51
|
Effect of Phenolic Compounds Against Aβ Aggregation and Aβ-Induced Toxicity in Transgenic C. elegans. Neurochem Res 2011; 37:40-8. [DOI: 10.1007/s11064-011-0580-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022]
|
52
|
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011; 1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD. DISCUSSION A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism. CONCLUSION Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
Collapse
|
53
|
Nie Q, Du XG, Geng MY. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease. Acta Pharmacol Sin 2011; 32:545-51. [PMID: 21499284 DOI: 10.1038/aps.2011.14] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amyloid β (Aβ) peptides have long been viewed as a potential target for Alzheimer's disease (AD). Aggregation of Aβ peptides in the brain tissue is believed to be an exclusively pathological process. Therefore, blocking the initial stages of Aβ peptide aggregation with small molecules could hold considerable promise as the starting point for the development of new therapies for AD. Recent rapid progresses in our understanding of toxic amyloid assembly provide a fresh impetus for this interesting approach. Here, we discuss the problems, challenges and new concepts in targeting Aβ peptides.
Collapse
|
54
|
Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 2011; 50:2445-55. [PMID: 21322641 DOI: 10.1021/bi101731d] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8''-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.
Collapse
Affiliation(s)
- Arjun Thapa
- Department of Biomaterials Engineering, Chosun University, Gwanju 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Chen J, Armstrong AH, Koehler AN, Hecht MH. Small molecule microarrays enable the discovery of compounds that bind the Alzheimer's Aβ peptide and reduce its cytotoxicity. J Am Chem Soc 2010; 132:17015-22. [PMID: 21062056 DOI: 10.1021/ja107552s] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid-β (Aβ) aggregation pathway is a key target in efforts to discover therapeutics that prevent or delay the onset of Alzheimer's disease. Efforts at rational drug design, however, are hampered by uncertainties about the precise nature of the toxic aggregate. In contrast, high-throughput screening of compound libraries does not require a detailed understanding of the structure of the toxic species, and can provide an unbiased method for the discovery of small molecules that may lead to effective therapeutics. Here, we show that small molecule microarrays (SMMs) represent a particularly promising tool for identifying compounds that bind the Aβ peptide. Microarray slides with thousands of compounds immobilized on their surface were screened for binding to fluorescently labeled Aβ. Seventy-nine compounds were identified by the SMM screen, and then assayed for their ability to inhibit the Aβ-induced killing of PC12 cells. Further experiments focused on exploring the mechanism of rescue for one of these compounds: Electron microscopy and Congo red binding showed that the compound enhances fibril formation, and suggest that it may rescue cells by accelerating Aβ aggregation past an early toxic oligomer. These findings demonstrate that the SMM screen for binding to Aβ is effective at identifying compounds that reduce Aβ toxicity, and can reveal potential therapeutic leads without the biases inherent in methods that focus on inhibitors of aggregation.
Collapse
Affiliation(s)
- Jermont Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | |
Collapse
|
56
|
Harada T, Kuroda R. CD measurements of β-amyloid (1-40) and (1-42) in the condensed phase. Biopolymers 2010; 95:127-34. [DOI: 10.1002/bip.21543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 08/28/2010] [Accepted: 09/07/2010] [Indexed: 11/12/2022]
|
57
|
Krafft GA, Klein WL. ADDLs and the signaling web that leads to Alzheimer’s disease. Neuropharmacology 2010; 59:230-42. [DOI: 10.1016/j.neuropharm.2010.07.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/13/2010] [Indexed: 12/29/2022]
|
58
|
Hao J, Zhang W, Zhang P, Liu R, Liu L, Lei G, Su C, Miao J, Li Z. Abeta20-29 peptide blocking apoE/Abeta interaction reduces full-length Abeta42/40 fibril formation and cytotoxicity in vitro. Neuropeptides 2010; 44:305-13. [PMID: 20363024 DOI: 10.1016/j.npep.2010.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/10/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
A key event in the pathogenesis of Alzheimer's disease (AD) is the conversion of the peptide beta-amyloid (Abeta) from its soluble monomeric form into various aggregated morphologies in the brain. Apolipoprotein E (apoE) is known to act as a pathological chaperone of Abeta in this process, promoting its fibril formation from soluble Abeta by binding interaction between carboxy-terminal domain of apoE and residues 12-28 of full-length Abeta. Therefore, blocking apoE/Abeta interaction is being actively pursued as a primary therapeutic strategy for AD. Abeta20-29, a short peptide, contains the residues to competitively bind to apoE and may potentially block the interaction between apoE and full-length Abeta. However, little is known whether Abeta20-29 could block apoE/Abeta interaction to play an effective role in reducing full-length Abeta fibrillization and cytotoxicity. Utilizing fluorescence spectroscopic analysis with thioflavin T and electron microscopic study, we show here that Abeta20-29 alone was non-fibrillogenic, and had no direct effects on Abeta1-42 or Abeta1-40 aggregation. Moreover, apoE can directly promote both Abeta1-42 and Abeta1-40 aggregation and fibril formation, while this promoting effect was inhibited when adding Abeta20-29, with a dose-dependent manner. In the series of cell culture experiments, Abeta20-29 alone shows no cytotoxicity to PC12 cells as demonstrated by MTT assay, while co-incubation apoE isoforms and Abeta1-42 or Abeta1-40 shows stronger cytotoxicity as compared to Abeta1-42 or Abeta1-40 alone. When incubated with Abeta20-29, whereas such strong cytotoxic effect was concentration-dependently reduced. Taken together, we demonstrate for the first time that Abeta20-29 has no direct effect on full-length Abeta aggregation, and may competitively block the binding of full-length Abeta to apoE, resulting in an inhibitory effect on apoE's promoting full-length Abeta fibrillogenesis and Abeta-induced cytotoxicity. Our results raise the possibility that Abeta20-29 peptide blocking the interaction between full-length Abeta and apoE isoforms may be effective as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Jian Hao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
RS-0406 arrests amyloid-beta oligomer-induced behavioural deterioration in vivo. Behav Brain Res 2010; 210:32-7. [PMID: 20138088 DOI: 10.1016/j.bbr.2010.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 01/14/2023]
Abstract
Clinically accessible compounds that arrest or reverse the effects of amyloid-beta (Abeta) on progressively developing behavioural symptomatology and neuropathology in Alzheimer's disease (AD) have yet to become available. However, a viable strategy may be to target and neutralise soluble Abeta oligomers, which have been shown to mediate synaptic dysfunction and to produce cognitive deficits in the intact organism. Inhibiting the aggregation of Abeta is therapeutically attractive, as Abeta aggregation is a pathological event and pharmacological interventions targeting this are likely to have a non-toxic profile. A behavioural assay, the alternating-lever cyclic-ratio schedule, was used to assess the effect of Abeta oligomers and the non-peptide small molecule RS-0406 in male Sprague-Dawley rats. RS-0406 has been shown to inhibit Abeta(1-42) fibrillogenesis and protect against Abeta(1-42)-induced cytotoxicity in primary hippocampal neurons. In the current study, RS-0406 ameliorated the adverse effects of secreted oligomers of human Abeta on behaviour and dose dependently reduced the behavioural effects of Abeta oligomers, with the highest dose, 10microM, maintaining behaviour approximately at control levels. This effect appeared to be central; peripheral confounds having been extensively investigated. This is the first published report on the effects of RS-0406 in vivo and indicates that RS-0406 has potential as a pharmacotherapeutic intervention for behavioural deficits seen in the early stages of AD, and possibly as an intervention in the development of AD neuropathology. Indeed, an analogue of RS-0406 that could be administered peripherally might be a realistic candidate for the clinical treatment of AD.
Collapse
|
60
|
Csuk R, Barthel A, Raschke C, Kluge R, Ströhl D, Trieschmann L, Böhm G. Synthesis of Monomeric and Dimeric Acridine Compounds as Potential Therapeutics in Alzheimer and Prion Diseases. Arch Pharm (Weinheim) 2009; 342:699-709. [DOI: 10.1002/ardp.200900065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Lee LL, Ha H, Chang YT, DeLisa MP. Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility. Protein Sci 2009; 18:277-86. [PMID: 19177561 DOI: 10.1002/pro.33] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic and biochemical studies suggest that Alzheimer's disease (AD) is caused by a series of events initiated by the production and subsequent aggregation of the Alzheimer's amyloid beta peptide (Abeta), the so-called amyloid cascade hypothesis. Thus, a logical approach to treating AD is the development of small molecule inhibitors that either block the proteases that generate Abeta from its precursor (beta- and gamma-secretases) or interrupt and/or reverse Abeta aggregation. To identify potent inhibitors of Abeta aggregation, we have developed a high-throughput screen based on an earlier selection that effectively paired the folding quality control feature of the Escherichia coli Tat protein export system with aggregation of the 42-residue AD pathogenesis effecter Abeta42. Specifically, a tripartite fusion between the Tat-dependent export signal ssTorA, the Abeta42 peptide and the beta-lactamase (Bla) reporter enzyme was found to be export incompetent due to aggregation of the Abeta42 moiety. Here, we reasoned that small, cell-permeable molecules that inhibited Abeta42 aggregation would render the ssTorA-Abeta42-Bla chimera competent for Tat export to the periplasm where Bla is active against beta-lactam antibiotics such as ampicillin. Using a fluorescence-based version of our assay, we screened a library of triazine derivatives and isolated four nontoxic, cell-permeable compounds that promoted efficient Tat-dependent export of ssTorA-Abeta42-Bla. Each of these was subsequently shown to be a bona fide inhibitor of Abeta42 aggregation using a standard thioflavin T fibrillization assay, thereby highlighting the utility of our bacterial assay as a useful screen for antiaggregation factors under physiological conditions.
Collapse
Affiliation(s)
- Li Ling Lee
- Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
62
|
Alpha-helix targeting reduces amyloid-beta peptide toxicity. Proc Natl Acad Sci U S A 2009; 106:9191-6. [PMID: 19458258 DOI: 10.1073/pnas.0810364106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The amyloid-beta peptide (Abeta) can generate cytotoxic oligomers, and their accumulation is thought to underlie the neuropathologic changes found in Alzheimer's disease. Known inhibitors of Abeta polymerization bind to undefined structures and can work as nonspecific aggregators, and inhibitors that target conformations that also occur in larger Abeta assemblies may even increase oligomer-derived toxicity. Here we report on an alternative approach whereby ligands are designed to bind and stabilize the 13-26 region of Abeta in an alpha-helical conformation, inspired by the postulated Abeta native structure. This is achieved with 2 different classes of compounds that also reduce Abeta toxicity to cells in culture and to hippocampal slice preparations, and that do not show any nonspecific aggregatory properties. In addition, when these inhibitors are administered to Drosophila melanogaster expressing human Abeta(1-42) in the central nervous system, a prolonged lifespan, increased locomotor activity, and reduced neurodegeneration is observed. We conclude that stabilization of the central Abeta alpha-helix counteracts polymerization into toxic assemblies and provides a strategy for development of specific inhibitors of Abeta polymerization.
Collapse
|
63
|
Minogue AM, Stubbs AK, Frigerio CS, Boland B, Fadeeva JV, Tang J, Selkoe DJ, Walsh DM. gamma-secretase processing of APLP1 leads to the production of a p3-like peptide that does not aggregate and is not toxic to neurons. Brain Res 2009; 1262:89-99. [PMID: 19401174 DOI: 10.1016/j.brainres.2009.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/17/2022]
Abstract
The amyloid precursor-like protein-1 (APLP1) is a member of a protein family that includes the Alzheimer's disease-associated amyloid precursor protein (APP). While much is known about the proteolytic processing of APP, fewer details are available about APLP1. Using Chinese hamster ovarian cells stably transfected with human APLP1 and a novel juxtamembrane anti-APLP1 antibody, we demonstrate the detection of a secreted approximately 3.5 kDa APLP1-derived peptide (ALP-1). The production of this peptide is abolished by inhibition of gamma-secretase, but not beta-secretase, suggesting that ALP-1 is analogous to the p3 fragment produced from APP. However, unlike p3 or Abeta, ALP-1 shows no obvious propensity for aggregation and is not toxic to neuronal cells. Moreover, using two distinct experimental paradigms, we demonstrate that neither cell-derived nor chemically synthesized ALP-1 influences the oligomerization or aggregation of Abeta.
Collapse
Affiliation(s)
- Aedín M Minogue
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Bannwarth L, Rose T, Dufau L, Vanderesse R, Dumond J, Jamart-Grégoire B, Pannecouque C, De Clercq E, Reboud-Ravaux M. Dimer Disruption and Monomer Sequestration by Alkyl Tripeptides Are Successful Strategies for Inhibiting Wild-Type and Multidrug-Resistant Mutated HIV-1 Proteases. Biochemistry 2008; 48:379-87. [DOI: 10.1021/bi801422u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Bannwarth
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Thierry Rose
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Laure Dufau
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Régis Vanderesse
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Julien Dumond
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Brigitte Jamart-Grégoire
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christophe Pannecouque
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Erik De Clercq
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Michèle Reboud-Ravaux
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
65
|
Maczurek A, Shanmugam K, Münch G. Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer's disease. Ann N Y Acad Sci 2008; 1126:147-51. [PMID: 18448809 DOI: 10.1196/annals.1433.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuritic amyloid plaques and concomitant chronic inflammation are prominent pathological features of AD. beta-amyloid peptide (Abeta), the major component of plaques, and advanced glycation end products (AGEs), post-translational protein modifications, are key activators of plaque-associated inflammation. Abeta, AGEs, S100b, and amphoterin bind to the receptor for AGEs (RAGE), which transmits the signal from RAGE via redox-sensitive pathways to nuclear factor kappa-B (NF-kappaB)-regulated cytokines. RAGE-mediated inflammation caused by glial cells and subsequent changes in neuronal glucose metabolism are likely to be important contributors to neurodegeneration in AD. As long as the neuronal damage is reversible, drugs interfering with the Abeta and AGE-RAGE pathways might be interesting novel therapeutics for the treatment of AD.
Collapse
Affiliation(s)
- Annette Maczurek
- Department of Biochemistry and Molecular Biology/Comparative Genomics Centre, James Cook University, Townsville, Australia
| | | | | |
Collapse
|
66
|
Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4:371-87. [PMID: 18728748 PMCID: PMC2518390 DOI: 10.2147/ndt.s2447] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Daniela Puzzo
- Dept of Physiological Sciences, University of Catania Catania, Italy.
| | | | | | | |
Collapse
|
67
|
Schmid AW, Freir DB, Herron CE. Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res 2008; 1197:135-42. [DOI: 10.1016/j.brainres.2007.11.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/23/2007] [Accepted: 11/29/2007] [Indexed: 02/07/2023]
|
68
|
Abstract
The Abeta peptide assembles into a variety of distinct types of structures in vitro and in the brain which have different biological consequences. Differential effects of inhibitory small molecules suggest that a sequential monomer - oligomer - fibril mechanism is overly simplistic and that soluble toxic oligomers and fibrils can be formed in common or separate pathways depending on the local environment. As a result, the effects of inhibitors are often assay-dependent because multiple pathways are operating. This review discusses strategies for teasing apart the intricate protein-protein interactions that result in Abeta assembly.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Molecular and Cellular Biochemistry, Chandler School of Medicine and the Center on Aging, University of Kentucky, KY, USA.
| |
Collapse
|
69
|
Reinke AA, Gestwicki JE. Structure?activity Relationships of Amyloid Beta-aggregation Inhibitors Based on Curcumin: Influence of Linker Length and Flexibility. Chem Biol Drug Des 2007; 70:206-15. [PMID: 17718715 DOI: 10.1111/j.1747-0285.2007.00557.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Self-assembly of amyloid beta into fibrillar plaques is characteristic of Alzheimer's disease and oligomers of this peptide are believed to be involved in neurodegeneration. Natural organic dyes, such as congo red and curcumin, bind tightly to amyloid beta and, at higher concentrations, block its self-assembly. The ability of these molecules to prevent amyloid accumulation has generated interest in understanding which of their structural features contribute to inhibitory potency. In general, amyloid beta ligands tend to be flat, planar molecules with substituted aromatic end groups; however, a comprehensive structure-activity study has not been reported. To better understand these ligands, we surveyed the effect of three prominent features on inhibition of amyloid aggregation: the presence of two aromatic end groups, the substitution pattern of these aromatics, and the length and flexibility of the linker region. We found that modification of any one of the modules has profound effects on activity. Further, we report that the optimal length of the linker lies within a surprisingly narrow regime (6-19 A). These results offer insight into the key chemical features required for inhibiting amyloid beta aggregation. In turn, these findings help define the nature of the docking site for small molecules on the amyloid beta surface.
Collapse
Affiliation(s)
- Ashley A Reinke
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
70
|
Puzzo D, Palmeri A, Arancio O. Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer's disease. Rev Neurosci 2007; 17:497-523. [PMID: 17180876 DOI: 10.1515/revneuro.2006.17.5.497] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-beta (Abeta), a peptide thought to play a crucial role in Alzheimer's disease (AD), has attracted scientific interest with the aim of characterizing the mechanisms by which it is involved in AD pathogenesis. Abeta has been found to markedly impair hippocampal long-term potentiation (LTP), a widely studied cellular model of synaptic plasticity that is thought to underlie learning and memory. The overall purpose of this review is to define the role of the nitric oxide (NO)/cGMP/cAMP-regulatory element binding (CREB) pathway in beta-amyloid-induced changes of basal neurotransmission and synaptic plasticity in the hippocampus, a structure within the temporal lobe of the brain critical for memory storage.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Pathology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
71
|
Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006; 67:27-37. [PMID: 16492146 DOI: 10.1111/j.1747-0285.2005.00318.x] [Citation(s) in RCA: 796] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of well-ordered fibrillar protein deposits is common to a large group of amyloid-associated disorders. This group consists of several major human diseases such as Alzheimer's disease, Parkinson's disease, prion diseases, and type II diabetes. Currently, there is no approved therapeutic agent directed towards the formation of fibrillar assemblies, which have been recently shown to have a key role in the cytotoxic nature of amyloidogenic proteins. One important approach in the development of therapeutic agents is the use of small molecules that specifically and efficiently inhibit the aggregation process. Several small polyphenol molecules have been demonstrated to remarkably inhibit the formation of fibrillar assemblies in vitro and their associated cytotoxicity. Yet, the inhibition mechanism was mostly attributed to the antioxidative properties of these polyphenol compounds. Based on several observations demonstrating that polyphenols are capable of inhibiting amyloid fibril formation in vitro, regardless of oxidative conditions, and in view of their structural similarities we suggest an additional mechanism of action. This mechanism is assuming structural constraints and specific aromatic interactions, which direct polyphenol inhibitors to the amyloidogenic core. This proposed mechanism is highly relevant for future de novo inhibitors' design as therapeutic agents for the treatment of amyloid-associated diseases.
Collapse
Affiliation(s)
- Yair Porat
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
72
|
Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, El Agnaf O, Hartley DM, Selkoe DJ. Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 2006; 25:2455-62. [PMID: 15758153 PMCID: PMC6725159 DOI: 10.1523/jneurosci.4391-04.2005] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies support the hypothesis that soluble oligomers of amyloid beta-peptide (Abeta) rather than mature amyloid fibrils are the earliest effectors of synaptic compromise in Alzheimer's disease. We took advantage of an amyloid precursor protein-overexpressing cell line that secretes SDS-stable Abeta oligomers to search for inhibitors of the pathobiological effects of natural human Abeta oligomers. Here, we identify small molecules that inhibit formation of soluble Abeta oligomers and thus abrogate their block of long-term potentiation (LTP). Furthermore, we show that cell-derived Abeta oligomers can be separated from monomers by size exclusion chromatography under nondenaturing conditions and that the isolated, soluble oligomers, but not monomers, block LTP. The identification of small molecules that inhibit early Abeta oligomer formation and rescue LTP inhibition offers a rational approach for therapeutic intervention in Alzheimer's disease and highlights the utility of our cell-culture paradigm as a useful secondary screen for compounds designed to inhibit early steps in Abeta oligomerization under biologically relevant conditions.
Collapse
Affiliation(s)
- Dominic M Walsh
- Department of Neurology, Harvard Medical School, and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115-5716, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
The role of cell-derived oligomers of Aβ in Alzheimer's disease and avenues for therapeutic intervention. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331087] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Burgeoning evidence suggests that soluble oligomers of Aβ (amyloid β-protein) are the earliest effectors of synaptic compromise in Alzheimer's disease. Whereas most other investigators have employed synthetic Aβ peptides, we have taken advantage of a β-amyloid precursor protein-overexpressing cell line (referred to as 7PA2) that secretes sub-nanomolar levels of low-n oligomers of Aβ. These are composed of heterogeneous Aβ peptides that migrate on SDS/PAGE as dimers, trimers and tetramers. When injected into the lateral ventricle of rats in vivo, these soluble oligomers inhibit hippocampal long-term potentiation and alter the memory of a complex learned behaviour. Biochemical manipulation of 7PA2 medium including immunodepletion with Aβ-specific antibodies and fractionation by size-exclusion chromatography allowed us to unambiguously attribute these effects to low-n oligomers. Using this paradigm we have tested compounds directed at three prominent amyloid-based therapeutic targets: inhibition of the secretases responsible for Aβ production, inhibition of Aβ aggregation and immunization against Aβ. In each case, compounds capable of reducing oligomer production or antibodies that avidly bind Aβ oligomers also ameliorate the synaptotoxic effects of these natural, cell-derived oligomers.
Collapse
|
74
|
Abstract
Compelling evidence indicates that a key pathological event in Alzheimer's disease is the misfolding and aggregation of normal soluble amyloid-beta peptide into beta-sheet-rich oligomeric structures which have a neurotoxic activity and ability to form insoluble amyloid deposits that accumulate in the brain. beta-sheet breakers constitute a new class of drugs that are designed to specifically bind amyloid-beta peptide blocking and/or reversing the misfolding process. In this article we review this approach and summarize the data supporting the view that beta-sheet breakers could be serious candidates to combat this devastating disease.
Collapse
Affiliation(s)
- Claudio Soto
- Protein Misfolding Disorders Laboratory, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
75
|
Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2004; 280:5892-901. [PMID: 15590663 DOI: 10.1074/jbc.m404751200] [Citation(s) in RCA: 1641] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and Tg2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged Tg mice crossed the blood-brain barrier and bound plaques. When fed to aged Tg2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.
Collapse
Affiliation(s)
- Fusheng Yang
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Chacón MA, Barría MI, Soto C, Inestrosa NC. Beta-sheet breaker peptide prevents Abeta-induced spatial memory impairments with partial reduction of amyloid deposits. Mol Psychiatry 2004; 9:953-61. [PMID: 15098004 DOI: 10.1038/sj.mp.4001516] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current evidence supports the notion that beta-amyloid deposits or Abeta intermediates may be responsible for the pathogenesis in Alzheimer's disease (AD) patients. In the present work, we have assessed the neuroprotective effect of the chronic intraperitoneal administration of a five-amino-acid beta-sheet breaker peptide (iAbeta5p) on the rat behavioral deficit induced by the intrahippocampal Abeta-fibrils injection. At 1 month after the injection, animals showed a partial reduction of the amyloid deposits formed and a decreased astrocytic response around the injection site. More importantly, we report that following the iAbeta5p treatment, hippocampal-dependent spatial learning paradigms, including the standard Morris water maze and a working memory analysis, showed a significant prevention from impairments induced by Abeta deposits in the dorsal hippocampus. Thus, it is possible that a noninvasive treatment such as the one presented here with beta-sheet breaker peptides may be used as a potential therapy for AD patients.
Collapse
Affiliation(s)
- M A Chacón
- Centro FONDAP de Regulación Celular y Patología Joaquín V Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
77
|
Hirouchi M. [Current status and perspectives on the development of therapeutic agents for Alzheimer's disease]. Nihon Yakurigaku Zasshi 2004; 123:421-7. [PMID: 15170082 DOI: 10.1254/fpj.123.421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Acetylcholinesterase inhibitors have beneficial effects to improve the cognitive impairment in patients with mild to moderate Alzheimer's disease (AD). In addition, a channel blocker of N-methyl-D-aspartate receptor, memantine hydrochloride, was approved as a therapeutic agent for patients with moderate to severe AD in both EU countries in 2002 and USA in 2003, while the clinical development is still ongoing in Japan. In contrast, the pharmacotherapy for a prime cure against AD is not available in the market, although there has been a worldwide search for novel compounds. The most plausible mechanism for the treatment of AD is the reduction of the amyloid beta-peptide (Abeta) plaques, one of the pathological markers of AD, in the brain. For this purpose, the inhibitors of beta-secretase and gamma-secretase, which cleave amyloid precursor protein (APP) to release Abeta, has been developed to interfere with APP processing. The beta-sheet breaker and metal chelators for the breakdown of aggregated Abeta have also been synthesized as well as the immunotherapeutic approach using Abeta vaccine. On the other hand, some nonsteroidal anti-inflammatory drugs, such as ibuprofen and sulindac, noncompetitively inhibited Abeta production but not Notch cleavage. The development of Abeta-lowering drugs is highly expected for the treatment of AD.
Collapse
|
78
|
Kim JR, Gibson TJ, Murphy RM. Targeted control of kinetics of beta-amyloid self-association by surface tension-modifying peptides. J Biol Chem 2003; 278:40730-5. [PMID: 12917437 DOI: 10.1074/jbc.m305466200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brain tissue from Alzheimer's patients contains extracellular senile plaques composed primarily of deposits of fibrillar aggregates of beta-amyloid peptide. beta-Amyloid aggregation is postulated to be a major factor in the onset of this neurodegenerative disease. Recently proposed is the hypothesis that oligomeric intermediates, rather than fully formed insoluble fibrils, are cytotoxic. Previously, we reported the discovery of peptides that accelerate beta-amyloid aggregation yet inhibit toxicity in vitro, in support of this hypothesis. These peptides contain two domains: a recognition element designed to bind to beta-amyloid and a disrupting element that alters beta-amyloid aggregation kinetics. Here we show that the aggregation rate-enhancing activity of the disrupting element correlates strongly with its ability to increase surface tension of aqueous solutions. Using the Hofmeister series as a guide, we designed a novel peptide with terminal side-chain trimethylammonium groups in the disrupting domain. The derivatized peptide greatly increased solvent surface tension and accelerated beta-amyloid aggregation kinetics by severalfold. Equivalent increases in surface tension in the absence of a recognition domain had no effect on beta-amyloid aggregation. These results suggest a novel strategy for targeting localized changes in interfacial energy to specific proteins, as a way to selectively alter protein folding, stability, and aggregation.
Collapse
Affiliation(s)
- Jin Ryoun Kim
- Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
79
|
Nishimura S, Murasugi T, Kubo T, Kaneko I, Meguro M, Marumoto S, Kogen H, Koyama K, Oda T, Nakagami Y. RS-4252 inhibits amyloid beta-induced cytotoxicity in HeLa cells. PHARMACOLOGY & TOXICOLOGY 2003; 93:29-32. [PMID: 12828571 DOI: 10.1034/j.1600-0773.2003.930104.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Progressive deposition of amyloid beta peptide in the senile plaques is a principal event in the neurodegenerative process of Alzheimer's disease. Several reports have demonstrated that amyloid beta is cytotoxic using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of viability in cells. With the MTT assay, we screened an in-house library to find compounds which suppress amyloid beta-induced inhibition of MTT reduction. We have previously reported that 6-ethyl-N,N'-bis(3-hydroxyphenyl)[1,3,5]triazine-2,4-diamine (named RS-0466), found in an in-house library, was capable of significantly inhibiting amyloid beta-induced cytotoxicity in HeLa cells. From further screening hits, we newly focused on 4-(7-hydroxy-2,2,4-trimethyl-chroman-4-yl)benzene-1,3-diol (named RS-4252), which show comparable potency to RS-0466 to ameliorate amyloid beta-induced cytotoxicity. Furthermore, RS-4252 reversed the decrease in phosphorylated Akt by amyloid beta. These results imply that RS-4252 or one of its derivatives has the potential to be a therapeutic for Alzheimer's disease patients, and that activation of Akt is at least in part involved in the effect.
Collapse
Affiliation(s)
- Satoko Nishimura
- Neuroscience and Immunology Research Laboratories, Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Nakagami Y, Nishimura S, Murasugi T, Kubo T, Kaneko I, Meguro M, Marumoto S, Kogen H, Koyama K, Oda T. A novel compound RS-0466 reverses beta-amyloid-induced cytotoxicity through the Akt signaling pathway in vitro. Eur J Pharmacol 2002; 457:11-7. [PMID: 12460638 DOI: 10.1016/s0014-2999(02)02657-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
beta-Amyloid peptide is the principal protein in the senile plaques of Alzheimer's disease and is considered to be responsible for the pathology of Alzheimer's disease. Several studies have shown that beta-amyloid is cytotoxic, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of viability in cells. Utilizing the MTT assay, we screened an in-house library to find compounds that suppress beta-amyloid-induced inhibition of MTT reduction. From among the screening hits, we focused on 6-ethyl-N,N'-bis(3-hydroxyphenyl)[1,3,5]triazine-2,4-diamine (named RS-0466), which had been newly synthesized in our laboratory. This compound was found to be capable of significantly inhibiting beta-amyloid-induced cytotoxicity in HeLa cells and of reversing the decrease of phosphorylated Akt induced by beta-amyloid. Furthermore, RS-0466 reversed the beta-amyloid-induced impairment of long-term potentiation in rat hippocampal slices. These results raise the possibility that RS-0466 or its derivatives have potential as a therapeutic agent for Alzheimer's disease patients, and its effect is at least in part mediated by activation of Akt.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Neuroscience and Immunology Research Laboratories, Sankyo Co, Ltd, 1-2-58 Hiromachi, Tokyo Shinagawa 140-8710, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|