51
|
Zhang T, Song H, Deng L, Dong C, Ren J. Single-Particle Catalytic Analysis by a Photon Burst Counting Technique Combined with a Microfluidic Chip. Anal Chem 2021; 93:9752-9759. [PMID: 34240602 DOI: 10.1021/acs.analchem.1c01199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle catalytic analysis plays an important role to understand the catalytic mechanism of nanocatalysts. Currently, some methods are used to study the relationship between single-particle catalytic activity and morphology. However, there is still lack of a simple and rapid analysis method for evaluating the catalytic activity of an individual nanocatalyst that freely moves in solution. Here, we proposed a novel single-particle catalytic analysis method for investigating the catalytic activity of a free nanocatalyst. Its working principle is based on the photon burst counting analysis on fluorescent catalytic products of an individual nanocatalyst combined with a microfluidic chip. In this study, we used the reduction reaction of resazurin (RZ) to resorufin (RF) catalyzed by gold nanoparticles (GNPs) as a model. When nonfluorescent RZ molecules in one microchannel of the microfluidic chip mixed with the GNPs flowing in another channel under the control of flow rates, each individual photon burst from the catalytic product RF by GNPs was measured in real time with a constructed flow single-particle catalytic analysis (SPCA) system. With the method, the obtained intensity of each photon burst reflects the capacity of a particle to catalyze RZ molecules into RF(s). The number of photon burst within sampling time reflects the particle number of GNPs with catalytic activity. The experimental conditions including the mixing mode of the nanocatalyst and the substrate, the flow rate, RZ concentration, and detection time were optimized. Finally, the method was successfully used to study the catalytic activity of GNPs with different sizes and morphologies.
Collapse
Affiliation(s)
- Tian Zhang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haohan Song
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Liyun Deng
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
52
|
Zhang L, Chen H, Wei Z. Recent Advances in Nanoparticles Confined in Two‐Dimensional Materials as High‐Performance Electrocatalysts for Energy‐Conversion Technologies. ChemCatChem 2021. [DOI: 10.1002/cctc.202001260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Hongmei Chen
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
53
|
Dong B, Mansour N, Huang TX, Huang W, Fang N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem Soc Rev 2021; 50:6483-6506. [PMID: 34100033 DOI: 10.1039/d0cs01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers recent progress in using single molecule fluorescence microscopy imaging to understand the nanoconfinement in porous materials. The single molecule approach unveils the static and dynamic heterogeneities from seemingly equal molecules by removing the ensemble averaging effect. Physicochemical processes including mass transport, surface adsorption/desorption, and chemical conversions within the confined space inside porous materials have been studied at nanometer spatial resolution, at the single nanopore level, with millisecond temporal resolution, and under real chemical reaction conditions. Understanding these physicochemical processes provides the ability to quantitatively measure the inhomogeneities of nanoconfinement effects from the confining properties, including morphologies, spatial arrangement, and trapping domains. Prospects and limitations of current single molecule imaging studies on nanoconfinement are also discussed.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | | | |
Collapse
|
54
|
An J, Song X, Wan W, Chen Y, Si H, Duan H, Li L, Tang B. Kinetics of the Photoelectron-Transfer Process Characterized by Real-Time Single-Molecule Fluorescence Imaging on Individual Photocatalyst Particles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinghua An
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Xiaoting Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Wenbo Wan
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Yanzheng Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Huichuan Duan
- School of Information Science and Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
55
|
Kang J, Park SJ, Kim JH, Chen P, Sung J. Stochastic Kinetics of Nanocatalytic Systems. PHYSICAL REVIEW LETTERS 2021; 126:126001. [PMID: 33834800 DOI: 10.1103/physrevlett.126.126001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Catalytic reaction events occurring on the surface of a nanoparticle constitute a complex stochastic process. Although advances in modern single-molecule experiments enable direct measurements of individual catalytic turnover events occurring on a segment of a single nanoparticle, we do not yet know how to measure the number of catalytic sites in each segment or how the catalytic turnover counting statistics and the catalytic turnover time distribution are related to the microscopic dynamics of catalytic reactions. Here, we address these issues by presenting a stochastic kinetics for nanoparticle catalytic systems. We propose a new experimental measure of the number of catalytic sites in terms of the mean and variance of the catalytic event count. By considering three types of nanocatalytic systems, we investigate how the mean, the variance, and the distribution of the catalytic turnover time depend on the catalytic reaction dynamics, the heterogeneity of catalytic activity, and communication among catalytic sites. This work enables accurate quantitative analyses of single-molecule experiments for nanocatalytic systems and enzymes with multiple catalytic sites.
Collapse
Affiliation(s)
- Jingyu Kang
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Seong Jun Park
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Ji-Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
56
|
Liu Y, Zhang K, Tian X, Zhou L, Liu J, Liu B. Quantitative Single-Particle Fluorescence Imaging Elucidates Semiconductor Shell Influence on Ag@TiO 2 Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7680-7687. [PMID: 33538572 DOI: 10.1021/acsami.0c18508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The understanding of the structure-reactivity relationship is helpful for the nanocatalyst (NC) design. However, though precisely parse, this information is challenging due to the heterogeneity of NCs and the complex mechanism of energetic charge carrier (e-/h+ pairs) generation and transfer within the catalysts upon light irradiation. Here, the effect of the semiconductor shell on the photocatalytic redox reaction is probed at the single-Ag@TiO2 NC level with single-molecule imaging. By engineering the TiO2 shell thickness, catalytic activities of the NCs are precisely controlled and quantitatively measured to show a parabolic-like distribution with increasing TiO2 thickness. Besides, the varied activity among different NCs and the dynamic activity fluctuation of single NCs during continuous redox conversion are observed. Mathematical analysis indicates that the TiO2 layer affects the activity of the core-shell NCs by simultaneously affecting the fate of photo-induced e-/h+ pairs and hot electrons generated at the Ag core. This work sheds light on molecular-scale elucidation of the impact of metal-semiconductor NC structures on their reactivities.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | | | - Lei Zhou
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
57
|
Abstract
AbstractNanoporous solids, including microporous, mesoporous and hierarchically structured porous materials, are of scientific and technological interest because of their high surface-to-volume ratio and ability to impose shape- and size-selectivity on molecules diffusing through them. Enormous efforts have been put in the mechanistic understanding of diffusion–reaction relationships of nanoporous solids, with the ultimate goal of developing materials with improved catalytic performance. Single-molecule localization microscopy can be used to explore the pore space via the trajectories of individual molecules. This ensemble-free perspective directly reveals heterogeneities in diffusion and diffusion-related reactivity of individual molecules, which would have been obscured in bulk measurements. In this article, we review developments in the spatial and temporal characterization of nanoporous solids using single-molecule localization microscopy. We illustrate various aspects of this approach, and showcase how it can be used to follow molecular diffusion and reaction behaviors in nanoporous solids.
Collapse
|
58
|
Möckl L, Moerner WE. Super-resolution Microscopy with Single Molecules in Biology and Beyond-Essentials, Current Trends, and Future Challenges. J Am Chem Soc 2020; 142:17828-17844. [PMID: 33034452 PMCID: PMC7582613 DOI: 10.1021/jacs.0c08178] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Single-molecule super-resolution microscopy has developed from a specialized technique into one of the most versatile and powerful imaging methods of the nanoscale over the past two decades. In this perspective, we provide a brief overview of the historical development of the field, the fundamental concepts, the methodology required to obtain maximum quantitative information, and the current state of the art. Then, we will discuss emerging perspectives and areas where innovation and further improvement are needed. Despite the tremendous progress, the full potential of single-molecule super-resolution microscopy is yet to be realized, which will be enabled by the research ahead of us.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
59
|
Su H, Niu B, Li H, Liu F, Yuan T, Chen HY, Wang W. Evanescent Wave-Guided Growth of an Organic Supramolecular Nanowire Array. Angew Chem Int Ed Engl 2020; 59:19209-19214. [PMID: 32677328 DOI: 10.1002/anie.202007319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The ordered assembly of molecules within a specific space of nanoscale, such as a surface, holds great promise in advanced micro-/nanostructure fabrication for various applications. Herein, we demonstrate the evanescent wave (EW)-guided organization of small molecules into a long-range ordered nanowire (NW) array. Experiment and simulation revealed that the orientation and periodicity of the NW array were feasibly regulated by altering the propagation direction and the wavelength of EW. The generality of this approach was demonstrated by using different molecule precursors. While existing studies on EW often took advantages of its near-field property for optical sensing, this work demonstrated the photochemical power of EW in the guided-assembly of small molecules for the first time. It also provides an enlightening avenue to periodic structure with fluorescence, promising for super-resolution microscopy and important devices applicable to optical and bio-related fields.
Collapse
Affiliation(s)
- Hua Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ben Niu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Haoran Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Fei Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tinglian Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hong-Yuan Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
60
|
Su H, Niu B, Li H, Liu F, Yuan T, Chen H, Wang W. Evanescent Wave‐Guided Growth of an Organic Supramolecular Nanowire Array. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua Su
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Ben Niu
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Haoran Li
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Fei Liu
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Tinglian Yuan
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Hong‐Yuan Chen
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| | - Wei Wang
- School of Chemistry and Chemical Engineering State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
61
|
Tennakoon A, Wu X, Paterson AL, Patnaik S, Pei Y, LaPointe AM, Ammal SC, Hackler RA, Heyden A, Slowing II, Coates GW, Delferro M, Peters B, Huang W, Sadow AD, Perras FA. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat Catal 2020. [DOI: 10.1038/s41929-020-00519-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
62
|
Fu Q, Wu F, Wang B, Bu Y, Draxl C. Spatial Confinement as an Effective Strategy for Improving the Catalytic Selectivity in Acetylene Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39352-39361. [PMID: 32805905 DOI: 10.1021/acsami.0c12437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While control over chemical reactions is largely achieved by altering the intrinsic properties of catalysts, novel strategies are constantly being proposed to improve the catalytic performance in an extrinsic way. Since the fundamental chemical behavior of molecules can remarkably change when their molecular scale is comparable to the size of the space where they are located, creating spatially confined environments around the active sites offers new means of regulating the catalytic processes. We demonstrate through first-principles calculations that acetylene hydrogenation can exhibit significantly improved selectivity within the confined sub-nanospace between two-dimensional (2D) monolayers and the Pd(111) substrate. Upon intercalation of molecules, the lifting and undulation of a 2D monolayer on Pd(111) influence the adsorption energies of intermediates to varying extents, which, in turn, changes the energy profiles of the hydrogenation reactions. Within the confined sub-nanospace, the formation of ethane is always unfavorable, demonstrating effective suppression of the unwanted overhydrogenation. Moreover, the catalytic properties can be further tuned by altering the coverage of the adsorbates as well as strains within the 2D monolayer. Our results also indicate that for improving the selectivity, the strategy of spatial confinement could not be combined with that of single-atom catalysis, since the reactant molecules cannot enter the sub-nanospace due to the too weak adsorbate-substrate interaction. This work sheds new light on designing novel catalysts with extraordinary performance for the selective hydrogenation of acetylene.
Collapse
Affiliation(s)
- Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bingxue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| |
Collapse
|
63
|
Batista LN, Vasconcelos TL, Senna CA, Archanjo BS, Miguez E, A S San Gil R, Tavares MIB. Impact of nanoconfinement on acetylacetone Equilibria in Ordered Mesoporous Silicates. NANOTECHNOLOGY 2020; 31:355706. [PMID: 32434178 DOI: 10.1088/1361-6528/ab94db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoconfinement is one of the most intriguing nanoscale effects and affects several physical and chemical properties of molecules and materials, including viscosity, reaction kinetics, and glass transition temperature. In this work, liquid nuclear magnetic resonance (NMR) was used to analyze the behavior of 2,4-pentadienone in ordered mesoporous materials with a pore diameter of between 3 and 10 nm. The liquid NMR results showed meaningful changes in the hydrogen chemical shift and the keto-enol chemical equilibrium, which were associated with the pore diameter, allowing the authors to observe the effects of nanoconfinement. An interesting phenomenon was observed where the chemical equilibria of 2,4-pentadienone confined in a mesoporous material with a pore diameter of 3.5 nm was similar to that obtained with free (bulk) 2,4-pentadienone in larger pore materials. Another interesting result was observed for the enthalpy and entropy of the tautomeric equilibria of 2,4-pentadienone confined in mesoporous materials with a 5.5 nm pore diameter being -7.9 kJ mol-1 and -15.9 J mol-1.K. These values are similar to those obtained by dimethyl sulfoxide. This phenomenon indicates the possible use of ordered mesoporous materials as a reaction substitute in organic solvents. It was further observed that while the values of enthalpy (ΔH) and entropy (ΔS) had been modified by confinement, the Gibbs free energy (ΔG) value remained closer to that observed in free (bulk) 2,4-pentadienone. It is expected that this study will help in understanding the effects of nanoconfinement and provide a simple method to employ NMR techniques to analyze these phenomena.
Collapse
Affiliation(s)
- Luciano N Batista
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Avenida Nossa Senhora das Graças, 50, 25250020, Duque de Caxias, Rio de Janeiro, Brazil. Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo, 2030, 21941-598, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
64
|
Zhou J, Li C, Li D, Liu X, Mu Z, Gao W, Qiu J, Deng R. Single-molecule photoreaction quantitation through intraparticle-surface energy transfer (i-SET) spectroscopy. Nat Commun 2020; 11:4297. [PMID: 32855425 PMCID: PMC7453008 DOI: 10.1038/s41467-020-18223-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Quantification of nanoparticle-molecule interaction at a single-molecule level remains a daunting challenge, mainly due to ultra-weak emission from single molecules and the perturbation of the local environment. Here we report the rational design of an intraparticle-surface energy transfer (i-SET) process, analogous to high doping concentration-induced surface quenching effects, to realize single-molecule sensing by nanoparticle probes. This design, based on a Tb3+-activator-rich core-shell upconversion nanoparticle, enables a much-improved spectral response to fluorescent molecules at single-molecule levels through enhanced non-radiative energy transfer with a rate over an order of magnitude faster than conventional counterparts. We demonstrate a quantitative analysis of spectral changes of one to four fluorophores tethered on a single nanoparticle through i-SET spectroscopy. Our results provide opportunities to identify photoreaction kinetics at single-molecule levels and provide direct information for understanding behaviors of individual molecules with unprecedented sensitivity.
Collapse
Affiliation(s)
- Jian Zhou
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyu Li
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Denghao Li
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofeng Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhao Mu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Renren Deng
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China. .,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
65
|
Dong B, Mansour N, Pei Y, Wang Z, Huang T, Filbrun SL, Chen M, Cheng X, Pruski M, Huang W, Fang N. Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. J Am Chem Soc 2020; 142:13305-13309. [PMID: 32687344 DOI: 10.1021/jacs.0c05905] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoconfinement imposes physical constraints and chemical effects on reactivity in nanoporous catalyst systems. In the present study, we lay the groundwork for quantitative single-molecule measurements of the effects of chemical environment on heterogeneous catalysis in nanoconfinement. Choosing hydrophobicity as an exemplary chemical environmental factor, we compared a range of essential parameters for an oxidation reaction on platinum nanoparticles (NPs) confined in hydrophilic and hydrophobic nanopores. Single-molecule experimental measurements at the single particle level showed higher catalytic activity, stronger adsorption strength, and higher activation energy in hydrophobic nanopores than those in hydrophilic nanopores. Interestingly, different dissociation kinetic behaviors of the product molecules in the two types of nanopores were deduced from the single-molecule imaging data.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nourhan Mansour
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuchen Pei
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Tengxiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Minda Chen
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Xiaodong Cheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marek Pruski
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
66
|
Zhong Y, Wang G. Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:381-403. [PMID: 32097571 DOI: 10.1146/annurev-anchem-091819-100409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single particle tracking (SPT) has proven to be a powerful technique in studying molecular dynamics in complicated systems. We review its recent development, including three-dimensional (3D) SPT and its applications in probing nanostructures and molecule-surface interactions that are important to analytical chemical processes. Several frequently used 3D SPT techniques are introduced. Especially of interest are those based on point spread function engineering, which are simple in instrumentation and can be easily adapted and used in analytical labs. Corresponding data analysis methods are briefly discussed. We present several important case studies, with a focus on probing mass transport and molecule-surface interactions in confined environments. The presented studies demonstrate the great potential of 3D SPT for understanding fundamental phenomena in confined space, which will enable us to predict basic principles involved in chemical recognition, separation, and analysis, and to optimize mass transport and responses by structural design and optimization.
Collapse
Affiliation(s)
- Yaning Zhong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA;
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
67
|
Li CY, Duan S, Yi J, Wang C, Radjenovic PM, Tian ZQ, Li JF. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. SCIENCE ADVANCES 2020; 6:eaba6012. [PMID: 32577524 PMCID: PMC7286666 DOI: 10.1126/sciadv.aba6012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/10/2020] [Indexed: 05/22/2023]
Abstract
Determining structural transformations of single molecules (SMs) is an important fundamental scientific endeavor. Optical spectroscopies are the dominant tools used to unravel the physical and chemical features of individual molecules and have substantially contributed to surface science and biotechnology. In particular, Raman spectroscopy can identify reaction intermediates and reveal underlying reaction mechanisms; however, SM Raman experiments are subject to intrinsically weak signal intensities and considerable signal attenuation within the spectral dispersion systems of the spectrometer. Here, to monitor the structural transformation of an SM on the millisecond time scale, a plasmonic nanocavity substrate has been used to enable Raman vibrational and fluorescence spectral signals to be simultaneously collected and correlated, which thus allows a detection of photo-induced bond cleavage between the xanthene and phenyl group of a single rhodamine B isothiocyanate molecule in real time. This technique provides a novel method for investigating light-matter interactions and chemical reactions at the SM level.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Materials, College of Energy, Department of Physics, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Corresponding author.
| |
Collapse
|
68
|
Li ZQ, Wu MY, Ding XL, Wu ZQ, Xia XH. Reversible Electrochemical Tuning of Ion Sieving in Coordination Polymers. Anal Chem 2020; 92:9172-9178. [DOI: 10.1021/acs.analchem.0c01504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
69
|
Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, Li G, Tang Z. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kwanghak Choe
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yi Yuan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Myonghak Ri
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yinglong Wang
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
70
|
Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, Li G, Tang Z. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:3650-3657. [DOI: 10.1002/anie.201913453] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Kwanghak Choe
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yi Yuan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Myonghak Ri
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yinglong Wang
- Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
71
|
Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D. Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00537a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts was demonstrated.
Collapse
Affiliation(s)
- Meirong Lu
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Xiaoyu Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Jiang Deng
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Sanchai Kuboon
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Shengxiong Xiao
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- P.R. China
| | - Dengsong Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
72
|
Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat Commun 2019; 10:4815. [PMID: 31645571 PMCID: PMC6811571 DOI: 10.1038/s41467-019-12799-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Nanoconfinement could dramatically change molecular transport and reaction kinetics in heterogeneous catalysis. Here we specifically design a core-shell nanocatalyst with aligned linear nanopores for single-molecule studies of the nanoconfinement effects. The quantitative single-molecule measurements reveal unusual lower adsorption strength and higher catalytic activity on the confined metal reaction centres within the nanoporous structure. More surprisingly, the nanoconfinement effects on enhanced catalytic activity are larger for catalysts with longer and narrower nanopores. Experimental evidences, including molecular orientation, activation energy, and intermediate reactive species, have been gathered to provide a molecular level explanation on how the nanoconfinement effects enhance the catalyst activity, which is essential for the rational design of highly-efficient catalysts.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuchen Pei
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
| | - Nourhan Mansour
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA.
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
73
|
Zhao EW, Maligal-Ganesh R, Mentink-Vigier F, Zhao TY, Du Y, Pei Y, Huang W, Bowers CR. Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization- Enhanced 29Si MAS NMR Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:7299-7307. [PMID: 31186824 PMCID: PMC6558955 DOI: 10.1021/acs.jpcc.9b01782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mesoporous silica encapsulated Pt (Pt@mSiO2) and PtSn (PtSn@mSiO2) nanoparticles (NPs) are representatives of a novel class of heterogeneous catalysts with uniform particle size, enhanced catalytic properties, and superior thermal stability. In the ship-in-a-bottle synthesis, PtSn@mSiO2 intermetallic NPs are derived from Pt@mSiO2 seeds where the mSiO2 shell is formed by polymerization of tetraethyl orthosilicate around a tetradecyltrimethylammonium bromide template, a surfactant used to template MCM-41. Incorporation of Sn into the Pt@mSiO2 seeds is accommodated by chemical etching of the mSiO2 shell. The effect of this etching on the atomic-scale structure of the mSiO2 has not been previously examined, nor has the extent of the structural similarity to MCM-41. Here, the quaternary Q2, Q3 and Q4 sites corresponding to formulas Si(O1/2)2(OH)2, Si(O1/2)3(OH)1 and Si(O1/2)4, in MCM-41 and the mesoporous silica of Pt@mSiO2 and PtSn@mSiO2 NPs were identified and quantified by conventional and dynamic nuclear polarization enhanced Si-29 Magic Angle Spinning Nuclear Magnetic Resonance (DNP MAS NMR). The connectivity of the -Si-O-Si-network was revealed by DNP enhanced two-dimensional 29Si-29Si correlation spectroscopy.
Collapse
Affiliation(s)
- Evan Wenbo Zhao
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
- Correspondence to:
, ,
| | | | | | - Tommy Yunpu Zhao
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
| | - Yong Du
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
| | - Yuchen Pei
- Department of Chemistry, Iowa State University, Ames, Iowa,
50011 United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa,
50011 United States
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa
50011 United States
- Correspondence to:
, ,
| | - Clifford Russell Bowers
- Department of Chemistry, University of Florida,
Gainesville, Florida, 32611 United States
- Correspondence to:
, ,
| |
Collapse
|
74
|
Chen M, Han Y, Goh TW, Sun R, Maligal-Ganesh RV, Pei Y, Tsung CK, Evans JW, Huang W. Kinetics, energetics, and size dependence of the transformation from Pt to ordered PtSn intermetallic nanoparticles. NANOSCALE 2019; 11:5336-5345. [PMID: 30843547 DOI: 10.1039/c8nr10067e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The outstanding catalytic activity and chemical selectivity of intermetallic compounds make them excellent candidates for heterogeneous catalysis. However, the kinetics of their formation at the nanoscale is poorly understood or characterized, and precise control of their size, shape and composition during synthesis remains challenging. Here, using well-defined Pt nanoparticles (5 nm and 14 nm) encapsulated in mesoporous silica, we study the transformation kinetics from monometallic Pt to intermetallic PtSn at different temperatures by a series of time-evolution X-ray diffraction studies. Observations indicate an initial transformation stage mediated by Pt surface-controlled intermixing kinetics, followed by a second stage with distinct transformation kinetics corresponding to a Ginstling-Brounstein (G-B) type bulk diffusion mode. Moreover, the activation barrier for both surface intermixing and diffusion stages is obtained through the development of appropriate kinetic models for the analysis of experimental data. Our density-functional-theory (DFT) calculations provide further insights into the atomistic-level processes and associated energetics underlying surface-controlled intermixing.
Collapse
Affiliation(s)
- Minda Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Zhang K, Liu Y, Wang Y, Zhao J, Liu B. Direct SERS tracking of a chemical reaction at a single 13 nm gold nanoparticle. Chem Sci 2019; 10:1741-1745. [PMID: 30842839 PMCID: PMC6374737 DOI: 10.1039/c8sc04496a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/02/2018] [Indexed: 11/21/2022] Open
Abstract
Metal nanoparticles (NPs) with decreased sizes are promising catalysts in energy and medicine. Measuring the local reactions and simultaneously acquiring molecular insights at single small NPs, however, remain an experimental challenge. Here we report on surface-enhanced Raman spectroscopic (SERS) tracking of catalytic reactions of single 13 nm gold NPs (GNPs) in situ. We designed spatially isolated (>1.5 μm of inter-dimer space) GNP dimers, each of which consisted of two GNPs with sizes of ∼200 and ∼13 nm, respectively. This design integrates the SERS and catalytic activities into a single entity, while eliminating the crosstalk between adjacent particles, which allows us to trace the redox-derived spectral evolution at single 13 nm GNPs for the first time. We also quantified the reaction kinetics of each individual GNP and analyzed the average behavior of multiple GNPs. There is a large variability among different particles, which underscores the significance of single particle analysis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Yujie Liu
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Yuning Wang
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Jingjing Zhao
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| | - Baohong Liu
- Department of Chemistry , Shanghai Stomatological Hospital , State Key Lab of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , China .
| |
Collapse
|
76
|
Ye R, Mao X, Sun X, Chen P. Analogy between Enzyme and Nanoparticle Catalysis: A Single-Molecule Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04926] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rong Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiangcheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
77
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Zhang K, Liu Y, Zhao J, Liu B. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. NANOSCALE 2018; 10:21742-21747. [PMID: 30431050 DOI: 10.1039/c8nr07447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic metal nanoparticles (NPs) are promising catalysts in photocatalytic reactions. Understanding the exact role of sites where two particles are approaching (hot spots) is important to achieve higher efficiency of photocatalysis, and promote the development of advanced plasmon-driven photocatalytic systems. Surface-enhanced Raman spectroscopy was employed to probe photocatalytic coupling reactions occurring at individual plasmonic nanojunctions that trap light to nanoscale while serving as nanoreactors. Compared with nanocavities fabricated using the small Ag NPs (70 nm or 82 nm), the 102 nm Ag NP-molecule-Au thin film nanojunction demonstrated enhanced reaction kinetics and catalytic efficiency. On the basis of the experimental results and theoretical modeling, it was concluded that the photochemical reaction dynamics and yields showed direct correlation with the local electric field enhancement at the nanojunction hot spot. The largely enhanced electric field generates increased hot plasmonic electrons, promoting chemical transformations of the adsorbed molecules.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
79
|
Peck KA, Su M, Lien J, Sharmah A, Guo T. Sealable Spherical Mesoporous Silica Shell Nanoreactors as Fiducial Nanoscale Probes for X-rays. J Phys Chem A 2018; 122:8686-8692. [PMID: 30293419 DOI: 10.1021/acs.jpca.8b07968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular reactions in aqueous solutions are often used as dosimetric probes. A major problem with this approach is that other species such as nanoparticles or radical scavenging chemicals can often interfere with these reactions. The results measured in the presence of nanomaterials and scavengers therefore cannot correctly indicate the true dose based on the calibrated results obtained in solutions free of the interfering species. Storing these molecular probes in nanoreactors can overcome this problem. Here we demonstrate for the first time that it is possible to place common probe molecules inside spherical mesoporous silica shells and seal the pores after impregnation for the purpose of using the so-formed nanoreactors as X-ray dose probes. The reactions are isolated from the external environment, while the sealed shells still allow X-rays to freely penetrate through the walls of the nanoreactors. These nanoreactor probes can therefore fiducially report the dose of X-rays, whether the nanoreactors are in solutions, in dry form, or in the presence of scavengers and catalysts in solution.
Collapse
Affiliation(s)
- Kristin A Peck
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Mengqi Su
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Jennifer Lien
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Arjun Sharmah
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Ting Guo
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
80
|
|