51
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
52
|
Soong J, Adams MA, Nakatsu K. Acute depletion of heme by succinylacetone alters vascular responses but does not induce hypertension. Can J Physiol Pharmacol 2008; 86:613-9. [PMID: 18758510 DOI: 10.1139/y08-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heme plays a critical role in blood pressure regulation because it is required by a number of enzymes that synthesize vascular modulators, including nitric oxide (NO), carbon monoxide (CO), guanosine 3',5'-cyclic monophosphate (cGMP), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin. The goal of this study was to examine the vascular effects of a short-term depletion of heme achieved through administration of the heme-synthesis inhibitor succinylacetone (SA), an irreversible inhibitor of aminolevulinic acid dehydratase (ALAD). Rats were depleted of heme by using a 4-day treatment with SA. This treatment impacted hemoenzyme function, decreasing renal nitric oxide synthase (NOS) activity (as indicated by decreased in vitro NOS activity), and increasing kidney microsomal heme oxygenase (HO) activity by 27%. SA treatment also resulted in enhanced reduction in blood pressure after infusions of exogenous NO donor MAHMA NONOate (at high dose) and acetylcholine (at low doses). Nevertheless, this SA treatment was insufficient to produce an overt elevation of basal arterial pressure. This latter lack of effect may be the result of multiple compensatory mechanisms for the regulation of blood pressure.
Collapse
Affiliation(s)
- Jonathan Soong
- Deparment of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
53
|
Kinobe RT, Ji Y, Vlahakis JZ, Motterlini R, Brien JF, Szarek WA, Nakatsu K. Effectiveness of novel imidazole-dioxolane heme oxygenase inhibitors in renal proximal tubule epithelial cells. J Pharmacol Exp Ther 2007; 323:763-70. [PMID: 17761847 DOI: 10.1124/jpet.107.119800] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To enhance our understanding of the physiological roles of heme oxygenase (HO) isozymes, HO-1 (inducible) and HO-2 (constitutive), we developed novel imidazole-based HO inhibitors. Unlike the metalloporphyrins, these imidazole-dioxolane compounds are selective for the in vitro inhibition of HO with minimal effects on other heme-dependent enzymes such as nitric oxide synthase and soluble guanylyl cyclase. In the current study, we tested the hypothesis that these novel HO inhibitors are effective in intact cells by extending their application to cultured, renal proximal tubule epithelial cells (LLC-PK1). HO-1 and HO-2 protein expression was enhanced by pretreatment of cells with hemin, transduction with adenovirus encoding human HO-1, and transfection with cDNA for HO-2, respectively. Total HO activity was measured by determining the formation of carbon monoxide (CO), whereas cell viability and apoptosis were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the expression of activated caspase-3. Gliotoxin/tumor necrosis factor-alpha (TNF-alpha) produced cytotoxicity in wild-type LLC-PK1 cells (P < 0.05) but not in HO-1 and HO-2 overexpressing or wild type cells pretreated with hemin (10 microM). The presence of imidazole-dioxolane HO inhibitors (2-25 microM) decreased cell viability (P < 0.05). A CO-releasing molecule reversed, in a dose-dependent manner, the cytotoxic effects and caspase-3 activation induced by the combination of gliotoxin/TNF-alpha and the HO inhibitors, suggesting an important role for CO in protection against renal toxicity. These data demonstrate a protective role of both HO-1 and HO-2 against gliotoxin/TNF-alpha-induced cytotoxicity in LLC-PK1 cells. The novel imidazole-dioxolane compounds can be used as effective inhibitors of HO activity in cell culture.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON K7L 3N5, Canada
| | | | | | | | | | | | | |
Collapse
|
54
|
Roman G, Riley JG, Vlahakis JZ, Kinobe RT, Brien JF, Nakatsu K, Szarek WA. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: effect of halogen substitution in the phenyl ring. Bioorg Med Chem 2007; 15:3225-34. [PMID: 17339115 DOI: 10.1016/j.bmc.2007.02.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/13/2007] [Accepted: 02/19/2007] [Indexed: 01/24/2023]
Abstract
A series of 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes comprising imidazole-ketones, imidazole-dioxolanes, and imidazole-alcohols substituted with halogens in the phenyl ring were synthesized and evaluated as novel inhibitors of heme oxygenase which are structurally distinct from metalloporphyrins. The entire library of compounds was found to be highly active, with the bromine- and iodine-substituted derivatives being the most potent. The imidazole-dioxolanes were all selective for the HO-1 isozyme (inducible) and exhibited substantially lower activity toward the HO-2 isozyme (constitutive). The corresponding imidazole-ketones and imidazole-alcohols showed selectivity toward HO-1 to a lesser degree than the similarly substituted imidazole-dioxolanes.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Chemistry, Queen's University, Kingston, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|
55
|
Sugishima M, Higashimoto Y, Oishi T, Takahashi H, Sakamoto H, Noguchi M, Fukuyama K. X-ray crystallographic and biochemical characterization of the inhibitory action of an imidazole-dioxolane compound on heme oxygenase. Biochemistry 2007; 46:1860-7. [PMID: 17253780 DOI: 10.1021/bi062264p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Carbon monoxide (CO) is an endogenously derived gas formed from the breakdown of heme by the enzyme heme oxygenase. Although long considered an insignificant and potentially toxic waste product of heme catabolism, CO is now recognized as a key signaling molecule that regulates numerous cardiovascular functions. Interestingly, alterations in CO synthesis are associated with many cardiovascular disorders, including atherosclerosis, septic shock, hypertension, metabolic syndrome, and ischemia-reperfusion injury. Significantly, restoration of physiologic CO levels exerts a beneficial effect in many of these settings, suggesting a crucial role for CO in maintaining cardiovascular homeostasis. In this review, we outline the actions of CO in the cardiovascular system and highlight this gas as a potential therapeutic target in treating a multitude of cardiovascular disorders.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, M409 Medical Sciences Building, School of Medicine, University of Missouri-Columbia, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
57
|
Fredenburgh LE, Perrella MA, Mitsialis SA. The role of heme oxygenase-1 in pulmonary disease. Am J Respir Cell Mol Biol 2006; 36:158-65. [PMID: 16980551 PMCID: PMC2176110 DOI: 10.1165/rcmb.2006-0331tr] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heme oxygenase (HO)-1, the inducible isoform of heme oxygenase, is a cytoprotective enzyme that plays a central role in the defense against oxidative and inflammatory insults in the lung. HO-1 catalyzes the degradation of heme, a potent oxidant, into biliverdin, iron, and carbon monoxide (CO). These downstream products of heme catabolism have recently been found to mediate the antioxidant, antiapoptotic, antiproliferative, vasodilatory, and anti-inflammatory properties of HO-1. Although absence of HO-1 is rare in humans, a number of HO-1 promoter polymorphisms have been identified that may influence HO-1 expression in vivo and lead to disease states. This review will summarize studies that implicate HO-1 and heme metabolites in the pathophysiology of pulmonary disease and discuss recent advances in the therapeutic applications of HO-1.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
58
|
Vlahakis JZ, Kinobe RT, Bowers RJ, Brien JF, Nakatsu K, Szarek WA. Imidazole-dioxolane compounds as isozyme-selective heme oxygenase inhibitors. J Med Chem 2006; 49:4437-41. [PMID: 16821802 DOI: 10.1021/jm0511435] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several imidazole-dioxolane compounds were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds, which include (2R,4R)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-methyl-1,3-dioxolane (1) hydrochloride, are structurally distinct from metalloporphyrin HO inhibitors and lack the aminothiophenol moiety of azalanstat. They were found to be highly selective for the HO-1 isozyme (stress induced) and had substantially less inhibitory potency toward HO-2, the constitutive isozyme. These imidazole-dioxolane compounds are the first of their type known to exhibit this isozyme-selective HO inhibition.
Collapse
Affiliation(s)
- Jason Z Vlahakis
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
59
|
Kinobe RT, Vlahakis JZ, Soong JM, Szarek WA, Brien JF, Longo LD, Nakatsu K. Heme oxygenase activity in fetal and adult sheep is not altered by acclimatization to high altitude hypoxia. Can J Physiol Pharmacol 2006; 84:893-901. [PMID: 17111034 DOI: 10.1139/y06-034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxic stress has been reported to induce the expression of stress proteins such as heme oxygenase (HO), which catalyze the breakdown of heme to generate biliverdin, ferrous iron, and carbon monoxide. These degradation products play a role in the regulation of a variety of processes such as vascular tone, inflammation, and central nervous system function. In mammals, there are 2 catalytically functional HO isozymes, HO-1 (inducible) and HO-2 (constitutive). HO-1 expression is regulated by an array of nonphysiological and physiological stimuli including acute hypoxemia. As relatively little is known of the HO response to prolonged hypoxia in whole animals other than small laboratory rodents, the aim of this work was to examine the effect of long-term hypoxia on total HO activity in fetal and adult ovine tissue. Sheep were maintained at high altitude (3820 m), after which the following tissues were harvested from near-term fetal and non-pregnant ewes for in vitro measurement of HO activity: left ventricle, renal papilla, lung apex, pulmonary artery, carotid artery, mesenteric artery, placental cotyledon, spleen, and brain frontal cortex. There were no significant differences between HO activities in tissues from hypoxic fetal and adult sheep compared with their normoxic controls. Fetal heart HO activities were higher than those of adult tissue (p < 0.05), whereas adult spleen HO activity was significantly higher than that of fetal tissue (p < 0.05). In conclusion, these data indicate that long-term exposure to high altitude hypoxia does not have a persistent effect on HO activity in ovine tissues. Also, except for the spleen where there is a high expression of HO-1 under normal conditions, tissue HO activity is correlated with the expression of HO-2, the constitutive isozyme.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
60
|
Kinobe RT, Dercho RA, Vlahakis JZ, Brien JF, Szarek WA, Nakatsu K. Inhibition of the enzymatic activity of heme oxygenases by azole-based antifungal drugs. J Pharmacol Exp Ther 2006; 319:277-84. [PMID: 16807364 DOI: 10.1124/jpet.106.102699] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketoconazole (KTZ) and other azole antifungal agents are known to have a variety of actions beyond the inhibition of sterol synthesis in fungi. These drugs share structural features with a series of novel heme oxygenase (HO) inhibitors designed in our laboratory. Accordingly, we hypothesized that therapeutically used azole-based antifungal drugs are effective HO inhibitors. Using gas chromatography to quantify carbon monoxide formation in vitro and in vivo, we have shown that azole-containing antifungal drugs are potent HO inhibitors. Terconazole, sulconazole, and KTZ were the most potent drugs with IC(50) values of 0.41 +/- 0.01, 1.1 +/- 0.4, and 0.3 +/- 0.1 microM for rat spleen microsomal HO activity, respectively. Kinetic characterization revealed that KTZ was a noncompetitive HO inhibitor. In the presence of KTZ (2.5 and 10 microM), K(m) values for both rat spleen and brain microsomal HO were not altered; however, a significant decrease in the catalytic capacity (V(max)) was observed (P < 0.005). KTZ was also found to weakly inhibit nitric-oxide synthase with an IC(50) of 177 +/- 2 microM but had no effect on the enzymatic activity of NADPH cytochrome P450 reductase. Because these drugs were effective within the concentration range observed in humans, it is possible that inhibition of HO may play a role in some of the pharmacological actions of these antimycotic drugs.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON K7L 3N5, Canada
| | | | | | | | | | | |
Collapse
|