51
|
He Y, Yang C, Wang Y, Sacher JR, Sims MM, Pfeffer LM, Miller DD. Novel structural-related analogs of PFI-3 (SRAPs) that target the BRG1 catalytic subunit of the SWI/SNF complex increase the activity of temozolomide in glioblastoma cells. Bioorg Med Chem 2022; 53:116533. [PMID: 34863065 DOI: 10.1016/j.bmc.2021.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-refractory malignant adult brain cancer. After standard of care therapy, the overall median survival for GBM is only ∼6 months with a 5-year survival <10%. Although some patients initially respond to the DNA alkylating agent temozolomide (TMZ), unfortunately most patients become resistant to therapy and brain tumors eventually recur. We previously found that knockout of BRG1 or treatment with PFI-3, a small molecule inhibitor of the BRG1 bromodomain, enhances sensitivity of GBM cells to temozolomide in vitro and in vivo GBM animal models. Those results demonstrated that the BRG1 catalytic subunit of the SWI/SNF chromatin remodeling complex appears to play a critical role in regulating TMZ-sensitivity. In the present study we designed and synthesized Structurally Related Analogs of PFI-3 (SRAPs) and tested their bioactivity in vitro. Among of the SRAPs, 9f and 11d show better efficacy than PFI-3 in sensitizing GBM cells to the antiproliferative and cell death inducing effects of temozolomide in vitro, as well as enhancing the inhibitor effect of temozolomide on the growth of subcutaneous GBM tumors.
Collapse
Affiliation(s)
- Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Joshua R Sacher
- Cyclica, Inc., 207 Queens Quay West, Suite 420, Toronto, Ontario M5J 1A7, Canada
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
52
|
Chang CY, Shipony Z, Lin SG, Kuo A, Xiong X, Loh KM, Greenleaf WJ, Crabtree GR. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol Cell 2021; 81:4964-4978.e8. [PMID: 34687603 PMCID: PMC8761479 DOI: 10.1016/j.molcel.2021.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit actin-like 6a (ACTL6A) is amplified early in the development of many squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives their interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was substoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near saturation of ACTL6A within BAF complexes. Increased ACTL6A occupancy enhanced polycomb opposition genome-wide to activate SCC genes and facilitated the co-dependent loading of BAF and TEAD-YAP complexes on chromatin. Both mechanisms appeared to be critical and function as a molecular AND gate for SCC initiation and maintenance, thereby explaining the specificity of the role of ACTL6A amplification in SCCs.
Collapse
Affiliation(s)
- Chiung-Ying Chang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherry G Lin
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann Kuo
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
53
|
Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 2021; 22:815-833. [PMID: 34400841 PMCID: PMC7612013 DOI: 10.1038/s41580-021-00398-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Precise control of gene expression is fundamental to cell function and development. Although ultimately gene expression relies on DNA-binding transcription factors to guide the activity of the transcription machinery to genes, it has also become clear that chromatin and histone post-translational modification have fundamental roles in gene regulation. Polycomb repressive complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb repressive system comprises two central protein complexes, Polycomb repressive complex 1 (PRC1) and PRC2, which are essential for normal gene regulation and development. Our early understanding of Polycomb function relied on studies in simple model organisms, but more recently it has become apparent that this system has expanded and diverged in mammals. Detailed studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to identify their target sites in the genome, communicate through feedback mechanisms to create Polycomb chromatin domains and control transcription to regulate gene expression. In this Review, we discuss and contextualize the emerging principles that define how this fascinating chromatin-based system regulates gene expression in mammals.
Collapse
Affiliation(s)
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
54
|
Mardinian K, Adashek JJ, Botta GP, Kato S, Kurzrock R. SMARCA4: Implications of an Altered Chromatin-Remodeling Gene for Cancer Development and Therapy. Mol Cancer Ther 2021; 20:2341-2351. [PMID: 34642211 PMCID: PMC8643328 DOI: 10.1158/1535-7163.mct-21-0433] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
The SWI/SNF chromatin remodeling complex, via nucleosome topology modulation, regulates transcription. The SMARCA4 (BRG1) subunit codes for the ATPase energy engine of the SWI/SNF complex. SMARCA4 is a tumor suppressor that is aberrant in ∼5% to 7% of human malignancies. Class I SMARCA4 alterations (truncating mutations, fusions, and homozygous deletion) lead to loss of function whereas class II alterations (missense mutations) have a dominant negative/gain-of-function effect and/or loss-of function. SMARCA4 alterations typify the ultra-rare small cell carcinomas of the ovary hypercalcemic type (SCCOHT) and SMARCA4-deficient thoracic and uterine sarcomas; they are also found in a subset of more common tumors, for example, lung, colon, bladder, and breast carcinomas. Germline variants in the SMARCA4 gene lead to various hereditary conditions: rhabdoid tumor predisposition syndrome-2 (RTPS2), characterized by loss-of-function alterations and aggressive rhabdoid tumors presenting in infants and young children; and Coffin-Siris syndrome, characterized by dominant negative/gain-of function alterations and developmental delays, microcephaly, unique facies, and hypoplastic nails of the fifth fingers or toes. A minority of rhabdoid tumors have a germline SMARCA4 variant as do >40% of women with SCCOHT. Importantly, immune checkpoint blockade has shown remarkable, albeit anecdotal, responses in SCCOHT. In addition, there is ongoing research into BET, EZH2, HDAC, CDK4/6, and FGFR inhibitors, as well as agents that might induce synthetic lethality via DNA damage repair impairment (ATR inhibitors and platinum chemotherapy), or via the exploitation of mitochondrial oxidative phosphorylation inhibitors or AURKA inhibitors, in SMARCA4-aberrant cancers.
Collapse
Affiliation(s)
- Kristina Mardinian
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Gregory P Botta
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California. .,WIN Consortium, Paris, France
| |
Collapse
|
55
|
Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, Horejsi M, De Rijck J, Debyser Z, Adelman K, Hodges HC, Veverka V. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 2021; 374:1113-1121. [PMID: 34822292 PMCID: PMC8943916 DOI: 10.1126/science.abe2913] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.
Collapse
Affiliation(s)
- Katerina Cermakova
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric A. Smith
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fabry
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Marcela Madlikova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Horejsi
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Karen Adelman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - H. Courtney Hodges
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX,
USA
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles
University, Prague, Czech Republic
| |
Collapse
|
56
|
Laubscher D, Gryder BE, Sunkel BD, Andresson T, Wachtel M, Das S, Roschitzki B, Wolski W, Wu XS, Chou HC, Song YK, Wang C, Wei JS, Wang M, Wen X, Ngo QA, Marques JG, Vakoc CR, Schäfer BW, Stanton BZ, Khan J. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat Commun 2021; 12:6924. [PMID: 34836971 PMCID: PMC8626462 DOI: 10.1038/s41467-021-27176-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.
Collapse
Affiliation(s)
- Dominik Laubscher
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Berkley E. Gryder
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA ,grid.67105.350000 0001 2164 3847Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Benjamin D. Sunkel
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Thorkell Andresson
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Marco Wachtel
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Sudipto Das
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Bernd Roschitzki
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Witold Wolski
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Xiaoli S. Wu
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Hsien-Chao Chou
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Young K. Song
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Chaoyu Wang
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Jun S. Wei
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Meng Wang
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Xinyu Wen
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Quy Ai Ngo
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Joana G. Marques
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Christopher R. Vakoc
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Beat W. Schäfer
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Benjamin Z. Stanton
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
57
|
Qian Y, Zhou Y, Wu B, Chen H, Xu S, Wang Y, Zhang P, Li G, Xu Q, Zhou W, Xu X, Wang H. Novel Variants of the SMARCA4 Gene Associated with Autistic Features Rather Than Typical Coffin-Siris Syndrome in Eight Chinese Pediatric Patients. J Autism Dev Disord 2021; 52:5033-5041. [PMID: 34813034 DOI: 10.1007/s10803-021-05365-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental-related disorders with a high genetic risk. Recently, chromatin remodeling factors have been found to be related to ASDs. SMARCA4 is such a catalytic subunit of the chromatin-remodeling complex. In this report, we identified seven novel missense variants in the SMARCA4 gene from eight pediatric patients. All eight patients had moderate to severe intellectual disability, and seven showed autistic/likely autistic features. Compared with the patients reported in the literature, our patients were less likely to show craniofacial or finger/toe anomalies. Our findings further supported that SMARCA4 is associated with ASDs. We suggest that individuals with the abovementioned phenotypes should consider genetic testing.
Collapse
Affiliation(s)
- Yanyan Qian
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yuanfeng Zhou
- Neurology Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Bingbing Wu
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Huiyao Chen
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Suzhen Xu
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yao Wang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ping Zhang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Gang Li
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhao Zhou
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Huijun Wang
- Center of Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
58
|
Peinado P, Andrades A, Martorell-Marugán J, Haswell JR, Slack FJ, Carmona-Sáez P, Medina PP. The SWI/SNF complex regulates the expression of miR-222, a tumor suppressor microRNA in lung adenocarcinoma. Hum Mol Genet 2021; 30:2263-2271. [PMID: 34240140 PMCID: PMC9989735 DOI: 10.1093/hmg/ddab187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes are key epigenetic regulators that are recurrently mutated in cancer. Most studies of these complexes are focused on their role in regulating protein-coding genes. However, here, we show that SWI/SNF complexes control the expression of microRNAs. We used a SMARCA4-deficient model of lung adenocarcinoma (LUAD) to track changes in the miRNome upon SMARCA4 restoration. We found that SMARCA4-SWI/SNF complexes induced significant changes in the expression of cancer-related microRNAs. The most significantly dysregulated microRNA was miR-222, whose expression was promoted by SMARCA4-SWI/SNF complexes, but not by SMARCA2-SWI/SNF complexes via their direct binding to a miR-222 enhancer region. Importantly, miR-222 expression decreased cell viability, phenocopying the tumor suppressor role of SMARCA4-SWI/SNF complexes in LUAD. Finally, we showed that the miR-222 enhancer region resides in a topologically associating domain that does not contain any cancer-related protein-coding genes, suggesting that miR-222 may be involved in exerting the tumor suppressor role of SMARCA4. Overall, this study highlights the relevant role of the SWI/SNF complex in regulating the non-coding genome, opening new insights into the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Paola Peinado
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada 18071, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Alvaro Andrades
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada 18071, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Jordi Martorell-Marugán
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Jeffrey R Haswell
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Frank J Slack
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Harvard Medical School Initiative for RNA Medicine, Boston, MA 02215, USA
| | - Pedro Carmona-Sáez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain.,Department of Statistics, University of Granada, Granada 18071, Spain
| | - Pedro P Medina
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada 18071, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain.,Health Research Institute of Granada (ibs.Granada), Granada 18012, Spain
| |
Collapse
|
59
|
WNT/β-Catenin Pathway in Soft Tissue Sarcomas: New Therapeutic Opportunities? Cancers (Basel) 2021; 13:cancers13215521. [PMID: 34771683 PMCID: PMC8583315 DOI: 10.3390/cancers13215521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The WNT/β-catenin signaling pathway is involved in fundamental processes for the proliferation and differentiation of mesenchymal stem cells. However, little is known about its relevance for mesenchymal neoplasms, such us soft tissue sarcomas (STS). Chemotherapy based on doxorubicin (DXR) still remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be an unmatched goal. This review covers the most important molecular alterations of the WNT signaling pathway in STS, broadening the current knowledge about STS as well as identifying novel drug targets. Furthermore, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are discussed. Abstract Soft tissue sarcomas (STS) are a very heterogeneous group of rare tumors, comprising more than 50 different histological subtypes that originate from mesenchymal tissue. Despite their heterogeneity, chemotherapy based on doxorubicin (DXR) has been in use for forty years now and remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be a largely unmatched goal. The WNT/β-catenin signaling pathway is involved in various fundamental processes for embryogenic development, including the proliferation and differentiation of mesenchymal stem cells. Although the role of this pathway has been widely researched in neoplasms of epithelial origin, little is known about its relevance for mesenchymal neoplasms. This review covers the most important molecular alterations of the WNT signaling pathway in STS. The detection of these alterations and the understanding of their functional consequences for those pathways controlling sarcomagenesis development and progression are crucial to broaden the current knowledge about STS as well as to identify novel drug targets. In this regard, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are also discussed.
Collapse
|
60
|
Blümli S, Wiechens N, Wu MY, Singh V, Gierlinski M, Schweikert G, Gilbert N, Naughton C, Sundaramoorthy R, Varghese J, Gourlay R, Soares R, Clark D, Owen-Hughes T. Acute depletion of the ARID1A subunit of SWI/SNF complexes reveals distinct pathways for activation and repression of transcription. Cell Rep 2021; 37:109943. [PMID: 34731603 PMCID: PMC8578704 DOI: 10.1016/j.celrep.2021.109943] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
The ARID1A subunit of SWI/SNF chromatin remodeling complexes is a potent tumor suppressor. Here, a degron is applied to detect rapid loss of chromatin accessibility at thousands of loci where ARID1A acts to generate accessible minidomains of nucleosomes. Loss of ARID1A also results in the redistribution of the coactivator EP300. Co-incident EP300 dissociation and lost chromatin accessibility at enhancer elements are highly enriched adjacent to rapidly downregulated genes. In contrast, sites of gained EP300 occupancy are linked to genes that are transcriptionally upregulated. These chromatin changes are associated with a small number of genes that are differentially expressed in the first hours following loss of ARID1A. Indirect or adaptive changes dominate the transcriptome following growth for days after loss of ARID1A and result in strong engagement with cancer pathways. The identification of this hierarchy suggests sites for intervention in ARID1A-driven diseases. Degradation of ARID1A disrupts nucleosomes flanking pluripotency transcription factors EP300 is rapidly redistributed with increased occupancy adjacent to upregulated genes These changes are associated with misregulation of a few hundred genes within 2 h During subsequent days, widespread indirect changes mimic a premalignant state
Collapse
Affiliation(s)
- Seraina Blümli
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola Wiechens
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Meng-Ying Wu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vijender Singh
- Computational Core, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA
| | - Marek Gierlinski
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gabriele Schweikert
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | | | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Renata Soares
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - David Clark
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Building 6A, 6 Centre Drive, Bethesda, MD 20892, USA
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
61
|
SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13215474. [PMID: 34771636 PMCID: PMC8582548 DOI: 10.3390/cancers13215474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary SMARCA4 mutations were over-representative in cisplatin resistance and metastatic triple-negative breast cancer (TNBC). Additionally, SMARCA4 inactivation induced the mesenchymal-like subtype TNBC. The epithelial-to-mesenchymal transition and Hippo-YAP/TAZ pathways were activated in SMARCA4 inactivation samples of both SMARCA4 knockout cell lines and TNBC patients. In SMARCA4 knockout cells, the YAP1 inhibitor verteporfin suppressed YAP1 target genes. This study depicts the clinical importance of SMARCA4 depletion in TNBC and suggests YAP/TAZ as a novel target for cisplatin-resistant patients. Abstract The role of SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, in genomic organization is well studied in various cancer types. However, its oncogenic role and therapeutic implications are relatively unknown in triple-negative breast cancer (TNBC). We investigated the clinical implication and downstream regulation induced by SMARCA4 inactivation using large-scale genome and transcriptome profiles. Additionally, SMARCA4 was knocked out in MDA-MB-468 and MDA-MB-231 using CRISPR/Cas9 to identify gene regulation and a targetable pathway. First, we observed an increase in SMARCA4 mutations in cisplatin resistance and metastasis in TNBC patients. Its inactivation was associated with the mesenchymal-like (MSL) subtype. Gene expression analysis showed that the epithelial-to-mesenchymal transition (EMT) pathway was activated in SMARCA4-deficient patients. Next, the Hippo pathway was activated in the SMARCA4 inactivation group, as evidenced by the higher CTNNB1, TGF-β, and YAP1 oncogene signature scores. In SMARCA4 knockout cells, EMT was upregulated, and the cell line transcriptome changed from the SL to the MSL subtype. SMARCA4 knockout cells showed cisplatin resistance and Hippo-YAP/TAZ target gene activation. The YAP1 inhibitor verteporfin suppressed the expression of YAP1 target genes, and decreased cell viability and invasiveness on SMARCA4 knockout cells. SMARCA4 inactivation in TNBC endowed the resistance to cisplatin via EMT activation. The YAP1 inhibitor could become a novel strategy for patients with SMARCA4-inactivated TNBC.
Collapse
|
62
|
Dobrinić P, Szczurek AT, Klose RJ. PRC1 drives Polycomb-mediated gene repression by controlling transcription initiation and burst frequency. Nat Struct Mol Biol 2021; 28:811-824. [PMID: 34608337 PMCID: PMC7612713 DOI: 10.1038/s41594-021-00661-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The Polycomb repressive system plays a fundamental role in controlling gene expression during mammalian development. To achieve this, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) bind target genes and use histone modification-dependent feedback mechanisms to form Polycomb chromatin domains and repress transcription. The inter-relatedness of PRC1 and PRC2 activity at these sites has made it difficult to discover the specific components of Polycomb chromatin domains that drive gene repression and to understand mechanistically how this is achieved. Here, by exploiting rapid degron-based approaches and time-resolved genomics, we kinetically dissect Polycomb-mediated repression and discover that PRC1 functions independently of PRC2 to counteract RNA polymerase II binding and transcription initiation. Using single-cell gene expression analysis, we reveal that PRC1 acts uniformly within the cell population and that repression is achieved by controlling transcriptional burst frequency. These important new discoveries provide a mechanistic and conceptual framework for Polycomb-dependent transcriptional control.
Collapse
Affiliation(s)
- Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
63
|
Concepcion CP, Ma S, LaFave LM, Bhutkar A, Liu M, DeAngelo LP, Kim JY, Del Priore I, Schoenfeld AJ, Miller M, Kartha VK, Westcott PMK, Sanchez-Rivera FJ, Meli K, Gupta M, Bronson RT, Riely GJ, Rekhtman N, Rudin CM, Kim CF, Regev A, Buenrostro JD, Jacks T. SMARCA4 inactivation promotes lineage-specific transformation and early metastatic features in the lung. Cancer Discov 2021; 12:562-585. [PMID: 34561242 DOI: 10.1158/2159-8290.cd-21-0248] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes CCSP+ cells within the lung in a cell-type dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex - via Smarca4 - acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution.
Collapse
Affiliation(s)
- Carla P Concepcion
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Lindsay M LaFave
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology
| | - Manyuan Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Lydia P DeAngelo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Isabella Del Priore
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Manon Miller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Peter M K Westcott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | - Kevin Meli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | | | | | | | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
| | - Carla F Kim
- Stem Cell Program, Harvard University, Boston Children's Hospital
| | | | | | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
64
|
Doi H, Matsuda T, Sakai A, Matsubara S, Hoka S, Yamaura K, Nakashima K. Early-life midazolam exposure persistently changes chromatin accessibility to impair adult hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A 2021; 118:e2107596118. [PMID: 34526402 PMCID: PMC8463898 DOI: 10.1073/pnas.2107596118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Linkage between early-life exposure to anesthesia and subsequent learning disabilities is of great concern to children and their families. Here we show that early-life exposure to midazolam (MDZ), a widely used drug in pediatric anesthesia, persistently alters chromatin accessibility and the expression of quiescence-associated genes in neural stem cells (NSCs) in the mouse hippocampus. The alterations led to a sustained restriction of NSC proliferation toward adulthood, resulting in a reduction of neurogenesis that was associated with the impairment of hippocampal-dependent memory functions. Moreover, we found that voluntary exercise restored hippocampal neurogenesis, normalized the MDZ-perturbed transcriptome, and ameliorated cognitive ability in MDZ-exposed mice. Our findings thus explain how pediatric anesthesia provokes long-term adverse effects on brain function and provide a possible therapeutic strategy for countering them.
Collapse
Affiliation(s)
- Hiroyoshi Doi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Atsuhiko Sakai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Shuzo Matsubara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 831-8501 Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| |
Collapse
|
65
|
Yang C, Wang Y, Sims MM, He Y, Miller DD, Pfeffer LM. Targeting the Bromodomain of BRG-1/BRM Subunit of the SWI/SNF Complex Increases the Anticancer Activity of Temozolomide in Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090904. [PMID: 34577604 PMCID: PMC8467157 DOI: 10.3390/ph14090904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a deadly and incurable brain cancer with limited therapeutic options. PFI-3 is a small-molecule bromodomain (BRD) inhibitor of the BRM/BRG1 subunits of the SWI/SNF chromatin remodeling complex. The objective of this study is to determine the efficacy of PFI-3 as a potential GBM therapy. We report that PFI-3 binds to these BRDs when expressed in GBM cells. PFI-3 markedly enhanced the antiproliferative and cell death-inducing effects of temozolomide (TMZ) in TMZ-sensitive GBM cells as well as overcame the chemoresistance of highly TMZ-resistant GBM cells. PFI-3 also altered gene expression in GBM and enhanced the basal and interferon-induced expression of a subset of interferon-responsive genes. Besides the effects of PFI-3 on GBM cells in vitro, we found that PFI-3 markedly potentiated the anticancer effect of TMZ in an intracranial GBM animal model, resulting in a marked increase in survival of animals bearing GBM tumors. Taken together, we identified the BRG1 and BRM subunits of SWI/SNF as novel targets in GBM and revealed the therapeutic potential of applying small molecule inhibitors of SWI/SNF to improve the clinical outcome in GBM using standard-of-care chemotherapy.
Collapse
Affiliation(s)
- Chuanhe Yang
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Michelle M. Sims
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.H.); (D.D.M.)
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.H.); (D.D.M.)
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.Y.); (Y.W.); (M.M.S.)
- Correspondence:
| |
Collapse
|
66
|
The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochem Soc Trans 2021; 49:1489-1503. [PMID: 34431497 DOI: 10.1042/bst20190960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.
Collapse
|
67
|
Perspectives and Issues in the Assessment of SMARCA4 Deficiency in the Management of Lung Cancer Patients. Cells 2021; 10:cells10081920. [PMID: 34440689 PMCID: PMC8394288 DOI: 10.3390/cells10081920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Lung cancers are ranked third among the cancer incidence in France in the year 2020, with adenocarcinomas being the commonest sub-type out of ~85% of non-small cell lung carcinomas. The constant evolution of molecular genotyping, which is used for the management of lung adenocarcinomas, has led to the current focus on tumor suppressor genes, specifically the loss of function mutation in the SMARCA4 gene. SMARCA4-deficient adenocarcinomas are preponderant in younger aged male smokers with a predominant solid morphology. The importance of identifying SMARCA4-deficient adenocarcinomas has gained interest for lung cancer management due to its aggressive behavior at diagnosis with vascular invasion and metastasis to the pleura seen upon presentation in most cases. These patients have poor clinical outcome with short overall survival rates, regardless of the stage of disease. The detection of SMARCA4 deficiency is possible in most pathology labs with the advent of sensitive and specific immunohistochemical antibodies. The gene mutations can be detected together with other established lung cancer molecular markers based on the current next generation sequencing panels. Sequencing will also allow the identification of associated gene mutations, notably KRAS, KEAP1, and STK11, which have an impact on the overall survival and progression-free survival of the patients. Predictive data on the treatment with anti-PD-L1 are currently uncertain in this high tumor mutational burden cancer, which warrants more groundwork. Identification of target drugs is also still in pre-clinical testing. Thus, it is paramount to identify the SMARCA4-deficient adenocarcinoma, as it carries worse repercussions on patient survival, despite having an exceptionally low prevalence. Herein, we discuss the pathophysiology of SMARCA4, the clinicopathological consequences, and different detection methods, highlighting the perspectives and challenges in the assessment of SMARCA4 deficiency for the management of non-small cell lung cancer patients. This is imperative, as the contemporary shift on identifying biomarkers associated with tumor suppressor genes such as SMARCA4 are trending; hence, awareness of pathologists and clinicians is needed for the SMARCA4-dNSCLC entity with close follow-up on new management strategies to overcome the poor possibilities of survival in such patients.
Collapse
|
68
|
Tilly BC, Chalkley GE, van der Knaap JA, Moshkin YM, Kan TW, Dekkers DH, Demmers JA, Verrijzer CP. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 2021; 10:69424. [PMID: 34313222 PMCID: PMC8352592 DOI: 10.7554/elife.69424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.
Collapse
Affiliation(s)
- Ben C Tilly
- Department of Biochemistry, Rotterdam, Netherlands
| | | | | | | | | | - Dick Hw Dekkers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Aa Demmers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
69
|
Tallan A, Stanton BZ. Inducible Protein Degradation to Understand Genome Architecture. Biochemistry 2021; 60:2387-2396. [PMID: 34292716 DOI: 10.1021/acs.biochem.1c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review exciting recent advances in protein degradation, with a focus on chromatin structure. In our analysis of the literature, we highlight studies of kinetic control of protein stability for cohesin, condensin, ATP-dependent chromatin remodeling, and pioneer transcription factors. With new connections emerging between chromatin remodeling and genome structure, we anticipate exciting developments at the intersection of these topics to be revealed in the coming years. Moreover, we pay special attention to the 20-year anniversary of PROTACs, with an overview of E3 ligase/target pairings and central questions that might lead to the next generation of PROTACs with an expanded scope and generality. While steady-state experimental measurements with constitutive genome editing are impactful, we highlight complementary approaches for rapid kinetic protein degradation to uncover early targeting functions and to understand the central determinants of genome structure-function relationships.
Collapse
Affiliation(s)
- Alexi Tallan
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Benjamin Z Stanton
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States.,Department of Pediatrics, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
70
|
Boone MA, Taslim C, Crow JC, Selich-Anderson J, Byrum AK, Showpnil IA, Sunkel BD, Wang M, Stanton BZ, Theisen ER, Lessnick SL. The FLI portion of EWS/FLI contributes a transcriptional regulatory function that is distinct and separable from its DNA-binding function in Ewing sarcoma. Oncogene 2021; 40:4759-4769. [PMID: 34145397 PMCID: PMC8298202 DOI: 10.1038/s41388-021-01876-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Ewing sarcoma is an aggressive bone cancer of children and young adults defined by the presence of a chromosomal translocation: t(11;22)(q24;q12). The encoded protein, EWS/FLI, fuses the amino-terminal domain of EWS to the carboxyl-terminus of FLI. The EWS portion is an intrinsically disordered transcriptional regulatory domain, while the FLI portion contains an ETS DNA-binding domain and two flanking regions of unknown function. Early studies using non-Ewing sarcoma models provided conflicting information on the roles of each domain of FLI in EWS/FLI oncogenic function. We therefore sought to define the specific contributions of each FLI domain to EWS/FLI activity in a well-validated Ewing sarcoma model and, in doing so, to better understand Ewing sarcoma development mediated by the fusion protein. We analyzed a series of engineered EWS/FLI mutants with alterations in the FLI portion using a variety of assays. Fluorescence anisotropy, CUT&RUN, and ATAC-sequencing experiments revealed that the isolated ETS domain is sufficient to maintain the normal DNA-binding and chromatin accessibility function of EWS/FLI. In contrast, RNA-sequencing and soft agar colony formation assays revealed that the ETS domain alone was insufficient for transcriptional regulatory and oncogenic transformation functions of the fusion protein. We found that an additional alpha-helix immediately downstream of the ETS domain is required for full transcriptional regulation and EWS/FLI-mediated oncogenesis. These data demonstrate a previously unknown role for FLI in transcriptional regulation that is distinct from its DNA-binding activity. This activity is critical for the cancer-causing function of EWS/FLI and may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Megann A Boone
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse C Crow
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrea K Byrum
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Iftekhar A Showpnil
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Benjamin D Sunkel
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Meng Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin Z Stanton
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Emily R Theisen
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Stephen L Lessnick
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
71
|
Weber CM, Hafner A, Kirkland JG, Braun SMG, Stanton BZ, Boettiger AN, Crabtree GR. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat Struct Mol Biol 2021; 28:501-511. [PMID: 34117481 PMCID: PMC8504423 DOI: 10.1038/s41594-021-00604-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The mammalian SWI/SNF complex, or BAF complex, has a conserved and direct role in antagonizing Polycomb-mediated repression. Yet, BAF also promotes repression by Polycomb in stem cells and cancer. How BAF both antagonizes and promotes Polycomb-mediated repression remains unknown. Here, we utilize targeted protein degradation to dissect the BAF-Polycomb axis in mouse embryonic stem cells on short timescales. We report that rapid BAF depletion redistributes Polycomb repressive complexes PRC1 and PRC2 from highly occupied domains, like Hox clusters, to weakly occupied sites normally opposed by BAF. Polycomb redistribution from highly repressed domains results in their decompaction, gain of active epigenomic features and transcriptional derepression. Surprisingly, through dose-dependent degradation of PRC1 and PRC2, we identify a conventional role for BAF in Polycomb-mediated repression, in addition to global Polycomb redistribution. These findings provide new mechanistic insight into the highly dynamic state of the Polycomb-Trithorax axis.
Collapse
Affiliation(s)
- Christopher M. Weber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Antonina Hafner
- Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob G. Kirkland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.,Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Simon M. G. Braun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.,University of Geneva, Department of Genetic Medicine, Geneva, Switzerland
| | - Benjamin Z. Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Correspondence and requests for materials should be addressed to G.R.C.
| |
Collapse
|
72
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
73
|
Isidro RA, Dong F, Hornick JL, Wee JO, Agoston A, Patil DT, Deshpande V, Zhao L. Verrucous carcinoma of the oesophagus is a genetically distinct subtype of oesophageal squamous cell carcinoma. Histopathology 2021; 79:642-649. [PMID: 33960520 DOI: 10.1111/his.14395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Oesophageal verrucous carcinoma (VSCC) is a rare and morphologically distinct type of oesophageal squamous cell carcinoma (SCC). Diagnosing VSCC on biopsy material is challenging, given the lack of significant atypia and the presence of keratinising epithelium and exophytic growth. The molecular pathogenesis of VSCC remains unclear. The aim of this study was to characterise the genomic landscape of VSCC in comparison to conventional oesophageal SCC. METHODS AND RESULTS Three cases of VSCC from the Brigham and Women's Hospital pathology archive were identified. Formalin-fixed, paraffin-embedded (FFPE) tumour tissue was used for p16 immunohistochemistry (IHC), high-risk human papillomavirus (HPV) in-situ mRNA hybridisation (ISH) and DNA isolation. Tumour DNA was sequenced using a targeted massively parallel sequencing assay enriched for cancer-associated genes. Three additional cases of VSCC were identified by image review of The Cancer Genome Atlas (TCGA) oesophageal SCC cohort. VSCC cases were negative for p16 IHC and high-risk HPV ISH. TP53 mutations (P < 0.001) and copy number variants (CNVs) for CDKN2A (P < 0.001), CDKN2B (P < 0.01) and CCND1 (P < 0.01) were absent in VSCC and significantly less frequent in comparison to conventional SCC. Five VSCC cases featured SMARCA4 missense mutations or in-frame deletions compared to only four of 88 conventional SCC cases (P < 0.001). VSCC featured driver mutations in PIK3CA, HRAS and GNAS. Recurrent CNVs were rare in VSCC. CONCLUSIONS VSCC is not only morphologically but also genetically distinct from conventional oesophageal SCC, featuring frequent SMARCA4 mutations and infrequent TP53 mutations or CDKN2A/B CNVs. Molecular findings may aid in establishing the challenging diagnosis of VSCC.
Collapse
Affiliation(s)
- Raymond A Isidro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jon O Wee
- Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Fursova NA, Turberfield AH, Blackledge NP, Findlater EL, Lastuvkova A, Huseyin MK, Dobrinić P, Klose RJ. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev 2021; 35:749-770. [PMID: 33888563 PMCID: PMC8091973 DOI: 10.1101/gad.347005.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anne H Turberfield
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Emma L Findlater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
75
|
Yao B, Gui T, Zeng X, Deng Y, Wang Z, Wang Y, Yang D, Li Q, Xu P, Hu R, Li X, Chen B, Wang J, Zen K, Li H, Davis MJ, Herold MJ, Pan HF, Jiang ZW, Huang DCS, Liu M, Ju J, Zhao Q. PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Med 2021; 13:58. [PMID: 33853662 PMCID: PMC8048298 DOI: 10.1186/s13073-021-00871-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aberrant changes in epigenetic mechanisms such as histone modifications play an important role in cancer progression. PRMT1 which triggers asymmetric dimethylation of histone H4 on arginine 3 (H4R3me2a) is upregulated in human colorectal cancer (CRC) and is essential for cell proliferation. However, how this dysregulated modification might contribute to malignant transitions of CRC remains poorly understood. METHODS In this study, we integrated biochemical assays including protein interaction studies and chromatin immunoprecipitation (ChIP), cellular analysis including cell viability, proliferation, colony formation, and migration assays, clinical sample analysis, microarray experiments, and ChIP-Seq data to investigate the potential genomic recognition pattern of H4R3me2s in CRC cells and its effect on CRC progression. RESULTS We show that PRMT1 and SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, act cooperatively to promote colorectal cancer (CRC) progression. We find that SMARCA4 is a novel effector molecule of PRMT1-mediated H4R3me2a. Mechanistically, we show that H4R3me2a directly recruited SMARCA4 to promote the proliferative, colony-formative, and migratory abilities of CRC cells by enhancing EGFR signaling. We found that EGFR and TNS4 were major direct downstream transcriptional targets of PRMT1 and SMARCA4 in colon cells, and acted in a PRMT1 methyltransferase activity-dependent manner to promote CRC cell proliferation. In vivo, knockdown or inhibition of PRMT1 profoundly attenuated the growth of CRC cells in the C57BL/6 J-ApcMin/+ CRC mice model. Importantly, elevated expression of PRMT1 or SMARCA4 in CRC patients were positively correlated with expression of EGFR and TNS4, and CRC patients had shorter overall survival. These findings reveal a critical interplay between epigenetic and transcriptional control during CRC progression, suggesting that SMARCA4 is a novel key epigenetic modulator of CRC. Our findings thus highlight PRMT1/SMARCA4 inhibition as a potential therapeutic intervention strategy for CRC. CONCLUSION PRMT1-mediated H4R3me2a recruits SMARCA4, which promotes colorectal cancer progression by enhancing EGFR signaling.
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.,Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Tao Gui
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hua-Feng Pan
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Wei Jiang
- Department of General Surgery, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
76
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
77
|
Bi-Lin KW, Seshachalam PV, Tuoc T, Stoykova A, Ghosh S, Singh MK. Critical role of the BAF chromatin remodeling complex during murine neural crest development. PLoS Genet 2021; 17:e1009446. [PMID: 33750945 PMCID: PMC8016319 DOI: 10.1371/journal.pgen.1009446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/01/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The BAF complex plays an important role in the development of a wide range of tissues by modulating gene expression programs at the chromatin level. However, its role in neural crest development has remained unclear. To determine the role of the BAF complex, we deleted BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF complex in neural crest cells (NCCs). Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial, pharyngeal arch artery, and OFT defects. RNAseq and transcription factor enrichment analysis revealed that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the migration, proliferation, and differentiation of the NCCs. Furthermore, we demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate an important role of the BAF complex in modulating the gene regulatory network essential for neural crest development. Neural crest cells (NCCs) are a multipotent and migratory cell population that is induced at the neural plate border during neurulation and contributes to the formation of a wide range of tissues. Defects in the development, differentiation, or migration of NCCs lead to various birth defects including craniofacial and heart anomalies. Here, by genetically deleting BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF chromatin remodeling complex, we demonstrate that the BAF complex is essential for the proliferation, survival, and differentiation of the NCCs. Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial and cardiovascular defects. By performing RNAseq and transcription factor enrichment analysis we show that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the development of the NCCs. Furthermore, the BAF complex component physically interacts with the Hippo signaling components in NCCs to regulate gene expression. We demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate a critical role of the BAF complex in modulating the gene regulatory network essential for the proper development of neural crest and neural crest-derived tissues.
Collapse
Affiliation(s)
- Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | | | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | | | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Manvendra K. Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
- * E-mail:
| |
Collapse
|
78
|
Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021; 53:269-278. [PMID: 33558760 PMCID: PMC7614082 DOI: 10.1038/s41588-021-00777-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Cancer-associated, loss-of-function mutations in genes encoding subunits of the BRG1/BRM-associated factor (BAF) chromatin-remodeling complexes1-8 often cause drastic chromatin accessibility changes, especially in important regulatory regions9-19. However, it remains unknown how these changes are established over time (for example, immediate consequences or long-term adaptations), and whether they are causative for intracomplex synthetic lethalities, abrogating the formation or activity of BAF complexes9,20-24. In the present study, we use the dTAG system to induce acute degradation of BAF subunits and show that chromatin alterations are established faster than the duration of one cell cycle. Using a pharmacological inhibitor and a chemical degrader of the BAF complex ATPase subunits25,26, we show that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in an almost complete loss of chromatin accessibility at BAF-controlled sites, especially also at superenhancers, providing a mechanism for intracomplex synthetic lethalities.
Collapse
|
79
|
Giles KA, Gould CM, Achinger-Kawecka J, Page SG, Kafer GR, Rogers S, Luu PL, Cesare AJ, Clark SJ, Taberlay PC. BRG1 knockdown inhibits proliferation through multiple cellular pathways in prostate cancer. Clin Epigenetics 2021; 13:37. [PMID: 33596994 PMCID: PMC7888175 DOI: 10.1186/s13148-021-01023-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. Results Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. Conclusions Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01023-7.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia.
| |
Collapse
|
80
|
Wang Y, Yang CH, Schultz AP, Sims MM, Miller DD, Pfeffer LM. Brahma-Related Gene-1 (BRG1) promotes the malignant phenotype of glioblastoma cells. J Cell Mol Med 2021; 25:2956-2966. [PMID: 33528916 PMCID: PMC7957270 DOI: 10.1111/jcmm.16330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumour that is resistant to existing therapeutics. Identifying signalling pathways deregulated in GBM that can be targeted therapeutically is critical to improve the present dismal prognosis for GBM patients. In this report, we have identified that the BRG1 (Brahma‐Related Gene‐1) catalytic subunit of the SWI/SNF chromatin remodelling complex promotes the malignant phenotype of GBM cells. We found that BRG1 is ubiquitously expressed in tumour tissue from GBM patients, and high BRG1 expression levels are localized to specific brain tumour regions. Knockout (KO) of BRG1 by CRISPR‐Cas9 gene editing had minimal effects on GBM cell proliferation, but significantly inhibited GBM cell migration and invasion. BRG1‐KO also sensitized GBM cells to the anti‐proliferative effects of the anti‐cancer agent temozolomide (TMZ), which is used to treat GBM patients in the clinic, and selectively altered STAT3 tyrosine phosphorylation and gene expression. These results demonstrate that BRG‐1 promotes invasion and migration, and decreases chemotherapy sensitivity, indicating that it functions in an oncogenic manner in GBM cells. Taken together, our findings suggest that targeting BRG1 in GBM may have therapeutic benefit in the treatment of this deadly form of brain cancer.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew P Schultz
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences (College of Pharmacy), University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
81
|
Johann PD. Invited Review: Dysregulation of chromatin remodellers in paediatric brain tumours - SMARCB1 and beyond. Neuropathol Appl Neurobiol 2021; 46:57-72. [PMID: 32307752 DOI: 10.1111/nan.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mutations in chromatin remodelling genes occur in approximately 25% of all human tumours (Kadoch et al. Nat Genet 45: 592-601, 2013). The spectrum of alterations is broad and comprises single nucleotide variants, insertion/deletions and more complex structural variations. The single most often affected remodelling complex is the SWI/SNF complex (SWItch/sucrose non-fermentable). In the field of paediatric neuro-oncology, the spectrum of affected genes implicated in epigenetic remodelling is narrower with SMARCB1 and SMARCA4 being the most frequent. The low mutation frequencies in many of the SWI/SNF mutant entities underline the fact that perturbed chromatin remodelling is the most salient factor in tumourigenesis and could thus be a potential therapeutic opportunity. Here, I review the genetic basis of aberrant chromatin remodelling in paediatric brain tumours and discuss their impact on the epigenome in the respective entities, mainly medulloblastomas and rhabdoid tumours.
Collapse
Affiliation(s)
- P D Johann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany.,Department of Paediatric Haematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
82
|
Brg1 restrains the pro-inflammatory properties of ILC3s and modulates intestinal immunity. Mucosal Immunol 2021; 14:38-52. [PMID: 32612160 PMCID: PMC7790751 DOI: 10.1038/s41385-020-0317-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/10/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s), a subset of the innate lymphoid cells, are abundantly present in the intestine and are crucial regulators of intestinal inflammation. Brg1 (Brahma-related gene 1), a catalytic subunit of the mammalian SWI-SNF-like chromatin-remodeling BAF complex, regulates the development and function of various immune cells. Here, by genetic deletion of Brg1 in ILC3s (Smarca4ΔILC3), we prove that Brg1 supports the differentiation of NKp46+ILC3s by promoting the T-bet expression in NKp46-ILC3s, which facilitates the conversion of NKp46-ILC3s to NKp46+ILC3s. Strikingly, Smarca4ΔILC3 mice of the Rag1-/- background develop spontaneous colitis accompanied with increased GM-CSF production in ILC3s. By construction of a mixed bone marrow chimeric system, we demonstrate that Brg1 enhances T-bet and inhibits GM-CSF expression in ILC3s through a cell-intrinsic manner. Blockade of GM-CSF ameliorates colitis in Rag1-/-Smarca4ΔILC3 mice, suggesting that the suppression of GM-CSF production from ILC3s by Brg1 serves as a critical mechanism for Brg1 to restrain intestinal inflammation. We have further demonstrated that Brg1 binds to the Tbx21 and Csf2 gene locus in ILC3s, and favors the active and repressive histones modifications on gene locus of Tbx21 and Csf2 respectively. Our work reveals the essential role of Brg1 in intestinal immunity by regulating ILC3s.
Collapse
|
83
|
Clapier CR, Verma N, Parnell TJ, Cairns BR. Cancer-Associated Gain-of-Function Mutations Activate a SWI/SNF-Family Regulatory Hub. Mol Cell 2020; 80:712-725.e5. [PMID: 33058778 PMCID: PMC7853424 DOI: 10.1016/j.molcel.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
SWI/SNF-family remodelers (BAF/PBAF in mammals) are essential chromatin regulators, and mutations in human BAF/PBAF components are associated with ∼20% of cancers. Cancer-associated missense mutations in human BRG1 (encoding the catalytic ATPase) have been characterized previously as conferring loss-of-function. Here, we show that cancer-associated missense mutations in BRG1, when placed into the orthologous Sth1 ATPase of the yeast RSC remodeler, separate into two categories: loss-of-function enzymes, or instead, gain-of-function enzymes that greatly improve DNA translocation efficiency and nucleosome remodeling in vitro. Our work identifies a structural "hub," formed by the association of several Sth1 domains, that regulates ATPase activity and DNA translocation efficiency. Remarkably, all gain-of-function cancer-associated mutations and all loss-of-function mutations physically localize to distinct adjacent regions in the hub, which specifically regulate and implement DNA translocation, respectively. In vivo, only gain-of-function cancer-associated mutations conferred precocious chromatin accessibility. Taken together, we provide a structure-function mechanistic basis for cancer-associated hyperactivity.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Naveen Verma
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
84
|
LSH mediates gene repression through macroH2A deposition. Nat Commun 2020; 11:5647. [PMID: 33159050 PMCID: PMC7648012 DOI: 10.1038/s41467-020-19159-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The human Immunodeficiency Centromeric Instability Facial Anomalies (ICF) 4 syndrome is a severe disease with increased mortality caused by mutation in the LSH gene. Although LSH belongs to a family of chromatin remodeling proteins, it remains unknown how LSH mediates its function on chromatin in vivo. Here, we use chemical-induced proximity to rapidly recruit LSH to an engineered locus and find that LSH specifically induces macroH2A1.2 and macroH2A2 deposition in an ATP-dependent manner. Tethering of LSH induces transcriptional repression and silencing is dependent on macroH2A deposition. Loss of LSH decreases macroH2A enrichment at repeat sequences and results in transcriptional reactivation. Likewise, reduction of macroH2A by siRNA interference mimicks transcriptional reactivation. ChIP-seq analysis confirmed that LSH is a major regulator of genome-wide macroH2A distribution. Tethering of ICF4 mutations fails to induce macroH2A deposition and ICF4 patient cells display reduced macroH2A deposition and transcriptional reactivation supporting a pathogenic role for altered marcoH2A deposition. We propose that LSH is a major chromatin modulator of the histone variant macroH2A and that its ability to insert marcoH2A into chromatin and transcriptionally silence is disturbed in the ICF4 syndrome. The human ICF 4 syndrome is caused by mutation of the chromatin remodeller LSH. Here, the authors show that LSH depletion disrupts the ability of histone variant macroH2A to insert into chromatin and silence transcription.
Collapse
|
85
|
Fernando TM, Piskol R, Bainer R, Sokol ES, Trabucco SE, Zhang Q, Trinh H, Maund S, Kschonsak M, Chaudhuri S, Modrusan Z, Januario T, Yauch RL. Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nat Commun 2020; 11:5551. [PMID: 33144586 PMCID: PMC7609548 DOI: 10.1038/s41467-020-19402-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic studies performed in cancer patients and tumor-derived cell lines have identified a high frequency of alterations in components of the mammalian switch/sucrose non-fermentable (mSWI/SNF or BAF) chromatin remodeling complex, including its core catalytic subunit, SMARCA4. Cells exhibiting loss of SMARCA4 rely on its paralog, SMARCA2, making SMARCA2 an attractive therapeutic target. Here we report the genomic profiling of solid tumors from 131,668 cancer patients, identifying 9434 patients with one or more SMARCA4 gene alterations. Homozygous SMARCA4 mutations were highly prevalent in certain tumor types, notably non-small cell lung cancer (NSCLC), and associated with reduced survival. The large sample size revealed previously uncharacterized hotspot missense mutations within the SMARCA4 helicase domain. Functional characterization of these mutations demonstrated markedly reduced remodeling activity. Surprisingly, a few SMARCA4 missense variants partially or fully rescued paralog dependency, underscoring that careful selection criteria must be employed to identify patients with inactivating, homozygous SMARCA4 missense mutations who may benefit from SMARCA2-targeted therapy.
Collapse
Affiliation(s)
- Tharu M Fernando
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Robert Piskol
- Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Ethan S Sokol
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA, 02141, USA
| | - Sally E Trabucco
- Cancer Genomics Research, Foundation Medicine, Cambridge, MA, 02141, USA
| | - Qing Zhang
- Product Development Personalized Healthcare Data Science, Genentech, South San Francisco, CA, 94080, USA
| | - Huong Trinh
- Product Development Personalized Healthcare Data Science, Genentech, South San Francisco, CA, 94080, USA
| | - Sophia Maund
- Oncology Biomarker Development, Genentech, South San Francisco, CA, 94080, USA
| | - Marc Kschonsak
- Structural Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Subhra Chaudhuri
- Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Molecular Biology, Genentech, South San Francisco, CA, 94080, USA
| | - Thomas Januario
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA
| | - Robert L Yauch
- Discovery Oncology, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
86
|
Hung YP, Redig A, Hornick JL, Sholl LM. ARID1A mutations and expression loss in non-small cell lung carcinomas: clinicopathologic and molecular analysis. Mod Pathol 2020; 33:2256-2268. [PMID: 32572156 DOI: 10.1038/s41379-020-0592-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
A subset of non-small cell lung carcinomas harbors mutations in ARID1A, a component of the SWI/SNF complex implicated in modulating response to immunotherapy in diverse tumors. This study characterized the spectrum of ARID1A mutations and expression by targeted sequencing and immunohistochemistry, respectively. In a consecutive series of 2440 non-small cell lung carcinomas, ARID1A mutations were present in 184 (7.5%), within which 69% harbored loss-of-function mutations. Of 139 ARID1A-mutated tumors available for immunohistochemistry, ARID1A expression was aberrant in 64 (46%), including diffuse complete loss in 13 (9%), diffuse diminished expression in 17 (12%), and heterogeneous loss with a geographic or interspersed pattern in 34 (25%). Complete loss of ARID1A expression correlated with ARID1A premature-truncating mutations with evidence of biallelic inactivation. Both ARID1A mutations and aberrant expression correlated with a lack of EGFR mutations, frequent TP53 mutations, and increased mutational burden. ARID1A-mutant tumors showed similar overall survival compared with ARID1A-wild-type tumors; however, among patients with ARID1A-mutant tumors, aberrant ARID1A expression correlated with worse overall survival. Lung tumors with diffuse loss of ARID1A expression were predominantly adenocarcinomas, poorly differentiated, almost exclusively from smokers, and enriched for mismatch repair deficiency. Geographic heterogeneous ARID1A loss was notable in three tumors, including an adenocarcinoma showing fetal-like differentiation in areas with ARID1A loss. Overall, loss of ARID1A expression at the protein level is seen in fewer than 2% of non-small cell lung carcinomas but is associated with distinct clinicopathologic features. Our findings suggest a need for caution in interpretation of the functional significance of ARID1A mutations from sequencing data.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda Redig
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
87
|
Schoenfeld AJ, Bandlamudi C, Lavery JA, Montecalvo J, Namakydoust A, Rizvi H, Egger J, Concepcion CP, Paul S, Arcila ME, Daneshbod Y, Chang J, Sauter JL, Beras A, Ladanyi M, Jacks T, Rudin CM, Taylor BS, Donoghue MTA, Heller G, Hellmann MD, Rekhtman N, Riely GJ. The Genomic Landscape of SMARCA4 Alterations and Associations with Outcomes in Patients with Lung Cancer. Clin Cancer Res 2020; 26:5701-5708. [PMID: 32709715 PMCID: PMC7641983 DOI: 10.1158/1078-0432.ccr-20-1825] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE SMARCA4 mutations are among the most common recurrent alterations in non-small cell lung cancer (NSCLC), but the relationship to other genomic abnormalities and clinical impact has not been established. EXPERIMENTAL DESIGN To characterize SMARCA4 alterations in NSCLC, we analyzed the genomic, protein expression, and clinical outcome data of patients with SMARCA4 alterations treated at Memorial Sloan Kettering. RESULTS In 4,813 tumors from patients with NSCLC, we identified 8% (n = 407) of patients with SMARCA4-mutant lung cancer. We describe two categories of SMARCA4 mutations: class 1 mutations (truncating mutations, fusions, and homozygous deletion) and class 2 mutations (missense mutations). Protein expression loss was associated with class 1 mutation (81% vs. 0%, P < 0.001). Both classes of mutation co-occurred more frequently with KRAS, STK11, and KEAP1 mutations compared with SMARCA4 wild-type tumors (P < 0.001). In patients with metastatic NSCLC, SMARCA4 alterations were associated with shorter overall survival, with class 1 alterations associated with shortest survival times (P < 0.001). Conversely, we found that treatment with immune checkpoint inhibitors (ICI) was associated with improved outcomes in patients with SMARCA4-mutant tumors (P = 0.01), with class 1 mutations having the best response to ICIs (P = 0.027). CONCLUSIONS SMARCA4 alterations can be divided into two clinically relevant genomic classes associated with differential protein expression as well as distinct prognostic and treatment implications. Both classes co-occur with KEAP1, STK11, and KRAS mutations, but individually represent independent predictors of poor prognosis. Despite association with poor outcomes, SMARCA4-mutant lung cancers may be more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Adam J Schoenfeld
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Chai Bandlamudi
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica A Lavery
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Azadeh Namakydoust
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Hira Rizvi
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn Egger
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carla P Concepcion
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sonal Paul
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital - Weill Cornell Medicine, New York, New York
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yahya Daneshbod
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Beras
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charles M Rudin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark T A Donoghue
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Gregory J Riely
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
88
|
Reske JJ, Wilson MR, Holladay J, Wegener M, Adams M, Chandler RL. SWI/SNF inactivation in the endometrial epithelium leads to loss of epithelial integrity. Hum Mol Genet 2020; 29:3412-3430. [PMID: 33075803 PMCID: PMC7749707 DOI: 10.1093/hmg/ddaa227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Although ARID1A mutations are a hallmark feature, mutations in other SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling subunits are also observed in endometrial neoplasms. Here, we interrogated the roles of Brahma/SWI2-related gene 1 (BRG1, SMARCA4), the SWI/SNF catalytic subunit, in the endometrial epithelium. BRG1 loss affects more than one-third of all active genes and highly overlaps with the ARID1A gene regulatory network. Chromatin immunoprecipitation studies revealed widespread subunit-specific differences in transcriptional regulation, as BRG1 promoter interactions are associated with gene activation, while ARID1A binding is associated with gene repression. However, we identified a physiologically relevant subset of BRG1 and ARID1A co-regulated epithelial identity genes. Mice were genetically engineered to inactivate BRG1 specifically in the endometrial epithelium. Endometrial glands were observed embedded in uterine myometrium, indicating adenomyosis-like phenotypes. Molecular similarities were observed between BRG1 and ARID1A mutant endometrial cells in vivo, including loss of epithelial cell adhesion and junction genes. Collectively, these studies illustrate overlapping contributions of multiple SWI/SNF subunit mutations in the translocation of endometrium to distal sites, with loss of cell integrity being a common feature in SWI/SNF mutant endometrial epithelia.
Collapse
Affiliation(s)
- Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- To whom correspondence should be addressed at: Grand Rapids Research Center, 400 Monroe NW, Grand Rapids, MI 49503, USA. Tel: +1 6162340980;
| |
Collapse
|
89
|
CHD8 dosage regulates transcription in pluripotency and early murine neural differentiation. Proc Natl Acad Sci U S A 2020; 117:22331-22340. [PMID: 32839322 DOI: 10.1073/pnas.1921963117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chromatin remodeler CHD8 is among the most frequently mutated genes in autism spectrum disorder (ASD). CHD8 has a dosage-sensitive role in ASD, but when and how it becomes critical to human social function is unclear. Here, we conducted genomic analyses of heterozygous and homozygous Chd8 mouse embryonic stem cells and differentiated neural progenitors. We identify dosage-sensitive CHD8 transcriptional targets, sites of regulated accessibility, and an unexpected cooperation with SOX transcription factors. Collectively, our findings reveal that CHD8 negatively regulates expression of neuronal genes to maintain pluripotency and also during differentiation. Thus, CHD8 is essential for both the maintenance of pluripotency and neural differentiation, providing mechanistic insight into its function with potential implications for ASD.
Collapse
|
90
|
Abstract
ATP-dependent chromatin remodelling enzymes are molecular machines that act to reconfigure the structure of nucleosomes. Until recently, little was known about the structure of these enzymes. Recent progress has revealed that their interaction with chromatin is dominated by ATPase domains that contact DNA at favoured locations on the nucleosome surface. Contacts with histones are limited but play important roles in modulating activity. The ATPase domains do not act in isolation but are flanked by diverse accessory domains and subunits. New structures indicate how these subunits are arranged in multi-subunit complexes providing a framework from which to understand how a common motor is applied to distinct functions.
Collapse
Affiliation(s)
- Ramasubramian Sundaramoorthy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
91
|
Marcum RD, Reyes AA, He Y. Structural Insights into the Evolutionarily Conserved BAF Chromatin Remodeling Complex. BIOLOGY 2020; 9:biology9070146. [PMID: 32629987 PMCID: PMC7408276 DOI: 10.3390/biology9070146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The switch/sucrose nonfermentable (SWI/SNF) family of proteins acts to regulate chromatin accessibility and plays an essential role in multiple cellular processes. A high frequency of mutations has been found in SWI/SNF family subunits by exome sequencing in human cancer, and multiple studies support its role in tumor suppression. Recent structural studies of yeast SWI/SNF and its human homolog, BAF (BRG1/BRM associated factor), have provided a model for their complex assembly and their interaction with nucleosomal substrates, revealing the molecular function of individual subunits as well as the potential impact of cancer-associated mutations on the remodeling function. Here we review the structural conservation between yeast SWI/SNF and BAF and examine the role of highly mutated subunits within the BAF complex.
Collapse
Affiliation(s)
- Ryan D. Marcum
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
| | - Alexis A. Reyes
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA; (R.D.M.); (A.A.R.)
- Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, 676 N. St. Clair, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
92
|
Lazar JE, Stehling-Sun S, Nandakumar V, Wang H, Chee DR, Howard NP, Acosta R, Dunn D, Diegel M, Neri F, Castillo A, Ibarrientos S, Lee K, Lescano N, Van Biber B, Nelson J, Halow J, Sandstrom R, Bates D, Urnov FD, Stamatoyannopoulos JA, Funnell APW. Global Regulatory DNA Potentiation by SMARCA4 Propagates to Selective Gene Expression Programs via Domain-Level Remodeling. Cell Rep 2020; 31:107676. [PMID: 32460018 DOI: 10.1016/j.celrep.2020.107676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 04/30/2020] [Indexed: 01/02/2023] Open
Abstract
The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.
Collapse
Affiliation(s)
- John E Lazar
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Vivek Nandakumar
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Hao Wang
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Daniel R Chee
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fidencio Neri
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Andres Castillo
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Sean Ibarrientos
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Kristen Lee
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ninnia Lescano
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Ben Van Biber
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Jessica Halow
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | | | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - Fyodor D Urnov
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
| | - John A Stamatoyannopoulos
- Departments of Genome Sciences and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA.
| | | |
Collapse
|
93
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
94
|
van der Vaart A, Godfrey M, Portegijs V, van den Heuvel S. Dose-dependent functions of SWI/SNF BAF in permitting and inhibiting cell proliferation in vivo. SCIENCE ADVANCES 2020; 6:eaay3823. [PMID: 32494730 PMCID: PMC7250657 DOI: 10.1126/sciadv.aay3823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
SWI/SNF (switch/sucrose nonfermenting) complexes regulate transcription through chromatin remodeling and opposing gene silencing by Polycomb group (PcG) proteins. Genes encoding SWI/SNF components are critical for normal development and frequently mutated in human cancer. We characterized the in vivo contributions of SWI/SNF and PcG complexes to proliferation-differentiation decisions, making use of the reproducible development of the nematode Caenorhabditis elegans. RNA interference, lineage-specific gene knockout, and targeted degradation of SWI/SNF BAF components induced either overproliferation or acute proliferation arrest of precursor cells, depending on residual protein levels. Our data show that a high SWI/SNF BAF dosage is needed to arrest cell division during differentiation and to oppose PcG-mediated repression. In contrast, a low SWI/SNF protein level is necessary to sustain cell proliferation and hyperplasia, even when PcG repression is blocked. These observations show that incomplete inactivation of SWI/SNF components can eliminate a tumor-suppressor activity while maintaining an essential transcription regulatory function.
Collapse
Affiliation(s)
| | | | - Vincent Portegijs
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | | |
Collapse
|
95
|
Lee S, Kim J, Min H, Seong RH. RORγt-driven T H17 Cell Differentiation Requires Epigenetic Control by the Swi/Snf Chromatin Remodeling Complex. iScience 2020; 23:101106. [PMID: 32434140 PMCID: PMC7235640 DOI: 10.1016/j.isci.2020.101106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic regulation, including chromatin accessibility and posttranslational modifications of histones, is of importance for T cell lineage decision. TH17 cells play a critical role in protective mucosal immunity and pathogenic multiple autoimmune diseases. The differentiation of TH17 cells is dictated by a master transcription factor, RORγt. However, the epigenetic mechanism that controls TH17 cell differentiation remains poorly understood. Here we show that the Swi/Snf complex is required for TH17-mediated cytokine production both in vitro and in vivo. We demonstrate that RORγt recruits and forms a complex with the Swi/Snf complex to cooperate for the RORγt-mediated epigenetic modifications of target genes, including both permissive and repressive ones for TH17 cell differentiation. Our findings thus highlight the Swi/Snf complex as an essential epigenetic regulator of TH17 cell differentiation and provide a basis for the understanding of how a master transcription factor RORγt collaborates with the Swi/Snf complex to govern epigenetic regulation. The Swi/Snf complex plays essential roles for TH17 differentiation SRG3/mBAF155 deficiency abrogates the expression of major target genes of RORγt RORγt-dependent TH17 transcriptional program requires the Swi/Snf complex The Swi/Snf complex is required for RORγt-driven histone modifications
Collapse
Affiliation(s)
- Sungkyu Lee
- Departement of Biological Sciences, Institute of Molecular Biology and Genetics (Bldg 105), Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul 151-742-08826, Korea
| | - Jieun Kim
- Departement of Biological Sciences, Institute of Molecular Biology and Genetics (Bldg 105), Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul 151-742-08826, Korea
| | - Hyungyu Min
- Departement of Biological Sciences, Institute of Molecular Biology and Genetics (Bldg 105), Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul 151-742-08826, Korea
| | - Rho H Seong
- Departement of Biological Sciences, Institute of Molecular Biology and Genetics (Bldg 105), Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul 151-742-08826, Korea.
| |
Collapse
|
96
|
The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol 2020; 17:435-448. [PMID: 32303701 DOI: 10.1038/s41571-020-0357-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer genome-sequencing studies have revealed a remarkably high prevalence of mutations in genes encoding subunits of the SWI/SNF chromatin-remodelling complexes, with nearly 25% of all cancers harbouring aberrations in one or more of these genes. A role for such aberrations in tumorigenesis is evidenced by cancer predisposition in both carriers of germline loss-of-function mutations and genetically engineered mouse models with inactivation of any of several SWI/SNF subunits. Whereas many of the most frequently mutated oncogenes and tumour-suppressor genes have been studied for several decades, the cancer-promoting role of mutations in SWI/SNF genes has been recognized only more recently, and thus comparatively less is known about these alterations. Consequently, increasing research interest is being focused on understanding the prognostic and, in particular, the potential therapeutic implications of mutations in genes encoding SWI/SNF subunits. Herein, we review the burgeoning data on the mechanisms by which mutations affecting SWI/SNF complexes promote cancer and describe promising emerging opportunities for targeted therapy, including immunotherapy with immune-checkpoint inhibitors, presented by these mutations. We also highlight ongoing clinical trials open specifically to patients with cancers harbouring mutations in certain SWI/SNF genes.
Collapse
|
97
|
Weiss K, Lazar HP, Kurolap A, Martinez AF, Paperna T, Cohen L, Smeland MF, Whalen S, Heide S, Keren B, Terhal P, Irving M, Takaku M, Roberts JD, Petrovich RM, Schrier Vergano SA, Kenney A, Hove H, DeChene E, Quinonez SC, Colin E, Ziegler A, Rumple M, Jain M, Monteil D, Roeder ER, Nugent K, van Haeringen A, Gambello M, Santani A, Medne L, Krock B, Skraban CM, Zackai EH, Dubbs HA, Smol T, Ghoumid J, Parker MJ, Wright M, Turnpenny P, Clayton-Smith J, Metcalfe K, Kurumizaka H, Gelb BD, Baris Feldman H, Campeau PM, Muenke M, Wade PA, Lachlan K. The CHD4-related syndrome: a comprehensive investigation of the clinical spectrum, genotype-phenotype correlations, and molecular basis. Genet Med 2020; 22:389-397. [PMID: 31388190 PMCID: PMC8900827 DOI: 10.1038/s41436-019-0612-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.
Collapse
Affiliation(s)
- Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.
| | - Hayley P Lazar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Lior Cohen
- Genetics Institute, Schneider Children's Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Sandra Whalen
- UF de génétique clinique, Centre de Référence Maladies Rares des Anomalies du développement et syndromes malformatifs, APHP, Hôpital Trousseau, Paris, France
| | - Solveig Heide
- AP-HP, Département de Génétique, Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs" Hôpital de la Pitié Salpêtrière, Paris, France
| | - Boris Keren
- AP-HP, Département de Génétique, Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs" Hôpital de la Pitié Salpêtrière, Paris, France
| | - Pauline Terhal
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Melita Irving
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John D Roberts
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robert M Petrovich
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy Kenney
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA
| | - Hanne Hove
- Centre for Rare Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Elizabeth DeChene
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shane C Quinonez
- Department of Pediatrics, Division of Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Estelle Colin
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | | | - Mahim Jain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Danielle Monteil
- Department of Pediatrics, Naval Medical Center Portsmouth, Portsmouth, VA, USA
| | - Elizabeth R Roeder
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, TX, USA
| | - Kimberly Nugent
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, TX, USA
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Gambello
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Avni Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Līvija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bryan Krock
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Smol
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille, France
- EA7364 RADEME (Research Team on Rare Developmental and Metabolic Diseases), Lille 2 University, Lille, France
| | - Jamal Ghoumid
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille, France
- EA7364 RADEME (Research Team on Rare Developmental and Metabolic Diseases), Lille 2 University, Lille, France
| | - Michael J Parker
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK
| | - Peter Turnpenny
- University of Exeter Medical School, Clinical Genetics Royal Devon & Exeter Hospital, Exeter, UK
| | - Jill Clayton-Smith
- Institute of Evolution, Systems and Genomics, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Kay Metcalfe
- Institute of Evolution, Systems and Genomics, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal and CHU Sainte-Justine, Montreal, QC, Canada
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust. Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, UK
| |
Collapse
|
98
|
Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, Aiello G, Piazza S, Caron D, Gianno F, Ciolfi A, Pedace L, Mastronuzzi A, Tartaglia M, Locatelli F, Ferretti E, Giangaspero F, Tiberi L. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun 2020; 11:583. [PMID: 31996670 PMCID: PMC6989674 DOI: 10.1038/s41467-019-13989-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and among the subtypes, Group 3 MB has the worst outcome. Here, we perform an in vivo, patient-specific screen leading to the identification of Otx2 and c-MYC as strong Group 3 MB inducers. We validated our findings in human cerebellar organoids where Otx2/c-MYC give rise to MB-like organoids harboring a DNA methylation signature that clusters with human Group 3 tumors. Furthermore, we show that SMARCA4 is able to reduce Otx2/c-MYC tumorigenic activity in vivo and in human cerebellar organoids while SMARCA4 T910M, a mutant form found in human MB patients, inhibits the wild-type protein function. Finally, treatment with Tazemetostat, a EZH2-specific inhibitor, reduces Otx2/c-MYC tumorigenesis in ex vivo culture and human cerebellar organoids. In conclusion, human cerebellar organoids can be efficiently used to understand the role of genes found altered in cancer patients and represent a reliable tool for developing personalized therapies.
Collapse
Affiliation(s)
- Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Cardano
- University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvano Piazza
- University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Davide Caron
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesca Gianno
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | | | - Felice Giangaspero
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
99
|
Dagogo-Jack I, Schrock AB, Kem M, Jessop N, Lee J, Ali SM, Ross JS, Lennerz JK, Shaw AT, Mino-Kenudson M. Clinicopathologic Characteristics of BRG1-Deficient NSCLC. J Thorac Oncol 2020; 15:766-776. [PMID: 31988001 DOI: 10.1016/j.jtho.2020.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Ten percent of NSCLCs harbor mutations in SMARCA4, the gene encoding the SWItch/Sucrose Non-Fermentable ATPase BRG1. In preclinical models, BRG1 inactivation increases tumor aggressiveness but enhances sensitivity to drugs that target oxidative phosphorylation and inhibit SMARCA2, EZH2, CDK4, or CDK6. To facilitate translation of preclinical findings into clinical studies exploiting these therapeutic vulnerabilities, we assessed the clinical features of patients with tumors harboring BRG1-inactivating mutations. METHODS Data sets from Massachusetts General Hospital and Foundation Medicine were reviewed to determine the prevalence of SMARCA4-mutant NSCLC and describe its clinicopathologic characteristics. BRG1 expression was evaluated by immunohistochemistry and correlated with SMARCA4 mutations. Treatment outcomes were retrospectively assessed. RESULTS We detected SMARCA4 genomic alterations in 9% (n = 117 of 1422) and 11% (n = 3188 of 27,281) of NSCLCs in the institutional and Foundation Medicine data sets, respectively. In both cohorts, truncating mutations comprised over one-third of SMARCA4 alterations. Twenty-nine of 64 SMARCA4-mutant NSCLCs (45%) assessed for BRG1 expression reported loss of expression, most (90%) of which had truncating SMARCA4 mutations. Overall, 84% (n = 26 of 31) of evaluated NSCLCs with truncating SMARCA4 mutations lacked BRG1 expression. Deficient BRG1 expression was predominantly detected in adenocarcinomas with co-occurring mutations in KRAS, TP53, KEAP1, and STK11. Among patients with BRG1-deficient NSCLC who received first-line platinum doublet chemotherapy (n = 11) or chemotherapy plus immunotherapy (n = 5), median progression-free survival was 38 days and 35 days, respectively. CONCLUSIONS BRG1 deficiency is enriched in NSCLCs with truncating SMARCA4 mutations. Clinical outcomes are poor in this molecular subgroup, highlighting the importance of developing novel strategies to target unique vulnerabilities associated with the BRG1-deficient state.
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Marina Kem
- Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicholas Jessop
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica Lee
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts; Departments of Pathology, Urology, and Oncology, Upstate Medical University, Syracuse, New York
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alice T Shaw
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mari Mino-Kenudson
- Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
100
|
Gryder BE, Pomella S, Sayers C, Wu XS, Song Y, Chiarella AM, Bagchi S, Chou HC, Sinniah RS, Walton A, Wen X, Rota R, Hathaway NA, Zhao K, Chen J, Vakoc CR, Shern JF, Stanton BZ, Khan J. Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat Genet 2019; 51:1714-1722. [PMID: 31784732 PMCID: PMC6886578 DOI: 10.1038/s41588-019-0534-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Core regulatory transcription factors (CR TFs) orchestrate the placement of super-enhancers (SEs) to activate transcription of cell-identity specifying gene networks, and are critical in promoting cancer. Here, we define the core regulatory circuitry of rhabdomyosarcoma and identify critical CR TF dependencies. These CR TFs build SEs that have the highest levels of histone acetylation, yet paradoxically the same SEs also harbor the greatest amounts of histone deacetylases. We find that hyperacetylation selectively halts CR TF transcription. To investigate the architectural determinants of this phenotype, we used absolute quantification of architecture (AQuA) HiChIP, which revealed erosion of native SE contacts, and aberrant spreading of contacts that involved histone acetylation. Hyperacetylation removes RNA polymerase II (RNA Pol II) from core regulatory genetic elements, and eliminates RNA Pol II but not BRD4 phase condensates. This study identifies an SE-specific requirement for balancing histone modification states to maintain SE architecture and CR TF transcription.
Collapse
Affiliation(s)
| | - Silvia Pomella
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù Research Institute, IRCCS, Rome, Italy
| | - Carly Sayers
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Genetics Program, Stony Brook University, Stony Brook, NY, USA
| | - Young Song
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Anna M Chiarella
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Sukriti Bagchi
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Xinyu Wen
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù Research Institute, IRCCS, Rome, Italy
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Keji Zhao
- Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIBIB, NIH, Bethesda, MD, USA
| | | | - Jack F Shern
- Pediatric Oncology Branch, CCR, NCI, NIH, Bethesda, MD, USA
| | - Benjamin Z Stanton
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- The Research Institute at Nationwide, Nationwide Children's Hospital, Columbus, OH, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|