51
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
52
|
Kobayashi Y, Niida A, Nagayama S, Saeki K, Haeno H, Takahashi KK, Hayashi S, Ozato Y, Saito H, Hasegawa T, Nakamura H, Tobo T, Kitagawa A, Sato K, Shimizu D, Hirata H, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Mizuno S, Kawazu M, Kohsaka S, Ueno T, Mano H, Ishihara S, Uemura M, Mori M, Doki Y, Eguchi H, Oshima M, Suzuki Y, Shibata T, Mimori K. Subclonal accumulation of immune escape mechanisms in microsatellite instability-high colorectal cancers. Br J Cancer 2023; 129:1105-1118. [PMID: 37596408 PMCID: PMC10539316 DOI: 10.1038/s41416-023-02395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH. METHODS We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed. RESULTS Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment. CONCLUSIONS Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Satoshi Nagayama
- Gastroenterological Center, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, 611-0041, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 227-8561, Japan
| | - Hiroshi Haeno
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Kazuki K Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takanori Hasegawa
- Division of Health Medical Data Science, Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Shinichi Mizuno
- Division of Cancer Research, Center for Advanced Medical Innovation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masaki Mori
- Faculty of Medicine, Tokai University, Isegahara, 259-1193, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kadoma-Cho, Kanazawa, 920-1164, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Sirokane-dai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Cancer Genomics, National Cancer Center Japan, Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan.
| |
Collapse
|
53
|
Perelli L, Zhang L, Mangiameli S, Russell AJC, Giannese F, Peng F, Carbone F, Le C, Khan H, Citron F, Soeung M, Lam TNA, Lundgren S, Zhu C, Catania D, Feng N, Gurreri E, Sgambato A, Tortora G, Draetta GF, Tonon G, Futreal A, Giuliani V, Carugo A, Viale A, Heffernan TP, Wang L, Cittaro D, Chen F, Genovese G. Evolutionary fingerprints of EMT in pancreatic cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558231. [PMID: 37786705 PMCID: PMC10541589 DOI: 10.1101/2023.09.18.558231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.
Collapse
|
54
|
Borgsmüller N, Valecha M, Kuipers J, Beerenwinkel N, Posada D. Single-cell phylogenies reveal changes in the evolutionary rate within cancer and healthy tissues. CELL GENOMICS 2023; 3:100380. [PMID: 37719146 PMCID: PMC10504633 DOI: 10.1016/j.xgen.2023.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.
Collapse
Affiliation(s)
- Nico Borgsmüller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
55
|
Lozada-Martinez ID, Bolaño-Romero MP, Lambis-Anaya L, Liscano Y, Suarez-Causado A. CEA-delta could be a biomarker of tumor phenotype, clinical stage, and chemotherapeutic response in rectal cancer with OCT4-positive cancer stem cells. Front Oncol 2023; 13:1258863. [PMID: 37746252 PMCID: PMC10514348 DOI: 10.3389/fonc.2023.1258863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background There is very limited evidence on biomarkers for evaluating the clinical behavior and therapeutic response in rectal cancer (RC) with positive expression of cancer stem cells (CSCs). Methods An exploratory prospective study was conducted, which included fresh samples of tumor tissue from 109 patients diagnosed with primary RC. Sociodemographic, pathological and clinical characteristics were collected from medical records and survey. The OCT4 protein was isolated using the Western Blot technique. It was calculated the ΔCEA, ΔOCT4, and ΔOCT4/GUSB values by assessing the changes before and after chemotherapy, aiming to evaluate the therapeutic response. Results Patients had an average age of 69.9 years, with 55% (n=60) being male. Approximately 63.3% of the tumors were undifferentiated, and the most frequent staging classification was pathological stage III (n=64; 58.7%). Initial positive expression was observed in 77.1% of the patients (n=84), and the median ΔCEA was -1.03 (-3.82 - 0.84) ng/ml, with elevated levels (< -0.94 ng/ml) found in 51.4% of the subjects (n=56). Being OCT4 positive and having an elevated ΔCEA value were significantly associated with undifferentiated tumor phenotype (p=0.002), advanced tumor progression stage (p <0.001), and negative values of ΔOCT4 (p <0.001) (suggestive of poor therapeutic response) compared to those without this status. Conclusion This study identified a significant and directly proportional association among the values of ΔCEA, ΔOCT4, and ΔOCT4/GUSB. These findings suggest that ΔCEA holds potential as a clinical biomarker for determining the undifferentiated tumor phenotype, advanced clinical stage, and poor therapeutic response in RC with CSCs positive expression.
Collapse
Affiliation(s)
- Ivan David Lozada-Martinez
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Maria Paz Bolaño-Romero
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Lina Lambis-Anaya
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali, Colombia
| | - Amileth Suarez-Causado
- Grupo Prometheus y Biomedicina Aplicada a las Ciencias Clínicas, Department of Biochemistry, School of Medicine, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
56
|
Johnson B, Shuai Y, Schweinsberg J, Curtius K. cloneRate: fast estimation of single-cell clonal dynamics using coalescent theory. Bioinformatics 2023; 39:btad561. [PMID: 37699006 PMCID: PMC10534056 DOI: 10.1093/bioinformatics/btad561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
MOTIVATION While evolutionary approaches to medicine show promise, measuring evolution itself is difficult due to experimental constraints and the dynamic nature of body systems. In cancer evolution, continuous observation of clonal architecture is impossible, and longitudinal samples from multiple timepoints are rare. Increasingly available DNA sequencing datasets at single-cell resolution enable the reconstruction of past evolution using mutational history, allowing for a better understanding of dynamics prior to detectable disease. There is an unmet need for an accurate, fast, and easy-to-use method to quantify clone growth dynamics from these datasets. RESULTS We derived methods based on coalescent theory for estimating the net growth rate of clones using either reconstructed phylogenies or the number of shared mutations. We applied and validated our analytical methods for estimating the net growth rate of clones, eliminating the need for complex simulations used in previous methods. When applied to hematopoietic data, we show that our estimates may have broad applications to improve mechanistic understanding and prognostic ability. Compared to clones with a single or unknown driver mutation, clones with multiple drivers have significantly increased growth rates (median 0.94 versus 0.25 per year; P = 1.6×10-6). Further, stratifying patients with a myeloproliferative neoplasm (MPN) by the growth rate of their fittest clone shows that higher growth rates are associated with shorter time to MPN diagnosis (median 13.9 versus 26.4 months; P = 0.0026). AVAILABILITY AND IMPLEMENTATION We developed a publicly available R package, cloneRate, to implement our methods (Package website: https://bdj34.github.io/cloneRate/). Source code: https://github.com/bdj34/cloneRate/.
Collapse
Affiliation(s)
- Brian Johnson
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Yubo Shuai
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Jason Schweinsberg
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
- VA San Diego Healthcare System, San Diego, CA 92161, United States
| |
Collapse
|
57
|
Wang Y, Liu B, Zhao G, Lee Y, Buzdin A, Mu X, Zhao J, Chen H, Li X. Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics 2023; 115:110671. [PMID: 37353093 PMCID: PMC10571167 DOI: 10.1016/j.ygeno.2023.110671] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
The diverse cell types of an organ have a highly structured organization to enable their efficient and correct function. To fully appreciate gene functions in a given cell type, one needs to understand how much, when and where the gene is expressed. Classic bulk RNA sequencing and popular single cell sequencing destroy cell structural organization and fail to provide spatial information. However, the spatial location of gene expression or of the cell in a complex tissue provides key clues to comprehend how the neighboring genes or cells cross talk, transduce signals and work together as a team to complete the job. The functional requirement for the spatial content has been a driving force for rapid development of the spatial transcriptomics technologies in the past few years. Here, we present an overview of current spatial technologies with a special focus on the commercially available or currently being commercialized technologies, highlight their applications by category and discuss experimental considerations for a first spatial experiment.
Collapse
Affiliation(s)
- Ye Wang
- Clinical Laboratory, The Affiliated Qingdao Central Hospital of Medical College of Qingdao University, Qingdao 266042, China.
| | - Bin Liu
- Departments of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Gexin Zhao
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | - YooJin Lee
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology, Moscow Region, 141701, Russia; World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Xiaofeng Mu
- Clinical Laboratory, The Affiliated Qingdao Central Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Joseph Zhao
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | - Hong Chen
- Heilongjiang Academy of Traditional Chinese Medicine, No. 142, Sanfu Street, Xiangfang District, Harbin City, Heilongjiang Province 150036, China
| | - Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA.
| |
Collapse
|
58
|
Moorman AR, Cambuli F, Benitez EK, Jiang Q, Xie Y, Mahmoud A, Lumish M, Hartner S, Balkaran S, Bermeo J, Asawa S, Firat C, Saxena A, Luthra A, Sgambati V, Luckett K, Wu F, Li Y, Yi Z, Masilionis I, Soares K, Pappou E, Yaeger R, Kingham P, Jarnagin W, Paty P, Weiser MR, Mazutis L, D'Angelica M, Shia J, Garcia-Aguilar J, Nawy T, Hollmann TJ, Chaligné R, Sanchez-Vega F, Sharma R, Pe'er D, Ganesh K. Progressive plasticity during colorectal cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553925. [PMID: 37662289 PMCID: PMC10473595 DOI: 10.1101/2023.08.18.553925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metastasis is the principal cause of cancer death, yet we lack an understanding of metastatic cell states, their relationship to primary tumor states, and the mechanisms by which they transition. In a cohort of biospecimen trios from same-patient normal colon, primary and metastatic colorectal cancer, we show that while primary tumors largely adopt LGR5 + intestinal stem-like states, metastases display progressive plasticity. Loss of intestinal cell states is accompanied by reprogramming into a highly conserved fetal progenitor state, followed by non-canonical differentiation into divergent squamous and neuroendocrine-like states, which is exacerbated by chemotherapy and associated with poor patient survival. Using matched patient-derived organoids, we demonstrate that metastatic cancer cells exhibit greater cell-autonomous multilineage differentiation potential in response to microenvironment cues than their intestinal lineage-restricted primary tumor counterparts. We identify PROX1 as a stabilizer of intestinal lineage in the fetal progenitor state, whose downregulation licenses non-canonical reprogramming.
Collapse
|
59
|
Saoudi González N, Salvà F, Ros J, Baraibar I, Rodríguez-Castells M, García A, Alcaráz A, Vega S, Bueno S, Tabernero J, Elez E. Unravelling the Complexity of Colorectal Cancer: Heterogeneity, Clonal Evolution, and Clinical Implications. Cancers (Basel) 2023; 15:4020. [PMID: 37627048 PMCID: PMC10452468 DOI: 10.3390/cancers15164020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a global health concern and a leading cause of death worldwide. The disease's course and response to treatment are significantly influenced by its heterogeneity, both within a single lesion and between primary and metastatic sites. Biomarkers, such as mutations in KRAS, NRAS, and BRAF, provide valuable guidance for treatment decisions in patients with metastatic CRC. While high concordance exists between mutational status in primary and metastatic lesions, some heterogeneity may be present. Circulating tumor DNA (ctDNA) analysis has proven invaluable in identifying genetic heterogeneity and predicting prognosis in RAS-mutated metastatic CRC patients. Tumor heterogeneity can arise from genetic and non-genetic factors, affecting tumor development and response to therapy. To comprehend and address clonal evolution and intratumoral heterogeneity, comprehensive genomic studies employing techniques such as next-generation sequencing and computational analysis are essential. Liquid biopsy, notably through analysis of ctDNA, enables real-time clonal evolution and treatment response monitoring. However, challenges remain in standardizing procedures and accurately characterizing tumor subpopulations. Various models elucidate the origin of CRC heterogeneity, highlighting the intricate molecular pathways involved. This review focuses on intrapatient cancer heterogeneity and genetic clonal evolution in metastatic CRC, with an emphasis on clinical applications.
Collapse
Affiliation(s)
- Nadia Saoudi González
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Francesc Salvà
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Javier Ros
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Iosune Baraibar
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Marta Rodríguez-Castells
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Ariadna García
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
| | - Adriana Alcaráz
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Sharela Vega
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Sergio Bueno
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Josep Tabernero
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| | - Elena Elez
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (N.S.G.)
- Oncology Department, Vall d’Hebron Hospital, 08035 Barcelona, Spain
| |
Collapse
|
60
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
61
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
62
|
Abstract
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Collapse
Affiliation(s)
- Emanuelle I. Grody
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
63
|
Biddle A. In vitro cancer models as an approach to identify targetable developmental phenotypes in cancer stem cells. IN VITRO MODELS 2023; 2:83-88. [PMID: 37808201 PMCID: PMC10550853 DOI: 10.1007/s44164-023-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 10/10/2023]
Abstract
Cancer therapeutics are often highly toxic to the patient, and they often elicit rapid resistance in the tumour. Recent advances have suggested a potential new way in which we may improve on this, through two important concepts: (1) that multitudinous pathway alterations converge on a limited number of cancer cellular phenotypes, and (2) that these cancer cellular phenotypes depend on reactivation of developmental processes that are only minimally active in adult tissues. This provides a rationale for pursuing an approach of 'drugging the phenotype' focussed on targeting reactivated cellular processes from embryonic development. In this concepts paper, we cover these recent developments and their implications for the development of new cancer therapeutics that can avoid patient toxicity and acquired resistance. We then propose that in vitro tumour and developmental models can provide an experimental approach to identify and target the specific developmental processes at play, with a focus on the reactivation of developmental processes in the cancer stem cells that drive tumour progression and spread. Ultimately, the aim is to identify cellular processes that are specific to developmental phenotypes, are reactivated in cancer stem cells, and are essential to tumour progression. Therapeutically targeting these cellular processes could represent a new approach of 'drugging the phenotype' that treats the tumour whilst avoiding patient toxicity or the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Adrian Biddle
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
64
|
Wang L, Tang Y. N6-methyladenosine (m6A) in cancer stem cell: From molecular mechanisms to therapeutic implications. Biomed Pharmacother 2023; 163:114846. [PMID: 37167725 DOI: 10.1016/j.biopha.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of drug resistance and metastasis has long been a difficult problem for cancer treatment. Recent studies have shown that cancer stem cell populations are key factors in the regulation of cancer aggressiveness, relapse and drug resistance. Cancer stem cell (CSC) populations are highly plastic and self-renewing, giving them unique metabolic, metastatic, and chemotherapy resistance properties. N6-methyladenosine (m6A) is the most abundant internal modification of mRNA and is involved in a variety of cell growth and development processes, including RNA transcription, alternative splicing, degradation, and translation. It has also been linked to the development of various cancers. At present, the important role of m6A in tumour progression is gradually attracting attention, especially in the tumour stemness regulation process. Abnormal m6A modifications regulate tumour metastasis, recurrence and drug resistance. This paper aims to explore the regulatory mechanism of m6A in CSCs and clinical therapy, clarify its regulatory network, and provide theoretical guidance for the development of clinical targets and improvement of therapeutic effects.
Collapse
Affiliation(s)
- Liming Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
65
|
van Ginkel J, Tomlinson I, Soriano I. The Evolutionary Landscape of Colorectal Tumorigenesis: Recent Paradigms, Models, and Hypotheses. Gastroenterology 2023; 164:841-846. [PMID: 36702361 DOI: 10.1053/j.gastro.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/28/2023]
Abstract
Using colorectal cancer as a model, we review some of the insights into cancer evolution afforded by cancer sequencing. These include nonlinear and neutral evolution; polyclonality of driver mutations and parallel evolution in adenomas, although these are rare in carcinomas; the ability of mutational processes to shape evolution against the force of selection; the presence of rare driver genes that function in the same signaling pathways as the longstanding canonical drivers; and the existence of selective windows that constrain the functional effects of cancer driver mutations within limits. Many of these nascent evolutionary paradigms are potentially important for treating colorectal cancers as well as understanding their development.
Collapse
Affiliation(s)
- Jurriaan van Ginkel
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ignacio Soriano
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
66
|
Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary models reveal modes of solid tumour growth. Nat Ecol Evol 2023; 7:581-596. [PMID: 36894662 PMCID: PMC10089931 DOI: 10.1038/s41559-023-02000-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023]
Abstract
Spatial properties of tumour growth have profound implications for cancer progression, therapeutic resistance and metastasis. Yet, how spatial position governs tumour cell division remains difficult to evaluate in clinical tumours. Here, we demonstrate that faster division on the tumour periphery leaves characteristic genetic patterns, which become evident when a phylogenetic tree is reconstructed from spatially sampled cells. Namely, rapidly dividing peripheral lineages branch more extensively and acquire more mutations than slower-dividing centre lineages. We develop a Bayesian state-dependent evolutionary phylodynamic model (SDevo) that quantifies these patterns to infer the differential division rates between peripheral and central cells. We demonstrate that this approach accurately infers spatially varying birth rates of simulated tumours across a range of growth conditions and sampling strategies. We then show that SDevo outperforms state-of-the-art, non-cancer multi-state phylodynamic methods that ignore differential sequence evolution. Finally, we apply SDevo to single-time-point, multi-region sequencing data from clinical hepatocellular carcinomas and find evidence of a three- to six-times-higher division rate on the tumour edge. With the increasing availability of high-resolution, multi-region sequencing, we anticipate that SDevo will be useful in interrogating spatial growth restrictions and could be extended to model non-spatial factors that influence tumour progression.
Collapse
Affiliation(s)
- Maya A Lewinsohn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Nicola F Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
67
|
Kulkarni P, Wiley HS, Levine H, Sauro H, Anderson A, Wong STC, Meyer AS, Iyengar P, Corlette K, Swanson K, Mohanty A, Bhattacharya S, Patel A, Jain V, Salgia R. Addressing the genetic/nongenetic duality in cancer with systems biology. Trends Cancer 2023; 9:185-187. [PMID: 36635119 DOI: 10.1016/j.trecan.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
The dogma that cancer is a genetic disease is being questioned. Recent findings suggest that genetic/nongenetic duality is necessary for cancer progression. A think tank organized by the Shraman Foundation's Institute for Theoretical Biology compiled key challenges and opportunities that theoreticians, experimentalists, and clinicians can explore from a systems biology perspective to provide a better understanding of the disease as well as help discover new treatment options and therapeutic strategies.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA; Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Herbert Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Stephen T C Wong
- T.T. and W.F. Chao Center for BRAIN Houston Methodist Hospital, Houston, TX, USA; Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA; Department of Radiology, Weill Cornell Medicine, New York, USA; Department of Neurosciences, Weill Cornell Medicine, New York, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Corlette
- Department of Mathematics, University of Chicago, IL, USA
| | - Kristin Swanson
- Mathematical Neuro-Oncology Laboratory, Precision Neurotherapeutics Innovation Program, Department of Neurological Surgery, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ, USA
| | - Atish Mohanty
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Amit Patel
- Shraman Foundation, Institute for Theoretical Biology, Dallas, TX, USA
| | - Vinay Jain
- Shraman Foundation, Institute for Theoretical Biology, Dallas, TX, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
68
|
Lineage tracing of mutant granulosa cells reveals in vivo protective mechanisms that prevent granulosa cell tumorigenesis. Cell Death Differ 2023; 30:1235-1246. [PMID: 36823373 PMCID: PMC10154338 DOI: 10.1038/s41418-023-01132-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian granulosa cell tumors (GCTs) originate from granulosa cells (GCs) and represent the most common sex cord-stromal tumor in humans. However, the developmental regulations and molecular mechanisms underlying their etiology are largely unknown. In the current study, we combined a multi-fluorescent reporter mouse model with a conditional knockout mouse model, in which the tumor suppressor genes Pten and p27 were deleted in GCs, to perform cell lineage tracing of mutant GCs. We found that only 30% of ovaries with substantial mutant GCs developed into GCTs that derived from a single mutant GC. In-depth molecular analysis of the process of tumorigenesis demonstrated that up-regulation of immune evasion genes Cd24a and Cd47 led, in part, to the transition of mutant GCs to GCTs. Therefore, treatment with the Cd47 inhibitor RRX-001 was tested and found to efficiently suppress the growth of GCTs in vivo. Together, our study has revealed an immune evasion mechanism via CD24/CD47 upregulation to GCT formation, shedding light on the future potential clinical therapies for GCTs.
Collapse
|
69
|
From Retrograde Menstruation to Endometrial Determinism and a Brave New World of "Root Treatment" of Endometriosis: Destiny or a Fanciful Utopia? Biomolecules 2023; 13:biom13020336. [PMID: 36830705 PMCID: PMC9953699 DOI: 10.3390/biom13020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Practically unknown outside of China, the "endometrial determinism" theory was proposed to account for the apparent gap between the relatively low prevalence of endometriosis and nearly universal retrograde menstruation. Attracting uncritical advocacy, the theory culminates in a recent consensus by elite Chinese gynecologists in favor of "root treatment", intended to nip endometriosis in the bud. Correcting endometrial "defects" can gain further momentum by the presence of cancer-driver mutations such as KRAS mutations in the endometrium of women with endometriosis and the recent introduction of therapeutics aiming to rectify the effect of these mutations for cancer treatment. We provide a critical appraisal of evidence for endometrial aberrations in endometriosis and relevant experimental evidence. All available evidence of endometrial "defect" is invariably post hoc and may well be secondary to induced endometriosis. We propose that the theory of "endometrial determinism" needs to demonstrate a clear causal and a phylogenetic relationship between endometrial aberrations and endometriosis. We argue that while it is highly likely that endometriosis is a consequence of retrograde menstruation, the case that molecular aberrations as a sole or a necessary determinant remains to be proven. "Root treatment" is a worthy ambition but as of now it is close to a fanciful Utopia.
Collapse
|
70
|
Elucidating the genetic and epigenetic evolution and phenotypic plasticity of colorectal tumours. Nat Rev Gastroenterol Hepatol 2023; 20:3. [PMID: 36443420 DOI: 10.1038/s41575-022-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Seferbekova Z, Lomakin A, Yates LR, Gerstung M. Spatial biology of cancer evolution. Nat Rev Genet 2022; 24:295-313. [PMID: 36494509 DOI: 10.1038/s41576-022-00553-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The natural history of cancers can be understood through the lens of evolution given that the driving forces of cancer development are mutation and selection of fitter clones. Cancer growth and progression are spatial processes that involve the breakdown of normal tissue organization, invasion and metastasis. For these reasons, spatial patterns are an integral part of histological tumour grading and staging as they measure the progression from normal to malignant disease. Furthermore, tumour cells are part of an ecosystem of tumour cells and their surrounding tumour microenvironment. A range of new spatial genomic, transcriptomic and proteomic technologies offers new avenues for the study of cancer evolution with great molecular and spatial detail. These methods enable precise characterizations of the tumour microenvironment, cellular interactions therein and micro-anatomical structures. In conjunction with spatial genomics, it emerges that tumours and microenvironments co-evolve, which helps explain observable patterns of heterogeneity and offers new routes for therapeutic interventions.
Collapse
|
72
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
73
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
74
|
Heide T, Househam J, Cresswell GD, Spiteri I, Lynn C, Mossner M, Kimberley C, Fernandez-Mateos J, Chen B, Zapata L, James C, Barozzi I, Chkhaidze K, Nichol D, Gunasri V, Berner A, Schmidt M, Lakatos E, Baker AM, Costa H, Mitchinson M, Piazza R, Jansen M, Caravagna G, Ramazzotti D, Shibata D, Bridgewater J, Rodriguez-Justo M, Magnani L, Graham TA, Sottoriva A. The co-evolution of the genome and epigenome in colorectal cancer. Nature 2022; 611:733-743. [PMID: 36289335 PMCID: PMC9684080 DOI: 10.1038/s41586-022-05202-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.
Collapse
Affiliation(s)
- Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George D Cresswell
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Claire Lynn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chris Kimberley
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Bingjie Chen
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chela James
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Ketevan Chkhaidze
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Nichol
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Vinaya Gunasri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Schmidt
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Helena Costa
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Miriam Mitchinson
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Mathematics and Geosciences, University of Triest, Triest, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|