51
|
Kung JCK, Vurgun N, Chen JC, Nitz M, Jockusch RA. Intrinsic Turn‐On Response of Thioflavin T in Complexes. Chemistry 2020; 26:3479-3483. [DOI: 10.1002/chem.201905100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jocky C. K. Kung
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - Nesrin Vurgun
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - JoAnn C. Chen
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - Mark Nitz
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - Rebecca A. Jockusch
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| |
Collapse
|
52
|
Sancataldo G, Anselmo S, Vetri V. Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils. Microsc Res Tech 2020; 83:811-816. [PMID: 32180304 DOI: 10.1002/jemt.23472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The formation of amyloid structures has traditionally been related to human neurodegenerative pathologies and, in recent years, the interest in these highly stable nanostructures was extended to biomaterial sciences. A common method to monitor amyloid growth is the analysis of Thioflavin T fluorescence. The use of this highly selective dye, diffused worldwide, allows mechanistic studies of supramolecular assemblies also giving back important insight on the structure of these aggregates. Here we present experimental evidence of self-quenching effect of Thioflavin T in presence of amyloid fibrils. A significant reduction of fluorescence lifetime of this dye which is not related to the properties of analyzed amyloid structures is found. This result is achieved by coupling Fluorescence Lifetime Imaging Microscopy with phasor approach as suitable model-free methods and constitute a serious warning that have to be taken in account if is dye is used for quantitative studies.
Collapse
Affiliation(s)
- Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| | - Sara Anselmo
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| |
Collapse
|
53
|
Sulatsky MI, Sulatskaya AI, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK. Denaturant effect on amyloid fibrils: Declasterization, depolymerization, denaturation and reassembly. Int J Biol Macromol 2020; 150:681-694. [PMID: 32057863 DOI: 10.1016/j.ijbiomac.2020.01.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Accumulation of amyloid fibrils in organism accompanies many serious diseases, such as Alzheimer's and Parkinson's diseases, diabetes, prion diseases, etc. It is generally accepted that amyloids are highly resistant to degradation, which complicates their elimination in vivo and is one of the reasons for their pathogenicity. However, using a wide range of physicochemical approaches and specially elaborated method for the tested samples preparation by equilibrium microdialysis technique, it is proved that the stability of amyloids is greatly exaggerated. It turned out that amyloid fibrils formed from at least two amyloidogenic proteins, one of which is a model object for fibrils studying and the second is the cause of hemodialysis amyloidosis in an acute renal failure, are less stable than monomeric proteins. A mechanism of the degradation/reassembly of amyloid fibrils was proposed. It was shown that amyloid «seed» is a factor affecting not only the rate of the fibrils formation, but also their structure. Obtained results are a step towards identifying effects that can lead to degradation of amyloids and their clearance without adverse influence on the functionally active state of the protein or to change the structure and, as a result, the pathogenicity of these protein aggregates.
Collapse
Affiliation(s)
- M I Sulatsky
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - A I Sulatskaya
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - Olga V Stepanenko
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - O I Povarova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - I M Kuznetsova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - K K Turoverov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia; Peter the Great St.-Petersburg Polytechnic University, St. Petersburg, Polytechnicheskaya 29, 195251, Russia.
| |
Collapse
|
54
|
Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100318] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
55
|
A General Workflow for Characterization of Nernstian Dyes and Their Effects on Bacterial Physiology. Biophys J 2019; 118:4-14. [PMID: 31810660 PMCID: PMC6950638 DOI: 10.1016/j.bpj.2019.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes’ interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.
Collapse
|
56
|
Kosolapova AO, Belousov MV, Sulatskaya AI, Belousova ME, Sulatsky MI, Antonets KS, Volkov KV, Lykholay AN, Shtark OY, Vasileva EN, Zhukov VA, Ivanova AN, Zykin PA, Kuznetsova IM, Turoverov KK, Tikhonovich IA, Nizhnikov AA. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules 2019; 9:biom9110694. [PMID: 31690032 PMCID: PMC6920782 DOI: 10.3390/biom9110694] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloids represent protein fibrils with a highly ordered spatial structure, which not only cause dozens of incurable human and animal diseases but also play vital biological roles in Archaea, Bacteria, and Eukarya. Despite the fact that association of bacterial amyloids with microbial pathogenesis and infectious diseases is well known, there is a lack of information concerning the amyloids of symbiotic bacteria. In this study, using the previously developed proteomic method for screening and identification of amyloids (PSIA), we identified amyloidogenic proteins in the proteome of the root nodule bacterium Rhizobium leguminosarum. Among 54 proteins identified, we selected two proteins, RopA and RopB, which are predicted to have β-barrel structure and are likely to be involved in the control of plant-microbial symbiosis. We demonstrated that the full-length RopA and RopB form bona fide amyloid fibrils in vitro. In particular, these fibrils are β-sheet-rich, bind Thioflavin T (ThT), exhibit green birefringence upon staining with Congo Red (CR), and resist treatment with ionic detergents and proteases. The heterologously expressed RopA and RopB intracellularly aggregate in yeast and assemble into amyloid fibrils at the surface of Escherichia coli. The capsules of the R. leguminosarum cells bind CR, exhibit green birefringence, and contain fibrils of RopA and RopB in vivo.
Collapse
Affiliation(s)
- Anastasiia O Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Mikhail V Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Maria E Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Kirill V Volkov
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Anna N Lykholay
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Oksana Y Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Ekaterina N Vasileva
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Vladimir A Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Alexandra N Ivanova
- Research Resource Center "Molecular and Cell Technologies", Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Komarov Botanical Institute RAS, 197376 Komarov Botanical Institute RAS, Russia.
| | - Pavel A Zykin
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia.
- Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
| | - Igor A Tikhonovich
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, 196608, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia.
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia.
| |
Collapse
|
57
|
Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E. Parkinson's Disease: A Systemic Inflammatory Disease Accompanied by Bacterial Inflammagens. Front Aging Neurosci 2019; 11:210. [PMID: 31507404 PMCID: PMC6718721 DOI: 10.3389/fnagi.2019.00210] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.
Collapse
Affiliation(s)
- Büin Adams
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - J Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Timothy Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo A Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
58
|
Sukhanova A, Poly S, Bozrova S, Lambert É, Ewald M, Karaulov A, Molinari M, Nabiev I. Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions. Front Chem 2019; 7:480. [PMID: 31417892 PMCID: PMC6683663 DOI: 10.3389/fchem.2019.00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles attract much interest as fluorescent labels for diagnostic and therapeutic tools, although their applications are often hindered by size- and shape-dependent cytotoxicity. This cytotoxicity is related not only to the leak of toxic metals from nanoparticles into a biological solution, but also to molecular cytotoxicity effects determined by the formation of a protein corona, appearance of an altered protein conformation leading to exposure of cryptic epitopes and cooperative effects involved in the interaction of proteins and peptides with nanoparticles. In the last case, nanoparticles may serve, depending on their nature, as centers of self-association or fibrillation of proteins and peptides, provoking amyloid-like proteinopathies, or as inhibitors of self-association of proteins, or they can self-assemble on biopolymers as on templates. In this study, human insulin protein was used to analyze nanoparticle-induced proteinopathy in physiological conditions. It is known that human insulin may form amyloid fibers, but only under extreme experimental conditions (very low pH and high temperatures). Here, we have shown that the quantum dots (QDs) may induce amyloid-like fibrillation of human insulin under physiological conditions through a complex process strongly dependent on the size and surface charge of QDs. The insulin molecular structure and fibril morphology have been shown to be modified at different stages of its fibrillation, which has been proved by comparative analysis of the data obtained using circular dichroism, dynamic light scattering, amyloid-specific thioflavin T (ThT) assay, transmission electron microscopy, and high-speed atomic force microscopy. We have found important roles of the QD size and surface charge in the destabilization of the insulin structure and the subsequent fibrillation. Remodeling of the insulin secondary structure accompanied by remarkable increase in the rate of formation of amyloid-like fibrils under physiologically normal conditions was observed when the protein was incubated with QDs of exact specific diameter coated with slightly negative specific polyethylene glycol (PEG) derivatives. Strongly negatively or slightly positively charged PEG-modified QDs of the same specific diameter or QDs of bigger or smaller diameters had no effect on insulin fibrillation. The observed effects pave the way to the control of amyloidosis proteinopathy by varying the nanoparticle size and surface charge.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Simon Poly
- Department of Membrane Biophysics, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Éléonore Lambert
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| |
Collapse
|
59
|
Page MJ, Thomson GJA, Nunes JM, Engelbrecht AM, Nell TA, de Villiers WJS, de Beer MC, Engelbrecht L, Kell DB, Pretorius E. Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation. Sci Rep 2019; 9:3102. [PMID: 30816210 PMCID: PMC6395759 DOI: 10.1038/s41598-019-39056-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Complex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer’s disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation. To study the role of SAA in coagulation and thrombosis, in vitro experiments were performed where purified human SAA, in concentrations resembling a modest acute phase response, was added to platelet-poor plasma (PPP) and whole blood (WB), as well as purified and fluorescently labelled fibrinogen. Results from thromboelastography (TEG) suggest that SAA causes atypical coagulation with a fibrin(ogen)-mediated increase in coagulation, but a decreased platelet/fibrin(ogen) interaction. In WB scanning electron microscopy analysis, SAA mediated red blood cell (RBC) agglutination, platelet activation and clumping, but not platelet spreading. Following clot formation in PPP, the presence of SAA increased amyloid formation of fibrin(ogen) as determined both with auto-fluorescence and with fluorogenic amyloid markers, under confocal microcopy. SAA also binds to fibrinogen, as determined with a fluorescent-labelled SAA antibody and correlative light electron microscopy (CLEM). The data presented here indicate that SAA can affect coagulation by inducing amyloid formation in fibrin(ogen), as well as by propelling platelets to a more prothrombotic state. The discovery of these multiple and complex effects of SAA on coagulation invite further mechanistic analyses.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Greig J A Thomson
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - J Massimo Nunes
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Theo A Nell
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa
| | - Willem J S de Villiers
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa.,Department of Internal Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Maria C de Beer
- Department of Physiology, Saha Cardiovascular Research Center and Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA
| | - Lize Engelbrecht
- Fluorescence Microscopy Unit, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa. .,School of Chemistry, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, Lancs, UK. .,The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, MANCHESTER M1 7DN, Lancs, UK. .,Department of Biochemistry, Institute of integrative Biology, Biosciences Building., University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, Stellenbosch, South Africa.
| |
Collapse
|
60
|
Konar M, Mathew A, Dasgupta S. Effect of Silica Nanoparticles on the Amyloid Fibrillation of Lysozyme. ACS OMEGA 2019; 4:1015-1026. [PMID: 31459377 PMCID: PMC6648903 DOI: 10.1021/acsomega.8b03169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 05/18/2023]
Abstract
Protein fibrils are regarded as undesired products as these are associated with numerous neuro- and non-neurodegenerative disorders. Increasing evidence suggests that the mechanism of fibrillation involves the formation of various oligomeric intermediates, which are known to be more toxic than mature fibrils. Here, we report the impact of synthesized silica nanoparticles (SiNPs) of diameters ∼52 nm on the aggregation behavior of hen egg white lysozyme (HEWL) under heat and acidic conditions. Congo red as well as ThT binding assays and AFM imaging studies indicate that SiNPs trigger the amyloid formation of HEWL in a dose-dependent manner. ThT kinetic studies and FTIR studies suggest that the fibrillation kinetics does not involve the formation of toxic oligomeric intermediates at higher concentrations of SiNPs. By measuring fluorescence lifetime values of the bound ThT, SiNP-induced fibrillation of HEWL can easily be realized. CD spectroscopic studies indicate that native HEWL becomes unfolded upon incubation under the experimental conditions and is rapidly converted into the β-sheet-rich fibrillar aggregates in the presence of SiNPs with increasing concentrations. It has been further revealed that fibrillar aggregates formed at higher concentrations of SiNPs preferably adopt an antiparallel β-sheet configuration. The enhanced fibrillation in the presence of SiNPs is likely because of preferential adsorption of the non-amyloidogenic regions of HEWL, resulting in the exposure of the aggregation-prone regions of HEWL toward the solvent. The study will provide deeper insights into the evolution of oligomer-free fibrillation that can be useful to demonstrate the underlying mechanism of amyloid fibrillation.
Collapse
|
61
|
Sulatskaya AI, Sulatsky MI, Antifeeva IA, Kuznetsova IM, Turoverov KK. Structural Analogue of Thioflavin T, DMASEBT, as a Tool for Amyloid Fibrils Study. Anal Chem 2019; 91:3131-3140. [DOI: 10.1021/acs.analchem.8b05737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Iu. A. Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
- Peter the Great St. Petersburg Polytechnic University (SPbPU), St. Petersburg 195251, Russia
| |
Collapse
|
62
|
Zhang M, Wu Q, Yao X, Zhao J, Zhong W, Liu Q, Xiao S. Xanthohumol inhibits tau protein aggregation and protects cells against tau aggregates. Food Funct 2019; 10:7865-7874. [DOI: 10.1039/c9fo02133g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Xanthohumol is shown to interact with tau protein and inhibit its aggregation.
Collapse
Affiliation(s)
- Mohan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Qiuping Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Xuanbao Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Weicong Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
63
|
Panigrahi SK, Mishra AK. Study on the dependence of fluorescence intensity on optical density of solutions: the use of fluorescence observation field for inner filter effect corrections. Photochem Photobiol Sci 2019; 18:583-591. [DOI: 10.1039/c8pp00498f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absorbance value that corresponds to maximum fluorescence intensity (Aflmax) depends on fluorescence observation field.
Collapse
|
64
|
Sulatskaya AI, Rodina NP, Polyakov DS, Sulatsky MI, Artamonova TO, Khodorkovskii MA, Shavlovsky MM, Kuznetsova IM, Turoverov KK. Structural Features of Amyloid Fibrils Formed from the Full-Length and Truncated Forms of Beta-2-Microglobulin Probed by Fluorescent Dye Thioflavin T. Int J Mol Sci 2018; 19:E2762. [PMID: 30223436 PMCID: PMC6164334 DOI: 10.3390/ijms19092762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
The persistence of high concentrations of beta-2-microglobulin (β2M) in the blood of patients with acute renal failure leads to the development of the dialysis-related amyloidosis. This disease manifests in the deposition of amyloid fibrils formed from the various forms of β2M in the tissues and biological fluids of patients. In this paper, the amyloid fibrils formed from the full-length β2M (β2m) and its variants that lack the 6 and 10 N-terminal amino acids of the protein polypeptide chain (ΔN6β2m and ΔN10β2m, respectively) were probed by using the fluorescent dye thioflavin T (ThT). For this aim, the tested solutions were prepared via the equilibrium microdialysis approach. Spectroscopic analysis of the obtained samples allowed us to detect one binding mode (type) of ThT interaction with all the studied variants of β2M amyloid fibrils with affinity ~10⁴ M-1. This interaction can be explained by the dye molecules incorporation into the grooves that were formed by the amino acids side chains of amyloid protofibrils along the long axis of the fibrils. The decrease in the affinity and stoichiometry of the dye interaction with β2M fibrils, as well as in the fluorescence quantum yield and lifetime of the bound dye upon the shortening of the protein amino acid sequence were shown. The observed differences in the ThT-β2M fibrils binding parameters and characteristics of the bound dye allowed to prove not only the difference of the ΔN10β2m fibrils from other β2M fibrils (that can be detected visually, for example, by transmission electron microscopy (TEM), but also the differences between β2m and ΔN6β2m fibrils (that can not be unequivocally confirmed by other approaches). These results prove an essential role of N-terminal amino acids of the protein in the formation of the β2M amyloid fibrils. Information about amyloidogenic protein sequences can be claimed in the development of ways to inhibit β2M fibrillogenesis for the treatment of dialysis-related amyloidosis.
Collapse
Affiliation(s)
- Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Natalia P Rodina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Dmitry S Polyakov
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str. 12, St. Petersburg 197376, Russia.
- Chair of Medical Genetics, North-Western State Medical University named after I.I. Mechnikov, Piskarevskij prospect 47, St. Petersburg 195067, Russia.
| | - Maksim I Sulatsky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Tatyana O Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| | - Mikhail A Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| | - Mikhail M Shavlovsky
- Department of Molecular Genetics, Institute of Experimental Medicine, Pavlov str. 12, St. Petersburg 197376, Russia.
- Chair of Medical Genetics, North-Western State Medical University named after I.I. Mechnikov, Piskarevskij prospect 47, St. Petersburg 195067, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia.
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia.
| |
Collapse
|
65
|
Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. Int J Mol Sci 2018; 19:ijms19092486. [PMID: 30142878 PMCID: PMC6163839 DOI: 10.3390/ijms19092486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
In this work, α-synuclein amyloid fibrils—the formation of which is a biomarker of Parkinson’s disease—were investigated using the fluorescent probe thioflavin T (ThT). The experimental conditions of protein fibrillogenesis were chosen so that a sufficient number of continuous measurements could be performed to characterize and analyze all stages of this process. The reproducibility of fibrillogenesis and the structure of the obtained aggregates (which is a critical point for further investigation) were proven using a wide range of physical-chemical methods. For the determination of ThT-α-synuclein amyloid fibril binding parameters, the sample and reference solutions were prepared using equilibrium microdialysis. By utilizing absorption spectroscopy of these solutions, the ThT-fibrils binding mode with a binding constant of about 104 M−1 and stoichiometry of ThT per protein molecule of about 1:8 was observed. Fluorescence spectroscopy of the same solutions with the subsequent correction of the recorded fluorescence intensity on the primary inner filter effect allowed us to determine another mode of ThT binding to fibrils, with a binding constant of about 106 M−1 and stoichiometry of about 1:2500. Analysis of the photophysical characteristics of the dye molecules bound to the sites of different binding modes allowed us to assume the possible localization of these sites. The obtained differences in the ThT binding parameters to the amyloid fibrils formed from α-synuclein and other amyloidogenic proteins, as well as in the photophysical characteristics of the bound dye, confirmed the hypothesis of amyloid fibril polymorphism.
Collapse
|
66
|
Lee SC, Heo J, Woo HC, Lee JA, Seo YH, Lee CL, Kim S, Kwon OP. Fluorescent Molecular Rotors for Viscosity Sensors. Chemistry 2018; 24:13706-13718. [DOI: 10.1002/chem.201801389] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Seung-Chul Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
| | - Hee Chul Woo
- Advanced Photonics Research Institute (APRI); Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| | - Ji-Ah Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| | - Young Hun Seo
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute (APRI); Gwangju Institute of Science and Technology (GIST); Gwangju 61005 Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seongbuk-gu Seoul 136-791 Korea
- Division of Bio-Medical Science & Technology; KIST School; Korea University of Science and Technology (UST); Seoul 02792 Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Korea
| | - O-Pil Kwon
- Department of Molecular Science and Technology; Ajou University; Suwon 443-749 Republic of Korea
| |
Collapse
|
67
|
Sulatskaya AI, Rychkov GN, Sulatsky MI, Rodina NP, Kuznetsova IM, Turoverov KK. Thioflavin T Interaction with Acetylcholinesterase: New Evidence of 1:1 Binding Stoichiometry Obtained with Samples Prepared by Equilibrium Microdialysis. ACS Chem Neurosci 2018; 9:1793-1801. [PMID: 29652131 DOI: 10.1021/acschemneuro.8b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of the present work was investigation of the fluorescent dye thioflavin T (ThT) binding to acetylcholinesterase (AChE). ThT is an effective test for protease activity, as well as a probe for amyloid fibril formation. Despite the extended and active investigation of ThT-AChE binding, there is still no common view on the stoichiometry of this interaction. In particular, there is a hypothesis explaining the spectral properties of bound to AChE dye and high quantum yield of its fluorescence by formation of dimers or excimers of ThT. In order to confirm or deny this hypothesis, we proposed a new experimental approach for examination of ThT-AChE interaction based on spectroscopic investigation of samples prepared by equilibrium microdialysis. This approach allowed us to prove 1/1 ThT/AChE binding stoichiometry. The increase of ThT fluorescence quantum yield and lifetime accompanying its binding to AChE can be explained by the molecular rotor nature of this dye. Together with the coincidence of the positions of free and AChE-bound ThT fluorescence spectra, the obtained results prove the groundlessness of the hypotheses about ThT aggregation while binding to AChE. The model of ThT localization in the active site of AChE was proposed by using molecular docking simulations. These results also allowed us to suggest the key role of aromatic residues in ThT-AChE interaction, as observed for some amyloid fibrils.
Collapse
Affiliation(s)
- A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - G. N. Rychkov
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Orlova Roscha, Gatchina, Leningrad District, 188300, Russia
| | - M. I. Sulatsky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - N. P. Rodina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Science, Tikhoretsky ave. 4, St. Petersburg 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| |
Collapse
|
68
|
Xu JX, Vithanage BCN, Athukorale SA, Zhang D. Scattering and absorption differ drastically in their inner filter effects on fluorescence, resonance synchronous, and polarized resonance synchronous spectroscopic measurements. Analyst 2018; 143:3382-3389. [DOI: 10.1039/c8an00790j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reported herein is the finding that photon scattering and absorption differ drastically in inducing the sample IFE in SSF, RS2, and the PRS2 spectra measurements.
Collapse
Affiliation(s)
- Joanna Xiuzhu Xu
- Department of Chemistry
- Mississippi State University
- Mississippi State
- USA
| | | | | | - Dongmao Zhang
- Department of Chemistry
- Mississippi State University
- Mississippi State
- USA
| |
Collapse
|
69
|
Rovnyagina NR, Sluchanko NN, Tikhonova TN, Fadeev VV, Litskevich AY, Maskevich AA, Shirshin EA. Binding of thioflavin T by albumins: An underestimated role of protein oligomeric heterogeneity. Int J Biol Macromol 2017; 108:284-290. [PMID: 29208556 DOI: 10.1016/j.ijbiomac.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils formation is the well-known hallmark of various neurodegenerative diseases. Thioflavin T (ThT)-based fluorescence assays are widely used to detect and characterize fibrils, however, if performed in bioliquids, the analysis can be biased due to the presence of other, especially abundant, proteins. Particularly, it is known that albumin may bind ThT, although the binding mechanism remains debatable. Here the role of low-order albumin oligomers in ThT binding is investigated using time-resolved fluorometry and size-exclusion chromatography. Under conditions used, the fraction of dimers in human (HSA) and bovine (BSA) serum albumin solutions is as low as ∼7%, however, it is responsible for ∼50% of ThT binding. For both albumins, the binding affinity was estimated to be ∼200 and ∼40μM for monomeric and dimeric species, respectively. Molecular docking suggested that ThT preferentially binds in the hydrophobic pocket of subdomain IB of albumin monomer in a similar position but with a variable torsion angle, resulting in a lower fluorescence enhancement (∼40-fold) compared to amyloid fibrils (∼1000-fold). Dimerization of albumin presumably creates an extra binding site at the subunit interface. These results demonstrate the underestimated role of low-order albumin oligomers that can be highly relevant when analyzing drugs binding using fluorescence spectroscopy.
Collapse
Affiliation(s)
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia; Department of biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana N Tikhonova
- International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor V Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|