51
|
Tilly BC, Chalkley GE, van der Knaap JA, Moshkin YM, Kan TW, Dekkers DH, Demmers JA, Verrijzer CP. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 2021; 10:69424. [PMID: 34313222 PMCID: PMC8352592 DOI: 10.7554/elife.69424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.
Collapse
Affiliation(s)
- Ben C Tilly
- Department of Biochemistry, Rotterdam, Netherlands
| | | | | | | | | | - Dick Hw Dekkers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Aa Demmers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
52
|
Structure and Function of Chromatin Remodelers. J Mol Biol 2021; 433:166929. [PMID: 33711345 PMCID: PMC8184634 DOI: 10.1016/j.jmb.2021.166929] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Chromatin remodelers act to regulate multiple cellular processes, such as transcription and DNA repair, by controlling access to genomic DNA. Four families of chromatin remodelers have been identified in yeast, each with non-redundant roles within the cell. There has been a recent surge in structural models of chromatin remodelers in complex with their nucleosomal substrate. These structural studies provide new insight into the mechanism of action for individual chromatin remodelers. In this review, we summarize available data for the structure and mechanism of action of the four chromatin remodeling complex families.
Collapse
|
53
|
Willhoft O, Costa A. A structural framework for DNA replication and transcription through chromatin. Curr Opin Struct Biol 2021; 71:51-58. [PMID: 34218162 DOI: 10.1016/j.sbi.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, DNA replication and transcription machineries uncoil nucleosomes along the double helix, to achieve the exposure of the single-stranded DNA template for nucleic acid synthesis. The replisome and RNA polymerases then redeposit histones onto DNA behind the advancing molecular motor, in a process that is crucial for epigenetic inheritance and homeostasis, respectively. Here, we compare and contrast the mechanisms by which these molecular machines advance through nucleosome arrays and discuss how chromatin remodellers can facilitate DNA replication and transcription.
Collapse
Affiliation(s)
- Oliver Willhoft
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
54
|
Policastro RA, McDonald DJ, Brendel VP, Zentner GE. Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR. NAR Genom Bioinform 2021; 3:lqab051. [PMID: 34250478 PMCID: PMC8265037 DOI: 10.1093/nargab/lqab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Heterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data. TSRexploreR provides functions for TSS and transcription start region (TSR) detection, normalization, correlation, visualization, and differential TSS/TSR analyses. TSRexploreR is highly interoperable, accepting the data structures of TSS and TSR sets generated by several existing tools for processing and alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS distribution.
Collapse
Affiliation(s)
| | - Daniel J McDonald
- Department of Statistics, Indiana University, Bloomington, IN 47405, USA
| | - Volker P Brendel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
55
|
Oberbeckmann E, Niebauer V, Watanabe S, Farnung L, Moldt M, Schmid A, Cramer P, Peterson CL, Eustermann S, Hopfner KP, Korber P. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat Commun 2021; 12:3232. [PMID: 34050140 PMCID: PMC8163753 DOI: 10.1038/s41467-021-23015-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 03/13/2021] [Indexed: 01/09/2023] Open
Abstract
Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the 'ruler' that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vanessa Niebauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Biochemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shinya Watanabe
- Program of Molecular Medicine, University of Massachusetts, Worcester, MA, USA
| | - Lucas Farnung
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Manuela Moldt
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Biochemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Schmid
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Craig L Peterson
- Program of Molecular Medicine, University of Massachusetts, Worcester, MA, USA
| | - Sebastian Eustermann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Biochemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| | - Karl-Peter Hopfner
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Biochemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Philipp Korber
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
56
|
INO80C Remodeler Maintains Genomic Stability by Preventing Promiscuous Transcription at Replication Origins. Cell Rep 2021; 32:108106. [PMID: 32905765 PMCID: PMC7540730 DOI: 10.1016/j.celrep.2020.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The proper coordination of transcription with DNA replication and repair is central for genomic stability. We investigate how the INO80C chromatin remodeling enzyme might coordinate these genomic processes. We find that INO80C co-localizes with the origin recognition complex (ORC) at yeast replication origins and is bound to replication initiation sites in mouse embryonic stem cells (mESCs). In yeast· INO80C recruitment requires origin sequences but does not require ORC· suggesting that recruitment is independent of pre-replication complex assembly. In both yeast and ESCs· INO80C co-localizes at origins with Mot1 and NC2 transcription factors· and genetic studies suggest that they function together to promote genome stability. Interestingly· nascent transcript sequencing demonstrates that INO80C and Mot1 prevent pervasive transcription through origin sequences· and absence of these factors leads to formation of new DNA double-strand breaks. We propose that INO80C and Mot1/NC2 function through distinct pathways to limit origin transcription· maintaining genomic stability. The INO80C chromatin remodeler is known to regulate transcription and genomic stability. Topal et al. find that INO80C functions with Mot1 repressor to prevent pervasive transcription at replication origins in yeast and mESCs. Increased ncRNAs lead to new DNA double-strand breaks at origins, linking transcriptional regulation to genomic stability.
Collapse
|
57
|
Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat Commun 2021; 12:3231. [PMID: 34050142 PMCID: PMC8163841 DOI: 10.1038/s41467-021-23016-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/07/2021] [Indexed: 11/26/2022] Open
Abstract
The fundamental molecular determinants by which ATP-dependent chromatin remodelers organize nucleosomes across eukaryotic genomes remain largely elusive. Here, chromatin reconstitutions on physiological, whole-genome templates reveal how remodelers read and translate genomic information into nucleosome positions. Using the yeast genome and the multi-subunit INO80 remodeler as a paradigm, we identify DNA shape/mechanics encoded signature motifs as sufficient for nucleosome positioning and distinct from known DNA sequence preferences of histones. INO80 processes such information through an allosteric interplay between its core- and Arp8-modules that probes mechanical properties of nucleosomal and linker DNA. At promoters, INO80 integrates this readout of DNA shape/mechanics with a readout of co-evolved sequence motifs via interaction with general regulatory factors bound to these motifs. Our findings establish a molecular mechanism for robust and yet adjustable +1 nucleosome positioning and, more generally, remodelers as information processing hubs that enable active organization and allosteric regulation of the first level of chromatin. DNA sequence preferences or statistical positioning of histones has not explained genomic patterns of nucleosome organisation in vivo. Here, the authors establish DNA shape/mechanics as key elements that have evolved together with binding sites of DNA sequence-specific barriers so that such information directs nucleosome positioning by chromatin remodelers.
Collapse
|
58
|
Cucinotta CE, Dell RH, Braceros KCA, Tsukiyama T. RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry. eLife 2021; 10:e67033. [PMID: 34042048 PMCID: PMC8186906 DOI: 10.7554/elife.67033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Quiescence is a reversible G0 state essential for differentiation, regeneration, stem-cell renewal, and immune cell activation. Necessary for long-term survival, quiescent chromatin is compact, hypoacetylated, and transcriptionally inactive. How transcription activates upon cell-cycle re-entry is undefined. Here we report robust, widespread transcription within the first minutes of quiescence exit. During quiescence, the chromatin-remodeling enzyme RSC was already bound to the genes induced upon quiescence exit. RSC depletion caused severe quiescence exit defects: a global decrease in RNA polymerase II (Pol II) loading, Pol II accumulation at transcription start sites, initiation from ectopic upstream loci, and aberrant antisense transcription. These phenomena were due to a combination of highly robust Pol II transcription and severe chromatin defects in the promoter regions and gene bodies. Together, these results uncovered multiple mechanisms by which RSC facilitates initiation and maintenance of large-scale, rapid gene expression despite a globally repressive chromatin state.
Collapse
Affiliation(s)
| | - Rachel H Dell
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Keean CA Braceros
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
59
|
Affiliation(s)
- Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
60
|
Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat Genet 2021; 53:279-287. [PMID: 33558757 DOI: 10.1038/s41588-020-00768-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Chromatin accessibility is a hallmark of regulatory regions, entails transcription factor (TF) binding and requires nucleosomal reorganization. However, it remains unclear how dynamic this process is. In the present study, we use small-molecule inhibition of the catalytic subunit of the mouse SWI/SNF remodeler complex to show that accessibility and reduced nucleosome presence at TF-binding sites rely on persistent activity of nucleosome remodelers. Within minutes of remodeler inhibition, accessibility and TF binding decrease. Although this is irrespective of TF function, we show that the activating TF OCT4 (POU5F1) exhibits a faster response than the repressive TF REST. Accessibility, nucleosome depletion and gene expression are rapidly restored on inhibitor removal, suggesting that accessible chromatin is regenerated continuously and in a largely cell-autonomous fashion. We postulate that TF binding to chromatin and remodeler-mediated nucleosomal removal do not represent a stable situation, but instead accessible chromatin reflects an average of a dynamic process under continued renewal.
Collapse
|
61
|
Liu G, Zhao H, Meng H, Xing Y, Cai L. A deformation energy model reveals sequence-dependent property of nucleosome positioning. Chromosoma 2021; 130:27-40. [PMID: 33452566 PMCID: PMC7889546 DOI: 10.1007/s00412-020-00750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hu Meng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
62
|
Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021; 53:269-278. [PMID: 33558760 PMCID: PMC7614082 DOI: 10.1038/s41588-021-00777-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Cancer-associated, loss-of-function mutations in genes encoding subunits of the BRG1/BRM-associated factor (BAF) chromatin-remodeling complexes1-8 often cause drastic chromatin accessibility changes, especially in important regulatory regions9-19. However, it remains unknown how these changes are established over time (for example, immediate consequences or long-term adaptations), and whether they are causative for intracomplex synthetic lethalities, abrogating the formation or activity of BAF complexes9,20-24. In the present study, we use the dTAG system to induce acute degradation of BAF subunits and show that chromatin alterations are established faster than the duration of one cell cycle. Using a pharmacological inhibitor and a chemical degrader of the BAF complex ATPase subunits25,26, we show that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in an almost complete loss of chromatin accessibility at BAF-controlled sites, especially also at superenhancers, providing a mechanism for intracomplex synthetic lethalities.
Collapse
|
63
|
Donovan DA, Crandall JG, Truong VN, Vaaler AL, Bailey TB, Dinwiddie D, Banks OGB, McKnight LE, McKnight JN. Basis of specificity for a conserved and promiscuous chromatin remodeling protein. eLife 2021; 10:e64061. [PMID: 33576335 PMCID: PMC7968928 DOI: 10.7554/elife.64061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, nonspecific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2-recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model,' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.
Collapse
Affiliation(s)
- Drake A Donovan
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Vi N Truong
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Thomas B Bailey
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Devin Dinwiddie
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Orion GB Banks
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Laura E McKnight
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of OregonEugeneUnited States
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
64
|
Biernat E, Kinney J, Dunlap K, Rizza C, Govind CK. The RSC complex remodels nucleosomes in transcribed coding sequences and promotes transcription in Saccharomyces cerevisiae. Genetics 2021; 217:6133232. [PMID: 33857307 PMCID: PMC8049546 DOI: 10.1093/genetics/iyab021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
RSC (Remodels the Structure of Chromatin) is a conserved ATP-dependent chromatin remodeling complex that regulates many biological processes, including transcription by RNA polymerase II (Pol II). We report that RSC contributes in generating accessible nucleosomes in transcribed coding sequences (CDSs). RSC MNase ChIP-seq data revealed that RSC-bound nucleosome fragments were very heterogenous (∼80 bp to 180 bp) compared to a sharper profile displayed by the MNase inputs (140 bp to 160 bp), supporting the idea that RSC promotes accessibility of nucleosomal DNA. Notably, RSC binding to +1 nucleosomes and CDSs, but not with -1 nucleosomes, strongly correlated with Pol II occupancies, suggesting that RSC enrichment in CDSs is linked to transcription. We also observed that Pol II associates with nucleosomes throughout transcribed CDSs, and similar to RSC, Pol II-protected fragments were highly heterogenous, consistent with the idea that Pol II interacts with remodeled nucleosomes in CDSs. This idea is supported by the observation that the genes harboring high-levels of Pol II in their CDSs were the most strongly affected by ablating RSC function. Additionally, rapid nuclear depletion of Sth1 decreases nucleosome accessibility and results in accumulation of Pol II in highly transcribed CDSs. This is consistent with a slower clearance of elongating Pol II in cells with reduced RSC function, and is distinct from the effect of RSC depletion on PIC assembly. Altogether, our data provide evidence in support of the role of RSC in promoting Pol II elongation, in addition to its role in regulating transcription initiation.
Collapse
Affiliation(s)
- Emily Biernat
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jeena Kinney
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Kyle Dunlap
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Christian Rizza
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
65
|
Nucleosome Positioning and Spacing: From Mechanism to Function. J Mol Biol 2021; 433:166847. [PMID: 33539878 DOI: 10.1016/j.jmb.2021.166847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Eukaryotes associate their genomes with histone proteins, forming nucleosome particles. Nucleosomes regulate and protect the genetic information. They often assemble into evenly spaced arrays of nucleosomes. These regular nucleosome arrays cover significant portions of the genome, in particular over genes. The presence of these evenly spaced nucleosome arrays is highly conserved throughout the entire eukaryotic domain. Here, we review the mechanisms behind the establishment of this primary structure of chromatin with special emphasis on the biogenesis of evenly spaced nucleosome arrays. We highlight the roles that transcription, nucleosome remodelers, DNA sequence, and histone density play towards the formation of evenly spaced nucleosome arrays and summarize our current understanding of their cellular functions. We end with key unanswered questions that remain to be explored to obtain an in-depth understanding of the biogenesis and function of the nucleosome landscape.
Collapse
|
66
|
Zhang H, Lu Z, Zhan Y, Rodriguez J, Lu C, Xue Y, Lin Z. Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation. RNA Biol 2021; 18:1642-1652. [PMID: 33280509 DOI: 10.1080/15476286.2020.1860389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Regulation of gene expression starts from the transcription initiation. Regulated transcription initiation is critical for generating correct transcripts with proper abundance. The impact of epigenetic control, such as histone modifications and chromatin remodelling, on gene regulation has been extensively investigated, but their specific role in regulating transcription initiation is far from well understood. Here we aimed to better understand the roles of genes involved in histone H3 methylations and chromatin remodelling on the regulation of transcription initiation at a genome-scale using the budding yeast as a study system. We obtained and compared maps of transcription start site (TSS) at single-nucleotide resolution by nAnT-iCAGE for a strain with depletion of MINC (Mot1-Ino80C-Nc2) by Mot1p and Ino80p anchor-away (Mot1&Ino80AA) and a strain with loss of histone methylation (set1Δset2Δdot1Δ) to their wild-type controls. Our study showed that the depletion of MINC stimulated transcription initiation from many new sites flanking the dominant TSS of genes, while the loss of histone methylation generates more TSSs in the coding region. Moreover, the depletion of MINC led to less confined boundaries of TSS clusters (TCs) and resulted in broader core promoters, and such patterns are not present in the ssdΔ mutant. Our data also exhibits that the MINC has distinctive impacts on TATA-containing and TATA-less promoters. In conclusion, our study shows that MINC is required for accurate identification of bona fide TSSs, particularly in TATA-containing promoters, and histone methylation contributes to the repression of transcription initiation in coding regions.
Collapse
Affiliation(s)
- Huiming Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Judith Rodriguez
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
67
|
Kharerin H, Bai L. Thermodynamic modeling of genome-wide nucleosome depleted regions in yeast. PLoS Comput Biol 2021; 17:e1008560. [PMID: 33428627 PMCID: PMC7822557 DOI: 10.1371/journal.pcbi.1008560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleosome positioning in the genome is essential for the regulation of many nuclear processes. We currently have limited capability to predict nucleosome positioning in vivo, especially the locations and sizes of nucleosome depleted regions (NDRs). Here, we present a thermodynamic model that incorporates the intrinsic affinity of histones, competitive binding of sequence-specific factors, and nucleosome remodeling to predict nucleosome positioning in budding yeast. The model shows that the intrinsic affinity of histones, at near-saturating histone concentration, is not sufficient in generating NDRs in the genome. However, the binding of a few factors, especially RSC towards GC-rich and poly(A/T) sequences, allows us to predict ~ 66% of genome-wide NDRs. The model also shows that nucleosome remodeling activity is required to predict the correct NDR sizes. The validity of the model was further supported by the agreement between the predicted and the measured nucleosome positioning upon factor deletion or on exogenous sequences introduced into yeast. Overall, our model quantitatively evaluated the impact of different genetic components on NDR formation and illustrated the vital roles of sequence-specific factors and nucleosome remodeling in this process. Nucleosome is the basic unit of chromatin, containing 147 base-pairs of DNA wrapped around a histone core. The positioning of nucleosomes, i.e., which parts of DNA are inside nucleosome and which parts are nucleosome-free, is highly regulated. In particular, regulatory sequences tend to be exposed in nucleosome-depleted regions (NDRs), and such exposure is crucial for a variety of processes including DNA replication, repair, and gene expression. Here, we used a thermodynamics model to predict nucleosome positioning on the yeast genome. The model shows that the intrinsic sequence preference of histones is not sufficient in generating NDRs. In contrast, binding of a few transcription factors, especially RSC, is largely responsible for NDR formation. Nucleosome remodeling activity is also required in the model to recapitulate the NDR sizes. This model contributes to our understanding of the mechanisms that regulate nucleosome positioning. It can also be used to predict nucleosome positioning in mutant yeast or on novel DNA sequences.
Collapse
Affiliation(s)
- Hungyo Kharerin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
68
|
Marr LT, Ocampo J, Clark DJ, Hayes JJ. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 2021; 14:5. [PMID: 33430969 PMCID: PMC7802155 DOI: 10.1186/s13072-020-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Background The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). Results Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A–H2B dimer/H3–H4 tetramer interface, and H3 A110C, resides at the H3–H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. Conclusions Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.
Collapse
Affiliation(s)
- Luke T Marr
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
69
|
Saleh MM, Tourigny JP, Zentner GE. Genome-Wide Profiling of Protein-DNA Interactions with Chromatin Endogenous Cleavage and High-Throughput Sequencing (ChEC-Seq ). Methods Mol Biol 2021; 2351:289-303. [PMID: 34382196 DOI: 10.1007/978-1-0716-1597-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Interactions between regulatory proteins and specific genomic regions are critical for all chromatin-based processes, including transcription, DNA replication, and DNA repair. Genome-wide mapping of such interactions is most commonly performed with chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), but a number of orthogonal methods employing targeted enzymatic activity have also been introduced. We previously described a genome-wide implementation of chromatin endogenous cleavage (ChEC-Seq), wherein a protein of interest is fused to micrococcal nuclease (MNase) to enable targeted, calcium-dependent genomic cleavage. Here, we describe the ChEC-Seq protocol for use in budding yeast though it can be used in other organisms in conjunction with appropriate methods for introduction of an MNase fusion protein.
Collapse
Affiliation(s)
| | | | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| |
Collapse
|
70
|
Abstract
To persist in their dynamic human host environments, fungal pathogens must sense and adapt by modulating their gene expression to fulfill their cellular needs. Understanding transcriptional regulation on a global scale would uncover cellular processes linked to persistence and virulence mechanisms that could be targeted for antifungal therapeutics. Infections associated with the yeast Candida albicans, a highly prevalent fungal pathogen, and the multiresistant related species Candida auris are becoming a serious public health threat. To define the set of a gene regulated by a transcriptional regulator in C. albicans, chromatin immunoprecipitation (ChIP)-based techniques, including ChIP with microarray technology (ChIP-chip) or ChIP-DNA sequencing (ChIP-seq), have been widely used. Here, we describe a new set of PCR-based micrococcal nuclease (MNase)-tagging plasmids for C. albicans and other Candida spp. to determine the genome-wide location of any transcriptional regulator of interest using chromatin endogenous cleavage (ChEC) coupled to high-throughput sequencing (ChEC-seq). The ChEC procedure does not require protein-DNA cross-linking or sonication, thus avoiding artifacts related to epitope masking or the hyper-ChIPable euchromatic phenomenon. In a proof-of-concept application of ChEC-seq, we provided a high-resolution binding map of the SWI/SNF chromatin remodeling complex, a master regulator of fungal fitness in C. albicans, in addition to the transcription factor Nsi1 that is an ortholog of the DNA-binding protein Reb1 for which genome-wide occupancy was previously established in Saccharomyces cerevisiae The ChEC-seq procedure described here will allow a high-resolution genomic location definition which will enable a better understanding of transcriptional regulatory circuits that govern fungal fitness and drug resistance in these medically important fungi.IMPORTANCE Systemic fungal infections caused by Candida albicans and the "superbug" Candida auris are becoming a serious public health threat. The ability of these yeasts to cause disease is linked to their faculty to modulate the expression of genes that mediate their escape from the immune surveillance and their persistence in the different unfavorable niches within the host. Comprehensive knowledge on gene expression control of fungal fitness is consequently an interesting framework for the identification of essential infection processes that could be hindered by chemicals as potential therapeutics. Here, we expanded the use of ChEC-seq, a technique that was initially developed in the yeast model Saccharomyces cerevisiae to identify genes that are modulated by a transcriptional regulator, in pathogenic yeasts from the genus Candida This robust technique will allow a better characterization of key gene expression regulators and their contribution to virulence and antifungal resistance in these pathogenic yeasts.
Collapse
|
71
|
Hainer SJ, Kaplan CD. Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler. Bioessays 2020; 42:e2000002. [PMID: 32490565 PMCID: PMC7329613 DOI: 10.1002/bies.202000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Indexed: 01/16/2023]
Abstract
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
72
|
Ranjan A, Nguyen VQ, Liu S, Wisniewski J, Kim JM, Tang X, Mizuguchi G, Elalaoui E, Nickels TJ, Jou V, English BP, Zheng Q, Luk E, Lavis LD, Lionnet T, Wu C. Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction. eLife 2020; 9:e55667. [PMID: 32338606 PMCID: PMC7259955 DOI: 10.7554/elife.55667] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.
Collapse
Affiliation(s)
- Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Vu Q Nguyen
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jan Wisniewski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Gaku Mizuguchi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ejlal Elalaoui
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy J Nickels
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Brian P English
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
73
|
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 2020; 27:109-118. [PMID: 32042149 DOI: 10.1038/s41594-019-0368-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.
Collapse
|
74
|
Epigenome Regulation by Dynamic Nucleosome Unwrapping. Trends Biochem Sci 2020; 45:13-26. [PMID: 31630896 PMCID: PMC10168609 DOI: 10.1016/j.tibs.2019.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Gene regulation in eukaryotes requires the controlled access of sequence-specific transcription factors (TFs) to their sites in a chromatin landscape dominated by nucleosomes. Nucleosomes are refractory to TF binding, and often must be removed from regulatory regions. Recent genomic studies together with in vitro measurements suggest that the nucleosome barrier to TF binding is modulated by dynamic nucleosome unwrapping governed by ATP-dependent chromatin remodelers. Genome-wide occupancy and the regulation of subnucleosomal intermediates have gained recent attention with the application of high-resolution approaches for precision mapping of protein-DNA interactions. We summarize here recent findings on nucleosome substructures and TF binding dynamics, and highlight how unwrapped nucleosomal intermediates provide a novel signature of active chromatin.
Collapse
|
75
|
Clarkson CT, Deeks EA, Samarista R, Mamayusupova H, Zhurkin VB, Teif VB. CTCF-dependent chromatin boundaries formed by asymmetric nucleosome arrays with decreased linker length. Nucleic Acids Res 2019; 47:11181-11196. [PMID: 31665434 PMCID: PMC6868436 DOI: 10.1093/nar/gkz908] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022] Open
Abstract
The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.
Collapse
Affiliation(s)
| | - Emma A Deeks
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Biological Sciences BSc Program, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Ralph Samarista
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Wellcome Trust Vacation Student
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
76
|
Mivelaz M, Cao AM, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mol Cell 2019; 77:488-500.e9. [PMID: 31761495 PMCID: PMC7005674 DOI: 10.1016/j.molcel.2019.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023]
Abstract
Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression. The yeast transcription factor Rap1 can invade compact chromatin Rap1 directly opens chromatin structure by preventing nucleosome stacking Stable Rap1 binding requires collaboration with RSC to shift promoter nucleosomes
Collapse
Affiliation(s)
- Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anne-Marinette Cao
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Iuliia Boichenko
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anna Maria Stachowicz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland.
| |
Collapse
|