mechanism of m6A in CSCs and clinical therapy, clarify its regulatory network, and provide theoretical guidance for the development of clinical targets and improvement of therapeutic effects.
Collapse
Affiliation(s)
- Liming Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
53
|
van Ginkel J, Tomlinson I, Soriano I. The Evolutionary Landscape of Colorectal Tumorigenesis: Recent Paradigms, Models, and Hypotheses. Gastroenterology 2023; 164:841-846. [PMID: 36702361 DOI: 10.1053/j.gastro.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/28/2023]
Abstract
Using colorectal cancer as a model, we review some of the insights into cancer evolution afforded by cancer sequencing. These include nonlinear and neutral evolution; polyclonality of driver mutations and parallel evolution in adenomas, although these are rare in carcinomas; the ability of mutational processes to shape evolution against the force of selection; the presence of rare driver genes that function in the same signaling pathways as the longstanding canonical drivers; and the existence of selective windows that constrain the functional effects of cancer driver mutations within limits. Many of these nascent evolutionary paradigms are potentially important for treating colorectal cancers as well as understanding their development.
Collapse
Affiliation(s)
- Jurriaan van Ginkel
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ignacio Soriano
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
54
|
Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary models reveal modes of solid tumour growth. Nat Ecol Evol 2023; 7:581-596. [PMID: 36894662 PMCID: PMC10089931 DOI: 10.1038/s41559-023-02000-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023]
Abstract
Spatial properties of tumour growth have profound implications for cancer progression, therapeutic resistance and metastasis. Yet, how spatial position governs tumour cell division remains difficult to evaluate in clinical tumours. Here, we demonstrate that faster division on the tumour periphery leaves characteristic genetic patterns, which become evident when a phylogenetic tree is reconstructed from spatially sampled cells. Namely, rapidly dividing peripheral lineages branch more extensively and acquire more mutations than slower-dividing centre lineages. We develop a Bayesian state-dependent evolutionary phylodynamic model (SDevo) that quantifies these patterns to infer the differential division rates between peripheral and central cells. We demonstrate that this approach accurately infers spatially varying birth rates of simulated tumours across a range of growth conditions and sampling strategies. We then show that SDevo outperforms state-of-the-art, non-cancer multi-state phylodynamic methods that ignore differential sequence evolution. Finally, we apply SDevo to single-time-point, multi-region sequencing data from clinical hepatocellular carcinomas and find evidence of a three- to six-times-higher division rate on the tumour edge. With the increasing availability of high-resolution, multi-region sequencing, we anticipate that SDevo will be useful in interrogating spatial growth restrictions and could be extended to model non-spatial factors that influence tumour progression.
Collapse
Affiliation(s)
- Maya A Lewinsohn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Nicola F Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
55
|
Kulkarni P, Wiley HS, Levine H, Sauro H, Anderson A, Wong STC, Meyer AS, Iyengar P, Corlette K, Swanson K, Mohanty A, Bhattacharya S, Patel A, Jain V, Salgia R. Addressing the genetic/nongenetic duality in cancer with systems biology. Trends Cancer 2023; 9:185-187. [PMID: 36635119 DOI: 10.1016/j.trecan.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
The dogma that cancer is a genetic disease is being questioned. Recent findings suggest that genetic/nongenetic duality is necessary for cancer progression. A think tank organized by the Shraman Foundation's Institute for Theoretical Biology compiled key challenges and opportunities that theoreticians, experimentalists, and clinicians can explore from a systems biology perspective to provide a better understanding of the disease as well as help discover new treatment options and therapeutic strategies.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA; Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Herbert Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Stephen T C Wong
- T.T. and W.F. Chao Center for BRAIN Houston Methodist Hospital, Houston, TX, USA; Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA; Department of Radiology, Weill Cornell Medicine, New York, USA; Department of Neurosciences, Weill Cornell Medicine, New York, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Corlette
- Department of Mathematics, University of Chicago, IL, USA
| | - Kristin Swanson
- Mathematical Neuro-Oncology Laboratory, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ, USA
| | - Atish Mohanty
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Amit Patel
- Shraman Foundation, Institute for Theoretical Biology, Dallas, TX, USA
| | - Vinay Jain
- Shraman Foundation, Institute for Theoretical Biology, Dallas, TX, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
56
|
Lineage tracing of mutant granulosa cells reveals in vivo protective mechanisms that prevent granulosa cell tumorigenesis. Cell Death Differ 2023; 30:1235-1246. [PMID: 36823373 PMCID: PMC10154338 DOI: 10.1038/s41418-023-01132-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian granulosa cell tumors (GCTs) originate from granulosa cells (GCs) and represent the most common sex cord-stromal tumor in humans. However, the developmental regulations and molecular mechanisms underlying their etiology are largely unknown. In the current study, we combined a multi-fluorescent reporter mouse model with a conditional knockout mouse model, in which the tumor suppressor genes Pten and p27 were deleted in GCs, to perform cell lineage tracing of mutant GCs. We found that only 30% of ovaries with substantial mutant GCs developed into GCTs that derived from a single mutant GC. In-depth molecular analysis of the process of tumorigenesis demonstrated that up-regulation of immune evasion genes Cd24a and Cd47 led, in part, to the transition of mutant GCs to GCTs. Therefore, treatment with the Cd47 inhibitor RRX-001 was tested and found to efficiently suppress the growth of GCTs in vivo. Together, our study has revealed an immune evasion mechanism via CD24/CD47 upregulation to GCT formation, shedding light on the future potential clinical therapies for GCTs.
Collapse
|
57
|
From Retrograde Menstruation to Endometrial Determinism and a Brave New World of "Root Treatment" of Endometriosis: Destiny or a Fanciful Utopia? Biomolecules 2023; 13:biom13020336. [PMID: 36830705 PMCID: PMC9953699 DOI: 10.3390/biom13020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Practically unknown outside of China, the "endometrial determinism" theory was proposed to account for the apparent gap between the relatively low prevalence of endometriosis and nearly universal retrograde menstruation. Attracting uncritical advocacy, the theory culminates in a recent consensus by elite Chinese gynecologists in favor of "root treatment", intended to nip endometriosis in the bud. Correcting endometrial "defects" can gain further momentum by the presence of cancer-driver mutations such as KRAS mutations in the endometrium of women with endometriosis and the recent introduction of therapeutics aiming to rectify the effect of these mutations for cancer treatment. We provide a critical appraisal of evidence for endometrial aberrations in endometriosis and relevant experimental evidence. All available evidence of endometrial "defect" is invariably post hoc and may well be secondary to induced endometriosis. We propose that the theory of "endometrial determinism" needs to demonstrate a clear causal and a phylogenetic relationship between endometrial aberrations and endometriosis. We argue that while it is highly likely that endometriosis is a consequence of retrograde menstruation, the case that molecular aberrations as a sole or a necessary determinant remains to be proven. "Root treatment" is a worthy ambition but as of now it is close to a fanciful Utopia.
Collapse
|
58
|
Elucidating the genetic and epigenetic evolution and phenotypic plasticity of colorectal tumours. Nat Rev Gastroenterol Hepatol 2023; 20:3. [PMID: 36443420 DOI: 10.1038/s41575-022-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Seferbekova Z, Lomakin A, Yates LR, Gerstung M. Spatial biology of cancer evolution. Nat Rev Genet 2022; 24:295-313. [PMID: 36494509 DOI: 10.1038/s41576-022-00553-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The natural history of cancers can be understood through the lens of evolution given that the driving forces of cancer development are mutation and selection of fitter clones. Cancer growth and progression are spatial processes that involve the breakdown of normal tissue organization, invasion and metastasis. For these reasons, spatial patterns are an integral part of histological tumour grading and staging as they measure the progression from normal to malignant disease. Furthermore, tumour cells are part of an ecosystem of tumour cells and their surrounding tumour microenvironment. A range of new spatial genomic, transcriptomic and proteomic technologies offers new avenues for the study of cancer evolution with great molecular and spatial detail. These methods enable precise characterizations of the tumour microenvironment, cellular interactions therein and micro-anatomical structures. In conjunction with spatial genomics, it emerges that tumours and microenvironments co-evolve, which helps explain observable patterns of heterogeneity and offers new routes for therapeutic interventions.
Collapse
|
60
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
61
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
62
|
Heide T, Househam J, Cresswell GD, Spiteri I, Lynn C, Mossner M, Kimberley C, Fernandez-Mateos J, Chen B, Zapata L, James C, Barozzi I, Chkhaidze K, Nichol D, Gunasri V, Berner A, Schmidt M, Lakatos E, Baker AM, Costa H, Mitchinson M, Piazza R, Jansen M, Caravagna G, Ramazzotti D, Shibata D, Bridgewater J, Rodriguez-Justo M, Magnani L, Graham TA, Sottoriva A. The co-evolution of the genome and epigenome in colorectal cancer. Nature 2022; 611:733-743. [PMID: 36289335 PMCID: PMC9684080 DOI: 10.1038/s41586-022-05202-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.
Collapse
Affiliation(s)
- Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George D Cresswell
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Claire Lynn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chris Kimberley
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Bingjie Chen
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chela James
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Ketevan Chkhaidze
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Nichol
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Vinaya Gunasri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Schmidt
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Helena Costa
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Miriam Mitchinson
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Mathematics and Geosciences, University of Triest, Triest, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|