51
|
Listunov D, Linhares BM, Kim E, Winkler A, Simes ML, Weaver S, Cho HJ, Rizo A, Zolov S, Keshamouni VG, Grembecka J, Cierpicki T. Development of potent dimeric inhibitors of GAS41 YEATS domain. Cell Chem Biol 2021; 28:1716-1727.e6. [PMID: 34289376 DOI: 10.1016/j.chembiol.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
GAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach. These inhibitors bind to GAS41 YEATS domain in a channel constituting a recognition site for acylated lysine on histone proteins. To enhance inhibitory activity, we developed a dimeric analog with nanomolar activity that blocks interactions of GAS41 with acetylated histone H3. Our lead compound engages GAS41 in cells, blocks proliferation of NSCLC cells, and modulates expression of GAS41-dependent genes, validating on-target mechanism of action. This study demonstrates that disruption of GAS41 protein-protein interactions may represent an attractive approach to target lung cancer cells. This work exemplifies the use of bivalent inhibitors as a general strategy to block challenging protein-protein interactions.
Collapse
Affiliation(s)
- Dymytrii Listunov
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Brian M Linhares
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Miranda L Simes
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Sidney Weaver
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Alexandrea Rizo
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA
| | - Sergey Zolov
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2670, USA
| | - Venkateshwar G Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2670, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI 48108, USA.
| |
Collapse
|
52
|
Abstract
The genetic information of human cells is stored in the context of chromatin, which is subjected to DNA methylation and various histone modifications. Such a 'language' of chromatin modification constitutes a fundamental means of gene and (epi)genome regulation, underlying a myriad of cellular and developmental processes. In recent years, mounting evidence has demonstrated that miswriting, misreading or mis-erasing of the modification language embedded in chromatin represents a common, sometimes early and pivotal, event across a wide range of human cancers, contributing to oncogenesis through the induction of epigenetic, transcriptomic and phenotypic alterations. It is increasingly clear that cancer-related metabolic perturbations and oncohistone mutations also directly impact chromatin modification, thereby promoting cancerous transformation. Phase separation-based deregulation of chromatin modulators and chromatin structure is also emerging to be an important underpinning of tumorigenesis. Understanding the various molecular pathways that underscore a misregulated chromatin language in cancer, together with discovery and development of more effective drugs to target these chromatin-related vulnerabilities, will enhance treatment of human malignancies.
Collapse
Affiliation(s)
- Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
53
|
Hou JY, Zhou L, Li JL, Wang DP, Cao JM. Emerging roles of non-histone protein crotonylation in biomedicine. Cell Biosci 2021; 11:101. [PMID: 34059135 PMCID: PMC8166067 DOI: 10.1186/s13578-021-00616-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
Crotonylation of proteins is a newly found type of post-translational modifications (PTMs) which occurs leadingly on the lysine residue, namely, lysine crotonylation (Kcr). Kcr is conserved and is regulated by a series of enzymes and co-enzymes including lysine crotonyltransferase (writer), lysine decrotonylase (eraser), certain YEATS proteins (reader), and crotonyl-coenzyme A (donor). Histone Kcr has been substantially studied since 2011, but the Kcr of non-histone proteins is just an emerging field since its finding in 2017. Recent advances in the identification and quantification of non-histone protein Kcr by mass spectrometry have increased our understanding of Kcr. In this review, we summarized the main proteomic characteristics of non-histone protein Kcr and discussed its biological functions, including gene transcription, DNA damage response, enzymes regulation, metabolic pathways, cell cycle, and localization of heterochromatin in cells. We further proposed the performance of non-histone protein Kcr in diseases and the prospect of Kcr manipulators as potential therapeutic candidates in the diseases.
Collapse
Affiliation(s)
- Jia-Yi Hou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.,Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology At Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
54
|
Garnar-Wortzel L, Bishop TR, Kitamura S, Milosevich N, Asiaban JN, Zhang X, Zheng Q, Chen E, Ramos AR, Ackerman CJ, Hampton EN, Chatterjee AK, Young TS, Hull MV, Sharpless KB, Cravatt BF, Wolan DW, Erb MA. Chemical Inhibition of ENL/AF9 YEATS Domains in Acute Leukemia. ACS CENTRAL SCIENCE 2021; 7:815-830. [PMID: 34079898 PMCID: PMC8161486 DOI: 10.1021/acscentsci.0c01550] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 05/05/2023]
Abstract
Transcriptional coregulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional coactivator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC50 = 7 μM). Improvements to the initial screening hit were enabled by adopting and expanding upon a SuFEx-based approach to high-throughput medicinal chemistry, ultimately demonstrating that it is compatible with cell-based drug discovery. Through these efforts, we discovered SR-0813, a potent and selective ENL/AF9 YEATS domain inhibitor (IC50 = 25 nM). Armed with this tool and a first-in-class ENL PROTAC, SR-1114, we detailed the biological response of AML cells to pharmacological ENL disruption for the first time. Most notably, we discovered that ENL YEATS inhibition is sufficient to selectively suppress ENL target genes, including HOXA9/10, MYB, MYC, and a number of other leukemia proto-oncogenes. Cumulatively, our study establishes YEATS domain inhibition as a viable approach to disrupt the pathogenic function of ENL in acute leukemia and provides the first thoroughly characterized chemical probe for the ENL YEATS domain.
Collapse
Affiliation(s)
- Leopold Garnar-Wortzel
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy R. Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Seiya Kitamura
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Natalia Milosevich
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Joshua N. Asiaban
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaoyu Zhang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Qinheng Zheng
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Emily Chen
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Anissa R. Ramos
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher J. Ackerman
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Eric N. Hampton
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Arnab K. Chatterjee
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Travis S. Young
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Mitchell V. Hull
- California
Institute for Biomedical Research, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - K. Barry Sharpless
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Dennis W. Wolan
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
55
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
56
|
Engelberg IA, Foley CA, James LI, Frye SV. Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Curr Opin Chem Biol 2021; 63:132-144. [PMID: 33852996 DOI: 10.1016/j.cbpa.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
57
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
58
|
Ntorla A, Burgoyne JR. The Regulation and Function of Histone Crotonylation. Front Cell Dev Biol 2021; 9:624914. [PMID: 33889571 PMCID: PMC8055951 DOI: 10.3389/fcell.2021.624914] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Histone crotonylation is a newly identified epigenetic modification that has a pronounced ability to regulate gene expression. It belongs to an expanding group of short chain lysine acylations that also includes the extensively studied mark histone acetylation. Emerging evidence suggests that histone crotonylation is functionally distinct from histone acetylation and that competition for sites of modification, which reflects the cellular metabolic status, could be an important epigenetic mechanism that regulates diverse processes. Here, we discuss the enzymatic and metabolic regulation of histone crotonylation, the “reader” proteins that selectively recognise this modification and translate it into diverse functional outcomes within the cell, as well as the identified physiological roles of histone crotonylation, which range from signal-dependent gene activation to spermatogenesis and tissue injury.
Collapse
Affiliation(s)
- Angeliki Ntorla
- The Rayne Institute, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Research Excellence, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Joseph Robert Burgoyne
- The Rayne Institute, School of Cardiovascular Medicine and Sciences, The British Heart Foundation Centre of Research Excellence, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
59
|
Jiang Y, Chen G, Li XM, Liu S, Tian G, Li Y, Li X, Li H, Li XD. Selective Targeting of AF9 YEATS Domain by Cyclopeptide Inhibitors with Preorganized Conformation. J Am Chem Soc 2020; 142:21450-21459. [DOI: 10.1021/jacs.0c10324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yixiang Jiang
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Guochao Chen
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Meng Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
60
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
61
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
62
|
Krone MW, Travis CR, Lee GY, Eckvahl HJ, Houk KN, Waters ML. More Than π-π-π Stacking: Contribution of Amide-π and CH-π Interactions to Crotonyllysine Binding by the AF9 YEATS Domain. J Am Chem Soc 2020; 142:17048-17056. [PMID: 32926780 DOI: 10.1021/jacs.0c06568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysine crotonylation (Kcr) is a histone post-translational modification that is implicated in numerous epigenetic pathways and diseases. Recognition of Kcr by YEATS domains has been proposed to occur through intermolecular amide-π and alkene-π interactions, but little is known about the driving force of these key interactions. Herein, we probed the recognition of lysine crotonylation and acetylation by the AF9 YEATS domain through incorporation of noncanonical Phe analogs with distinct electrostatics at two positions. We found that amide-π interactions between AF9 and acyllysines are electrostatically tunable, with electron-rich rings providing more favorable interactions. This differs from trends in amide-heteroarene interactions and provides insightful information for therapeutic design. Additionally, we report for the first time that CH-π interactions at Phe28 directly contribute to AF9's recognition of acyllysines, illuminating differences among YEATS domains, as this residue is not highly conserved but has been shown to impart selectivity for specific post-translational modification.
Collapse
Affiliation(s)
- Mackenzie W Krone
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher R Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Hannah J Eckvahl
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
63
|
Wang ZA, Cole PA. The Chemical Biology of Reversible Lysine Post-translational Modifications. Cell Chem Biol 2020; 27:953-969. [PMID: 32698016 PMCID: PMC7487139 DOI: 10.1016/j.chembiol.2020.07.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
Lysine (Lys) residues in proteins undergo a wide range of reversible post-translational modifications (PTMs), which can regulate enzyme activities, chromatin structure, protein-protein interactions, protein stability, and cellular localization. Here we discuss the "writers," "erasers," and "readers" of some of the common protein Lys PTMs and summarize examples of their major biological impacts. We also review chemical biology approaches, from small-molecule probes to protein chemistry technologies, that have helped to delineate Lys PTM functions and show promise for a diverse set of biomedical applications.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Avenue Louis Pasteur NRB, Boston, MA 02115, USA.
| |
Collapse
|
64
|
Zhang Y, Guo Y, Gough SM, Zhang J, Vann KR, Li K, Cai L, Shi X, Aplan PD, Wang GG, Kutateladze TG. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat Commun 2020; 11:3339. [PMID: 32620764 PMCID: PMC7335091 DOI: 10.1038/s41467-020-17098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yiran Guo
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jinyong Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kuai Li
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ling Cai
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
65
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
66
|
Wang Q, Verma J, Vidan N, Wang Y, Tucey TM, Lo TL, Harrison PF, See M, Swaminathan A, Kuchler K, Tscherner M, Song J, Powell DR, Sopta M, Beilharz TH, Traven A. The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Rep 2020; 31:107528. [PMID: 32320659 DOI: 10.1016/j.celrep.2020.107528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.
Collapse
Affiliation(s)
- Qi Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Jiyoti Verma
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Nikolina Vidan
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia; Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Yanan Wang
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Paul F Harrison
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Michael See
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, Vienna, Austria
| | - Jiangning Song
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton 3800 VIC, Australia
| | - Mary Sopta
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 VIC, Australia.
| |
Collapse
|
67
|
Takahashi S, Yokoyama A. The molecular functions of common and atypical MLL fusion protein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194548. [PMID: 32320750 DOI: 10.1016/j.bbagrm.2020.194548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Mixed-lineage leukemia (MLL) fuses with a variety of partners to produce a functionally altered MLL complex that is not expressed in normal cells, which transforms normal hematopoietic progenitors into leukemia cells. Because more than 80 fusion partners have been identified to date, the molecular functions of MLL fusion protein complexes appear diverse. However, over the past decade, the common functions utilized for leukemic transformation have begun to be elucidated. It appears that most (if not all) MLL fusion protein complexes utilize the AF4/ENL/P-TEFb and DOT1L complexes to some extent. Based on an understanding of the underlying molecular mechanisms, several molecular targeting drugs are being developed, opening paths to novel therapies. Here, we review the recent progress made in identifying the molecular functions of various MLL fusions and categorize the numerous fusion partners into several functionally-distinct groups to help discern commonalities and differences among various MLL fusion protein complexes.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan; Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan; National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
68
|
Asiaban JN, Milosevich N, Chen E, Bishop TR, Wang J, Zhang Y, Ackerman CJ, Hampton EN, Young TS, Hull MV, Cravatt BF, Erb MA. Cell-Based Ligand Discovery for the ENL YEATS Domain. ACS Chem Biol 2020; 15:895-903. [PMID: 32176478 DOI: 10.1021/acschembio.0c00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ENL is a transcriptional coactivator that recruits elongation machinery to active cis-regulatory elements upon binding of its YEATS domain-a chromatin reader module-to acylated lysine side chains. Discovery chemistry for the ENL YEATS domain is highly motivated by its significance in acute leukemia pathophysiology, but cell-based assays able to support large-scale screening or hit validation efforts do not presently exist. Here, we report on the discovery of a target engagement assay that allows for high-throughput ligand discovery in living cells. This assay is based on the cellular thermal shift assay (CETSA) but does not require exposing cells to elevated temperatures, as small-molecule ligands are able to stabilize the ENL YEATS domain at 37 °C. By eliminating temperature shifts, we developed a simplified target engagement assay that requires just two steps: drug treatment and luminescence detection. To demonstrate its value for higher throughput applications, we miniaturized the assay to a 1536-well format and screened 37 120 small molecules, ultimately identifying an acyl-lysine-competitive ENL/AF9 YEATS domain inhibitor.
Collapse
Affiliation(s)
- Joshua N. Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Natalia Milosevich
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Emily Chen
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Timothy R. Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Justin Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Eric N. Hampton
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Travis S. Young
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Mitchell V. Hull
- Calibr at Scripps Research, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
69
|
Mustachio LM, Roszik J, Farria A, Dent SYR. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res 2020; 80:1905-1911. [PMID: 32094302 DOI: 10.1158/0008-5472.can-19-3652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aimee Farria
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon Y R Dent
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
70
|
Slany RK. MLL fusion proteins and transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194503. [PMID: 32061883 DOI: 10.1016/j.bbagrm.2020.194503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
The highly leukemogenic MLL fusion proteins have a unique mechanism of action. This review summarizes the current knowledge of how MLL fusions interact with the transcriptional machinery and it proposes a hypothesis how these proteins modify transcriptional control to act as transcriptional amplifiers causing runaway production of certain RNAs that transform hematopoietic cells.
Collapse
Affiliation(s)
- Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Germany.
| |
Collapse
|
71
|
Liu XL, Liu HQ, Li J, Mao CY, He JT, Zhao X. Role of epigenetic in leukemia: From mechanism to therapy. Chem Biol Interact 2020; 317:108963. [PMID: 31978391 DOI: 10.1016/j.cbi.2020.108963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for the involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is anaggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. In this review, we will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that this novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin Province, China.
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
72
|
Ni X, Heidenreich D, Christott T, Bennett J, Moustakim M, Brennan PE, Fedorov O, Knapp S, Chaikuad A. Structural Insights into Interaction Mechanisms of Alternative Piperazine-urea YEATS Domain Binders in MLLT1. ACS Med Chem Lett 2019; 10:1661-1666. [PMID: 31857843 DOI: 10.1021/acsmedchemlett.9b00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
YEATS-domain-containing MLLT1 is an acetyl/acyl-lysine reader domain, which is structurally distinct from well-studied bromodomains and has been strongly associated in development of cancer. Here, we characterized piperazine-urea derivatives as an acetyl/acyl-lysine mimetic moiety for MLLT1. Crystal structures revealed distinct interaction mechanisms of this chemotype compared to the recently described benzimidazole-amide based inhibitors, exploiting different binding pockets within the protein. Thus, the piperazine-urea scaffold offers an alternative strategy for targeting the YEATS domain family.
Collapse
Affiliation(s)
- Xiaomin Ni
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - David Heidenreich
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Thomas Christott
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - James Bennett
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Moses Moustakim
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | | | - Oleg Fedorov
- Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
73
|
Abstract
The epigenetic modifications of histones are versatile marks that are intimately connected to development and disease pathogenesis including human cancers. In this review, we will discuss the many different types of histone modifications and the biological processes with which they are involved. Specifically, we review the enzymatic machineries and modifications that are involved in cancer development and progression, and how to apply currently available small molecule inhibitors for histone modifiers as tool compounds to study the functional significance of histone modifications and their clinical implications.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Simpson Querrey 7th Floor 303 E. Superior Street, Chicago, IL 60611 USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Simpson Querrey 7th Floor 303 E. Superior Street, Chicago, IL 60611 USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
74
|
Arrowsmith CH, Schapira M. Targeting non-bromodomain chromatin readers. Nat Struct Mol Biol 2019; 26:863-869. [DOI: 10.1038/s41594-019-0290-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
|
75
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|