51
|
Batai K, Babrowski KB, Arroyo JP, Kusimba CM, Williams SR. Mitochondrial DNA diversity in two ethnic groups in southeastern Kenya: perspectives from the northeastern periphery of the Bantu expansion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:482-91. [PMID: 23382080 DOI: 10.1002/ajpa.22227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022]
Abstract
The Bantu languages are widely distributed throughout sub-Saharan Africa. Genetic research supports linguists and historians who argue that migration played an important role in the spread of this language family, but the genetic data also indicates a more complex process involving substantial gene flow with resident populations. In order to understand the Bantu expansion process in east Africa, mtDNA hypervariable region I variation in 352 individuals from the Taita and Mijikenda ethnic groups was analyzed, and we evaluated the interactions that took place between the Bantu- and non-Bantu-speaking populations in east Africa. The Taita and Mijikenda are Bantu-speaking agropastoralists from southeastern Kenya, at least some of whose ancestors probably migrated into the area as part of Bantu migrations that began around 3,000 BCE. Our analyses indicate that they show some distinctive differences that reflect their unique cultural histories. The Taita are genetically more diverse than the Mijikenda with larger estimates of genetic diversity. The Taita cluster with other east African groups, having high frequencies of haplogroups from that region, while the Mijikenda have high frequencies of central African haplogroups and cluster more closely with central African Bantu-speaking groups. The non-Bantu speakers who lived in southeastern Kenya before Bantu speaking groups arrived were at least partially incorporated into what are now Bantu-speaking Taita groups. In contrast, gene flow from non-Bantu speakers into the Mijikenda was more limited. These results suggest a more complex demographic history where the nature of Bantu and non-Bantu interactions varied throughout the area.
Collapse
Affiliation(s)
- Ken Batai
- Cancer Education and Career Development Program, Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | | | |
Collapse
|
52
|
Badro DA, Douaihy B, Haber M, Youhanna SC, Salloum A, Ghassibe-Sabbagh M, Johnsrud B, Khazen G, Matisoo-Smith E, Soria-Hernanz DF, Wells RS, Tyler-Smith C, Platt DE, Zalloua PA. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations. PLoS One 2013; 8:e54616. [PMID: 23382925 PMCID: PMC3559847 DOI: 10.1371/journal.pone.0054616] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/13/2012] [Indexed: 11/21/2022] Open
Abstract
The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of FST's, RST's, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.
Collapse
Affiliation(s)
| | | | - Marc Haber
- The Lebanese American University, Chouran, Beirut, Lebanon
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Brian Johnsrud
- Modern Thought and Literature, Stanford University, Stanford, California, United States of America
| | - Georges Khazen
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Elizabeth Matisoo-Smith
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand
| | - David F. Soria-Hernanz
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
- The Genographic Project, National Geographic Society, Washington, DC, United States of America
| | - R. Spencer Wells
- The Genographic Project, National Geographic Society, Washington, DC, United States of America
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Daniel E. Platt
- Computational Biology Centre, IBM TJ Watson Research Centre, Yorktown Heights, New York, United States of America
| | - Pierre A. Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
- Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
53
|
Montano V, Marcari V, Pavanello M, Anyaele O, Comas D, Destro-Bisol G, Batini C. The influence of habitats on female mobility in Central and Western Africa inferred from human mitochondrial variation. BMC Evol Biol 2013; 13:24. [PMID: 23360301 PMCID: PMC3605107 DOI: 10.1186/1471-2148-13-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/25/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND When studying the genetic structure of human populations, the role of cultural factors may be difficult to ascertain due to a lack of formal models. Linguistic diversity is a typical example of such a situation. Patrilocality, on the other hand, can be integrated into a biological framework, allowing the formulation of explicit working hypotheses. The present study is based on the assumption that patrilocal traditions make the hypervariable region I of the mtDNA a valuable tool for the exploration of migratory dynamics, offering the opportunity to explore the relationships between genetic and linguistic diversity. We studied 85 Niger-Congo-speaking patrilocal populations that cover regions from Senegal to Central African Republic. A total of 4175 individuals were included in the study. RESULTS By combining a multivariate analysis aimed at investigating the population genetic structure, with a Bayesian approach used to test models and extent of migration, we were able to detect a stepping-stone migration model as the best descriptor of gene flow across the region, with the main discontinuities corresponding to forested areas. CONCLUSIONS Our analyses highlight an aspect of the influence of habitat variation on human genetic diversity that has yet to be understood. Rather than depending simply on geographic linear distances, patterns of female genetic variation vary substantially between savannah and rainforest environments. Our findings may be explained by the effects of recent gene flow constrained by environmental factors, which superimposes on a background shaped by pre-agricultural peopling.
Collapse
Affiliation(s)
- Valeria Montano
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
54
|
Verdu P, Becker NSA, Froment A, Georges M, Grugni V, Quintana-Murci L, Hombert JM, Van der Veen L, Le Bomin S, Bahuchet S, Heyer E, Austerlitz F. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies. Mol Biol Evol 2013; 30:918-37. [PMID: 23300254 DOI: 10.1093/molbev/mss328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.
Collapse
Affiliation(s)
- Paul Verdu
- Department of Biology, Stanford University, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Scozzari R, Massaia A, D’Atanasio E, Myres NM, Perego UA, Trombetta B, Cruciani F. Molecular dissection of the basal clades in the human Y chromosome phylogenetic tree. PLoS One 2012; 7:e49170. [PMID: 23145109 PMCID: PMC3492319 DOI: 10.1371/journal.pone.0049170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
One hundred and forty-six previously detected mutations were more precisely positioned in the human Y chromosome phylogeny by the analysis of 51 representative Y chromosome haplogroups and the use of 59 mutations from literature. Twenty-two new mutations were also described and incorporated in the revised phylogeny. This analysis made it possible to identify new haplogroups and to resolve a deep trifurcation within haplogroup B2. Our data provide a highly resolved branching in the African-specific portion of the Y tree and support the hypothesis of an origin in the north-western quadrant of the African continent for the human MSY diversity.
Collapse
Affiliation(s)
- Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Eugenia D’Atanasio
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Natalie M. Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Ugo A. Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
56
|
Schlebusch CM, Skoglund P, Sjödin P, Gattepaille LM, Hernandez D, Jay F, Li S, De Jongh M, Singleton A, Blum MGB, Soodyall H, Jakobsson M. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 2012; 338:374-9. [PMID: 22997136 PMCID: PMC8978294 DOI: 10.1126/science.1227721] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million single-nucleotide polymorphisms in 220 southern Africans and found that the Khoe-San diverged from other populations ≥100,000 years ago, but population structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa; instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response; potential adaptive introgression of protection from ultraviolet light; and selection predating modern human diversification, involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Pontus Skoglund
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Per Sjödin
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Lucie M. Gattepaille
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Flora Jay
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sen Li
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Michael De Jongh
- Department of Anthropology and Archaeology, University of South Africa, Pretoria, South Africa
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. B. Blum
- Laboratoire TIMC-IMAG UMR 5525, Université Joseph Fourier, Centre National de la Recherche Scientifique, Grenoble, France
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
57
|
Barbieri C, Butthof A, Bostoen K, Pakendorf B. Genetic perspectives on the origin of clicks in Bantu languages from southwestern Zambia. Eur J Hum Genet 2012; 21:430-6. [PMID: 22929022 DOI: 10.1038/ejhg.2012.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Some Bantu languages spoken in southwestern Zambia and neighboring regions of Botswana, Namibia, and Angola are characterized by the presence of click consonants, whereas their closest linguistic relatives lack such clicks. As clicks are a typical feature not of the Bantu language family, but of Khoisan languages, it is highly probable that the Bantu languages in question borrowed the clicks from Khoisan languages. In this paper, we combine complete mitochondrial genome sequences from a representative sample of populations from the Western Province of Zambia speaking Bantu languages with and without clicks, with fine-scaled analyses of Y-chromosomal single nucleotide polymorphisms and short tandem repeats to investigate the prehistoric contact that led to this borrowing of click consonants. Our results reveal complex population-specific histories, with female-biased admixture from Khoisan-speaking groups associated with the incorporation of click sounds in one Bantu-speaking population, while concomitant levels of potential Khoisan admixture did not result in sound change in another. Furthermore, the lack of sequence sharing between the Bantu-speaking groups from southwestern Zambia investigated here and extant Khoisan populations provides an indication that there must have been genetic substructure in the Khoisan-speaking indigenous groups of southern Africa that did not survive until the present or has been substantially reduced.
Collapse
Affiliation(s)
- Chiara Barbieri
- Max Planck Research Group on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | |
Collapse
|
58
|
The genetic landscape of Equatorial Guinea and the origin and migration routes of the Y chromosome haplogroup R-V88. Eur J Hum Genet 2012; 21:324-31. [PMID: 22892526 DOI: 10.1038/ejhg.2012.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human Y chromosomes belonging to the haplogroup R1b1-P25, although very common in Europe, are usually rare in Africa. However, recently published studies have reported high frequencies of this haplogroup in the central-western region of the African continent and proposed that this represents a 'back-to-Africa' migration during prehistoric times. To obtain a deeper insight into the history of these lineages, we characterised the paternal genetic background of a population in Equatorial Guinea, a Central-West African country located near the region in which the highest frequencies of the R1b1 haplogroup in Africa have been found to date. In our sample, the large majority (78.6%) of the sequences belong to subclades in haplogroup E, which are the most frequent in Bantu groups. However, the frequency of the R1b1 haplogroup in our sample (17.0%) was higher than that previously observed for the majority of the African continent. Of these R1b1 samples, nine are defined by the V88 marker, which was recently discovered in Africa. As high microsatellite variance was found inside this haplogroup in Central-West Africa and a decrease in this variance was observed towards Northeast Africa, our findings do not support the previously hypothesised movement of Chadic-speaking people from the North across the Sahara as the explanation for these R1b1 lineages in Central-West Africa. The present findings are also compatible with an origin of the V88-derived allele in the Central-West Africa, and its presence in North Africa may be better explained as the result of a migration from the south during the mid-Holocene.
Collapse
|
59
|
Evidence from Y-chromosome analysis for a late exclusively eastern expansion of the Bantu-speaking people. Eur J Hum Genet 2012; 21:423-9. [PMID: 22892538 DOI: 10.1038/ejhg.2012.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expansion of the Bantu-speaking people (EBSP) during the past 3000-5000 years is an event of great importance in the history of humanity. Anthropology, archaeology, linguistics and, in recent decades, genetics have been used to elucidate some of the events and processes involved. Although it is generally accepted that the EBSP has its origin in the so-called Bantu Homeland situated in the area of the border between Nigeria and the Grassfields of Cameroon, and that it followed both western and eastern routes, much less is known about the number and dates of those expansions, if more than one. Mitochondrial, Y-chromosome and autosomal DNA analyses have been carried out in attempts to understand the demographic events that have taken place. There is an increasing evidence that the expansion was a more complex process than originally thought and that neither a single demographic event nor an early split between western and eastern groups occurred. In this study, we analysed unique event polymorphism and short tandem repeat variation in non-recombining Y-chromosome haplogroups contained within the E1b1a haplogroup, which is exclusive to individuals of recent African ancestry, in a large, geographically widely distributed, set of sub-Saharan Africans (groups=43, n=2757), all of whom, except one Nilo-Saharan-speaking group, spoke a Niger-Congo language and most a Bantu tongue. Analysis of diversity and rough estimates of times to the most recent common ancestors of haplogroups provide evidence of multiple expansions along eastern and western routes and a late, exclusively eastern route, expansion.
Collapse
|
60
|
de Filippo C, Bostoen K, Stoneking M, Pakendorf B. Bringing together linguistic and genetic evidence to test the Bantu expansion. Proc Biol Sci 2012; 279:3256-63. [PMID: 22628476 DOI: 10.1098/rspb.2012.0318] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The expansion of Bantu languages represents one of the most momentous events in the history of Africa. While it is well accepted that Bantu languages spread from their homeland (Cameroon/Nigeria) approximately 5000 years ago (ya), there is no consensus about the timing and geographical routes underlying this expansion. Two main models of Bantu expansion have been suggested: The 'early-split' model claims that the most recent ancestor of Eastern languages expanded north of the rainforest towards the Great Lakes region approximately 4000 ya, while the 'late-split' model proposes that Eastern languages diversified from Western languages south of the rainforest approximately 2000 ya. Furthermore, it is unclear whether the language dispersal was coupled with the movement of people, raising the question of language shift versus demic diffusion. We use a novel approach taking into account both the spatial and temporal predictions of the two models and formally test these predictions with linguistic and genetic data. Our results show evidence for a demic diffusion in the genetic data, which is confirmed by the correlations between genetic and linguistic distances. While there is little support for the early-split model, the late-split model shows a relatively good fit to the data. Our analyses demonstrate that subsequent contact among languages/populations strongly affected the signal of the initial migration via isolation by distance.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Research Group on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
61
|
Simms TM, Wright MR, Hernandez M, Perez OA, Ramirez EC, Martinez E, Herrera RJ. Y-chromosomal diversity in Haiti and Jamaica: Contrasting levels of sex-biased gene flow. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:618-31. [DOI: 10.1002/ajpa.22090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/04/2012] [Indexed: 11/06/2022]
|
62
|
Torres JB, Doura MB, Keita SOY, Kittles RA. Y chromosome lineages in men of west African descent. PLoS One 2012; 7:e29687. [PMID: 22295064 PMCID: PMC3266241 DOI: 10.1371/journal.pone.0029687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022] Open
Abstract
The early African experience in the Americas is marked by the transatlantic slave trade from ∼1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called "Grain Coast" of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30-40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations.
Collapse
Affiliation(s)
- Jada Benn Torres
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Menahem B. Doura
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia, United States of America
| | - Shomarka O. Y. Keita
- National Human Genome Center, Howard University, Washington, District of Columbia, United States of America
| | - Rick A. Kittles
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute of Human Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
63
|
Nikita E, Mattingly D, Lahr MM. Sahara: Barrier or corridor? Nonmetric cranial traits and biological affinities of North African late holocene populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 147:280-92. [DOI: 10.1002/ajpa.21645] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/26/2011] [Indexed: 11/08/2022]
|
64
|
Simms TM, Martinez E, Herrera KJ, Wright MR, Perez OA, Hernandez M, Ramirez EC, McCartney Q, Herrera RJ. Paternal lineages signal distinct genetic contributions from British Loyalists and continental Africans among different Bahamian islands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:594-608. [DOI: 10.1002/ajpa.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/05/2011] [Indexed: 02/02/2023]
|
65
|
Borkar M, Ahmad F, Khan F, Agrawal S. Paleolithic spread of Y-chromosomal lineage of tribes in eastern and northeastern India. Ann Hum Biol 2011; 38:736-46. [DOI: 10.3109/03014460.2011.617389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Minal Borkar
- Department of Medical Genetics, SGPGIMS,
Lucknow, India
- Hospital Universitario Marqués de Valdecilla,
Santander, Spain
| | - Fahim Ahmad
- Center for Excellence on Infectious Disease, Texas Tech University,
TX, USA
| | - Faisal Khan
- Faculty of Medicine, University of Calgary, Canada
| | | |
Collapse
|
66
|
Affiliation(s)
- Peter Forster
- Murray Edwards College, University of Cambridge, Cambridge CB3 0DF, UK.
| | | |
Collapse
|
67
|
Spínola H, Couto AR, Peixoto MJ, Anagnostou P, Destro-Bisol G, Spedini G, Lopéz-Larrea C, Bruges-Armas J. HLA class-I diversity in Cameroon: evidence for a north-south structure of genetic variation and relationships with African populations. Ann Hum Genet 2011; 75:665-77. [PMID: 21910692 DOI: 10.1111/j.1469-1809.2011.00672.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
HLA class I diversity (loci A, B and C) was analysed in four populations, two from North Cameroon (Podokwo and Uldeme) and two from South Cameroon (Ewondo and Bamileke). Northern and southern Cameroon populations show a substantial genetic diversity in terms of haplotype sharing and genetic distances, even despite the low percentage of variance due to differences among populations evidenced by analysis of molecular variance. The signals of differentiation among populations are consistent with their linguistic affiliation, and support previous evidence, based on autosomal microsatellites and protein loci, which has shown that the complex pattern of genetic variation of Cameroon can in part be described by contrasting the northern and southern part of the country. Looking at our results in the more general framework of HLA diversity in sub-Saharan Africa, it turns out that the Podokwo and Uldeme show some genetic links to populations of the southern western branch of the Sahel corridor, while their high frequency of A*02 and C*04 alleles is congruent with previously hypothesised introgression of non-sub-Saharan alleles. On the other hand, signals of shared ancestry between the Bamileke and Ewondo and the Bantu speakers from central and southern Africa were detected.
Collapse
Affiliation(s)
- Hélder Spínola
- University of Madeira, Human Genetics Laboratory, Funchal, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Veeramah KR, Wegmann D, Woerner A, Mendez FL, Watkins JC, Destro-Bisol G, Soodyall H, Louie L, Hammer MF. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Mol Biol Evol 2011; 29:617-30. [PMID: 21890477 DOI: 10.1093/molbev/msr212] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sub-Saharan Africa has consistently been shown to be the most genetically diverse region in the world. Despite the fact that a substantial portion of this variation is partitioned between groups practicing a variety of subsistence strategies and speaking diverse languages, there is currently no consensus on the genetic relationships of sub-Saharan African populations. San (a subgroup of KhoeSan) and many Pygmy groups maintain hunter-gatherer lifestyles and cluster together in autosomal-based analysis, whereas non-Pygmy Niger-Kordofanian speakers (non-Pygmy NKs) predominantly practice agriculture and show substantial genetic homogeneity despite their wide geographic range throughout sub-Saharan Africa. However, KhoeSan, who speak a set of relatively unique click-based languages, have long been thought to be an early branch of anatomically modern humans based on phylogenetic analysis. To formally test models of divergence among the ancestors of modern African populations, we resequenced a sample of San, Eastern, and Western Pygmies and non-Pygmy NKs individuals at 40 nongenic (∼2 kb) regions and then analyzed these data within an Approximate Bayesian Computation (ABC) framework. We find substantial support for a model of an early divergence of KhoeSan ancestors from a proto-Pygmy-non-Pygmy NKs group ∼110 thousand years ago over a model incorporating a proto-KhoeSan-Pygmy hunter-gatherer divergence from the ancestors of non-Pygmy NKs. The results of our analyses are consistent with previously identified signals of a strong bottleneck in Mbuti Pygmies and a relatively recent expansion of non-Pygmy NKs. We also develop a number of methodologies that utilize "pseudo-observed" data sets to optimize our ABC-based inference. This approach is likely to prove to be an invaluable tool for demographic inference using genome-wide resequencing data.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Arizona, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Mitochondrial DNA (mtDNA) and Y-chromosome variation has been studied in Bou Omrane and Bou Saâd, two Tunisian Berber populations. In spite of their close geographic proximity, genetic distances between them were high and significant with both uniparental markers. A global analysis, including all previously studied Tunisian samples, confirmed the existence of a high female and male population structure in this country. Analyses of molecular variance analysis evidenced that this differentiation was not attributable to ethnic differences. Mantel test showed that, in all cases, Y-chromosome haplotypic distances correlated poorly with geography, whereas after excluding the more isolated samples of Bou Omrane and Bou Saâd, the mtDNA pattern of variation is significantly correlated with geography. Congruently, the N(m) ratio of males versus females pointed to a significant excess of female migration rate across localities, which could be explained by patrilocality, a common marriage system in rural Tunisia. In addition, it has been observed that cultural isolation in rural communities promotes, by the effect of genetic drift, stronger loss of diversity and larger genetic differentiation levels than those observed in urban areas as deduced from comparisons of their respective mean genetic diversity and their respective mean genetic distances among populations. It is likely that the permanent exodus from rural to urban areas will have important repercussions in the future genetic structure of this country.
Collapse
|
70
|
Schlebusch CM, de Jongh M, Soodyall H. Different contributions of ancient mitochondrial and Y-chromosomal lineages in ‘Karretjie people’ of the Great Karoo in South Africa. J Hum Genet 2011; 56:623-30. [DOI: 10.1038/jhg.2011.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
71
|
Shah AM, Tamang R, Moorjani P, Rani DS, Govindaraj P, Kulkarni G, Bhattacharya T, Mustak MS, Bhaskar LVKS, Reddy AG, Gadhvi D, Gai PB, Chaubey G, Patterson N, Reich D, Tyler-Smith C, Singh L, Thangaraj K. Indian Siddis: African descendants with Indian admixture. Am J Hum Genet 2011; 89:154-61. [PMID: 21741027 DOI: 10.1016/j.ajhg.2011.05.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/15/2011] [Accepted: 05/31/2011] [Indexed: 11/28/2022] Open
Abstract
The Siddis (Afro-Indians) are a tribal population whose members live in coastal Karnataka, Gujarat, and in some parts of Andhra Pradesh. Historical records indicate that the Portuguese brought the Siddis to India from Africa about 300-500 years ago; however, there is little information about their more precise ancestral origins. Here, we perform a genome-wide survey to understand the population history of the Siddis. Using hundreds of thousands of autosomal markers, we show that they have inherited ancestry from Africans, Indians, and possibly Europeans (Portuguese). Additionally, analyses of the uniparental (Y-chromosomal and mitochondrial DNA) markers indicate that the Siddis trace their ancestry to Bantu speakers from sub-Saharan Africa. We estimate that the admixture between the African ancestors of the Siddis and neighboring South Asian groups probably occurred in the past eight generations (∼200 years ago), consistent with historical records.
Collapse
Affiliation(s)
- Anish M Shah
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cruciani F, Trombetta B, Massaia A, Destro-Bisol G, Sellitto D, Scozzari R. A revised root for the human Y chromosomal phylogenetic tree: the origin of patrilineal diversity in Africa. Am J Hum Genet 2011; 88:814-818. [PMID: 21601174 DOI: 10.1016/j.ajhg.2011.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022] Open
Abstract
To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT. We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of 142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204 African DNA samples showed that the deepest clades of the revised MSY phylogeny are currently found in central and northwest Africa, opening new perspectives on early human presence in the continent.
Collapse
|
73
|
Guerra DCD, Pérez CF, Izaguirre MH, Barahona EA, Larralde AR, Lugo MVD. Gender Differences in Ancestral Contribution and Admixture in Venezuelan Populations. Hum Biol 2011; 83:345-61. [DOI: 10.3378/027.083.0302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
74
|
Montano V, Ferri G, Marcari V, Batini C, Anyaele O, Destro-Bisol G, Comas D. The Bantu expansion revisited: a new analysis of Y chromosome variation in Central Western Africa. Mol Ecol 2011; 20:2693-708. [PMID: 21627702 DOI: 10.1111/j.1365-294x.2011.05130.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current distribution of Bantu languages is commonly considered to be a consequence of a relatively recent population expansion (3-5kya) in Central Western Africa. While there is a substantial consensus regarding the centre of origin of Bantu languages (the Benue River Valley, between South East Nigeria and Western Cameroon), the identification of the area from where the population expansion actually started, the relation between the processes leading to the spread of languages and peoples and the relevance of local migratory events remain controversial. In order to shed new light on these aspects, we studied Y chromosome variation in a broad dataset of populations encompassing Nigeria, Cameroon, Gabon and Congo. Our results evidence an evolutionary scenario which is more complex than had been previously thought, pointing to a marked differentiation of Cameroonian populations from the rest of the dataset. In fact, in contrast with the current view of Bantu speakers as a homogeneous group of populations, we observed an unexpectedly high level of interpopulation genetic heterogeneity and highlighted previously undetected diversity for lineages associated with the diffusion of Bantu languages (E1b1a (M2) sub-branches). We also detected substantial differences in local demographic histories, which concord with the hypotheses regarding an early diffusion of Bantu languages into the forest area and a subsequent demographic expansion and migration towards eastern and western Africa.
Collapse
Affiliation(s)
- Valeria Montano
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sanchez-Diz P, Rocha J, Simonson T, Brehm A, Montano V, Elwali NE, Spedini G, D'Amato ME, Myres N, Ebbesen P, Comas D, Capelli C. Signatures of the Preagricultural Peopling Processes in Sub-Saharan Africa as Revealed by the Phylogeography of Early Y Chromosome Lineages. Mol Biol Evol 2011; 28:2603-13. [DOI: 10.1093/molbev/msr089] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
76
|
Gourjon G, Boëtsch G, Degioanni A. Gender and population history: Sex bias revealed by studying genetic admixture of Ngazidja population (Comoro Archipelago). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 144:653-60. [PMID: 21312182 DOI: 10.1002/ajpa.21474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022]
Affiliation(s)
- Géraud Gourjon
- UMR 6578 Anthropologie bioculturelle, Université de la Méditerranée/CNRS/EFS, Faculté de Médecine-Secteur Nord Université de la Méditerranée, Bd. Pierre Dramard, Marseille Cedex 15, France
| | | | | |
Collapse
|
77
|
Trombetta B, Cruciani F, Sellitto D, Scozzari R. A new topology of the human Y chromosome haplogroup E1b1 (E-P2) revealed through the use of newly characterized binary polymorphisms. PLoS One 2011; 6:e16073. [PMID: 21253605 PMCID: PMC3017091 DOI: 10.1371/journal.pone.0016073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
Haplogroup E1b1, defined by the marker P2, is the most represented human Y chromosome haplogroup in Africa. A phylogenetic tree showing the internal structure of this haplogroup was published in 2008. A high degree of internal diversity characterizes this haplogroup, as well as the presence of a set of chromosomes undefined on the basis of a derived character. Here we make an effort to update the phylogeny of this highly diverse haplogroup by including seven mutations which have been newly discovered by direct resequencing. We also try to incorporate five previously-described markers which were not, however, reported in the 2008 tree. Additionally, during the process of mapping, we found that two previously reported SNPs required a new position on the tree. There are three key changes compared to the 2008 phylogeny. Firstly, haplogroup E-M2 (former E1b1a) and haplogroup E-M329 (former E1b1c) are now united by the mutations V38 and V100, reducing the number of E1b1 basal branches to two. The new topology of the tree has important implications concerning the origin of haplogroup E1b1. Secondly, within E1b1b1 (E-M35), two haplogroups (E-V68 and E-V257) show similar phylogenetic and geographic structure, pointing to a genetic bridge between southern European and northern African Y chromosomes. Thirdly, most of the E1b1b1* (E-M35*) paragroup chromosomes are now marked by defining mutations, thus increasing the discriminative power of the haplogroup for use in human evolution and forensics.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Daniele Sellitto
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
78
|
Stefflova K, Dulik MC, Barnholtz-Sloan JS, Pai AA, Walker AH, Rebbeck TR. Dissecting the within-Africa ancestry of populations of African descent in the Americas. PLoS One 2011; 6:e14495. [PMID: 21253579 PMCID: PMC3017210 DOI: 10.1371/journal.pone.0014495] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 12/06/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The ancestry of African-descended Americans is known to be drawn from three distinct populations: African, European, and Native American. While many studies consider this continental admixture, few account for the genetically distinct sources of ancestry within Africa--the continent with the highest genetic variation. Here, we dissect the within-Africa genetic ancestry of various populations of the Americas self-identified as having primarily African ancestry using uniparentally inherited mitochondrial DNA. METHODS AND PRINCIPAL FINDINGS We first confirmed that our results obtained using uniparentally-derived group admixture estimates are correlated with the average autosomal-derived individual admixture estimates (hence are relevant to genomic ancestry) by assessing continental admixture using both types of markers (mtDNA and Y-chromosome vs. ancestry informative markers). We then focused on the within-Africa maternal ancestry, mining our comprehensive database of published mtDNA variation (∼5800 individuals from 143 African populations) that helped us thoroughly dissect the African mtDNA pool. Using this well-defined African mtDNA variation, we quantified the relative contributions of maternal genetic ancestry from multiple W/WC/SW/SE (West to South East) African populations to the different pools of today's African-descended Americans of North and South America and the Caribbean. CONCLUSIONS Our analysis revealed that both continental admixture and within-Africa admixture may be critical to achieving an adequate understanding of the ancestry of African-descended Americans. While continental ancestry reflects gender-specific admixture processes influenced by different socio-historical practices in the Americas, the within-Africa maternal ancestry reflects the diverse colonial histories of the slave trade. We have confirmed that there is a genetic thread connecting Africa and the Americas, where each colonial system supplied their colonies in the Americas with slaves from African colonies they controlled or that were available for them at the time. This historical connection is reflected in different relative contributions from populations of W/WC/SW/SE Africa to geographically distinct Africa-derived populations of the Americas, adding to the complexity of genomic ancestry in groups ostensibly united by the same demographic label.
Collapse
Affiliation(s)
- Klara Stefflova
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
79
|
de Filippo C, Barbieri C, Whitten M, Mpoloka SW, Gunnarsdóttir ED, Bostoen K, Nyambe T, Beyer K, Schreiber H, de Knijff P, Luiselli D, Stoneking M, Pakendorf B. Y-chromosomal variation in sub-Saharan Africa: insights into the history of Niger-Congo groups. Mol Biol Evol 2010; 28:1255-69. [PMID: 21109585 DOI: 10.1093/molbev/msq312] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found that linguistic affiliations played a notable role in shaping sub-Saharan African Y chromosomal diversity, although the impact of geography is clearly discernible.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Research Group on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Batini C, Lopes J, Behar DM, Calafell F, Jorde LB, van der Veen L, Quintana-Murci L, Spedini G, Destro-Bisol G, Comas D. Insights into the demographic history of African Pygmies from complete mitochondrial genomes. Mol Biol Evol 2010; 28:1099-110. [PMID: 21041797 DOI: 10.1093/molbev/msq294] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pygmy populations are among the few hunter-gatherers currently living in sub-Saharan Africa and are mainly represented by two groups, Eastern and Western, according to their current geographical distribution. They are scattered across the Central African belt and surrounded by Bantu-speaking farmers, with whom they have complex social and economic interactions. To investigate the demographic history of Pygmy groups, a population approach was applied to the analysis of 205 complete mitochondrial DNA (mtDNA) sequences from ten central African populations. No sharing of maternal lineages was observed between the two Pygmy groups, with haplogroup L1c being characteristic of the Western group but most of Eastern Pygmy lineages falling into subclades of L0a, L2a, and L5. Demographic inferences based on Bayesian coalescent simulations point to an early split among the maternal ancestors of Pygmies and those of Bantu-speaking farmers (∼ 70,000 years ago [ya]). Evidence for population growth in the ancestors of Bantu-speaking farmers has been observed, starting ∼ 65,000 ya, well before the diffusion of Bantu languages. Subsequently, the effective population size of the ancestors of Pygmies remained constant over time and ∼ 27,000 ya, coincident with the Last Glacial Maximum, Eastern and Western Pygmies diverged, with evidence of subsequent migration only among the Western group and the Bantu-speaking farmers. Western Pygmies show signs of a recent bottleneck 4,000-650 ya, coincident with the diffusion of Bantu languages, whereas Eastern Pygmies seem to have experienced a more ancient decrease in population size (20,000-4,000 ya). In conclusion, the results of this first attempt at analyzing complete mtDNA sequences at the population level in sub-Saharan Africa not only support previous findings but also offer new insights into the demographic history of Pygmy populations, shedding new light on the ancient peopling of the African continent.
Collapse
Affiliation(s)
- Chiara Batini
- Institut de Biologia Evolutiva (CSIC-UPF), Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Brucato N, Cassar O, Tonasso L, Tortevoye P, Migot-Nabias F, Plancoulaine S, Guitard E, Larrouy G, Gessain A, Dugoujon JM. The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana. BMC Evol Biol 2010; 10:314. [PMID: 20958967 PMCID: PMC2973943 DOI: 10.1186/1471-2148-10-314] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 10/19/2010] [Indexed: 11/17/2022] Open
Abstract
Background Retracing the genetic histories of the descendant populations of the Slave Trade (16th-19th centuries) is particularly challenging due to the diversity of African ethnic groups involved and the different hybridisation processes with Europeans and Amerindians, which have blurred their original genetic inheritances. The Noir Marron in French Guiana are the direct descendants of maroons who escaped from Dutch plantations in the current day Surinam. They represent an original ethnic group with a highly blended culture. Uniparental markers (mtDNA and NRY) coupled with HTLV-1 sequences (env and LTR) were studied to establish the genetic relationships linking them to African American and African populations. Results All genetic systems presented a high conservation of the African gene pool (African ancestry: mtDNA = 99.3%; NRY = 97.6%; HTLV-1 env = 20/23; HTLV-1 LTR = 6/8). Neither founder effect nor genetic drift was detected and the genetic diversity is within a range commonly observed in Africa. Higher genetic similarities were observed with the populations inhabiting the Bight of Benin (from Ivory Coast to Benin). Other ancestries were identified but they presented an interesting sex-bias. Whilst male origins spread throughout the north of the bight (from Benin to Senegal), female origins were spread throughout the south (from the Ivory Coast to Angola). Conclusions The Noir Marron are unique in having conserved their African genetic ancestry, despite major cultural exchanges with Amerindians and Europeans through inhabiting the same region for four centuries. Their maroon identity and the important number of slaves deported in this region have maintained the original African diversity. All these characteristics permit to identify a major origin located in the former region of the Gold Coast and the Bight of Benin; regions highly impacted by slavery, from which goes a sex-biased longitudinal gradient of ancestry.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse, CNRS and Université Paul Sabatier, FRE2960, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Naidoo T, Schlebusch CM, Makkan H, Patel P, Mahabeer R, Erasmus JC, Soodyall H. Development of a single base extension method to resolve Y chromosome haplogroups in sub-Saharan African populations. INVESTIGATIVE GENETICS 2010; 1:6. [PMID: 21092339 PMCID: PMC2988483 DOI: 10.1186/2041-2223-1-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/01/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ability of the Y chromosome to retain a record of its evolution has seen it become an essential tool of molecular anthropology. In the last few years, however, it has also found use in forensic genetics, providing information on the geographic origin of individuals. This has been aided by the development of efficient screening methods and an increased knowledge of geographic distribution. In this study, we describe the development of single base extension assays used to resolve 61 Y chromosome haplogroups, mainly within haplogroups A, B and E, found in Africa. RESULTS Seven multiplex assays, which incorporated 60 Y chromosome markers, were developed. These resolved Y chromosomes to 61 terminal branches of the major African haplogroups A, B and E, while also including a few Eurasian haplogroups found occasionally in African males. Following its validation, the assays were used to screen 683 individuals from Southern Africa, including south eastern Bantu speakers (BAN), Khoe-San (KS) and South African Whites (SAW). Of the 61 haplogroups that the assays collectively resolved, 26 were found in the 683 samples. While haplogroup sharing was common between the BAN and KS, the frequencies of these haplogroups varied appreciably. Both groups showed low levels of assimilation of Eurasian haplogroups and only two individuals in the SAW clearly had Y chromosomes of African ancestry. CONCLUSIONS The use of these single base extension assays in screening increased haplogroup resolution and sampling throughput, while saving time and DNA. Their use, together with the screening of short tandem repeat markers would considerably improve resolution, thus refining the geographic ancestry of individuals.
Collapse
Affiliation(s)
- Thijessen Naidoo
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, University of the Witwatersrand and the National Health Laboratory Services, Johannesburg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Campbell MC, Tishkoff SA. The evolution of human genetic and phenotypic variation in Africa. Curr Biol 2010; 20:R166-73. [PMID: 20178763 DOI: 10.1016/j.cub.2009.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
85
|
Scheinfeldt LB, Soi S, Tishkoff SA. Colloquium paper: working toward a synthesis of archaeological, linguistic, and genetic data for inferring African population history. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8931-8. [PMID: 20445100 PMCID: PMC3024023 DOI: 10.1073/pnas.1002563107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Africa is the origin of modern humans, the pattern and distribution of genetic variation and correlations with cultural and linguistic diversity in Africa have been understudied. Recent advances in genomic technology, however, have led to genomewide studies of African samples. In this article, we discuss genetic variation in African populations contextualized with what is known about archaeological and linguistic variation. What emerges from this review is the importance of using independent lines of evidence in the interpretation of genetic and genomic data in the reconstruction of past population histories.
Collapse
Affiliation(s)
| | - Sameer Soi
- Genomics and Computational Biology Graduate Group, and
| | - Sarah A. Tishkoff
- Department of Genetics
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
86
|
Lambert CA, Tishkoff SA. Genetic structure in African populations: implications for human demographic history. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:395-402. [PMID: 20453204 DOI: 10.1101/sqb.2009.74.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The continent of Africa is the source of all anatomically modern humans that dispersed across the planet during the past 100,000 years. As such, African populations are characterized by high genetic diversity and low levels of linkage disequilibrium (LD) among loci, as compared to populations from other continents. African populations also possess a number of genetic adaptations that have evolved in response to the diverse climates, diets, geographic environments, and infectious agents that characterize the African continent. Recently, Tishkoff et al. (2009) performed a genome-wide analysis of substructure based on DNA from 2432 Africans from 121 geographically diverse populations. The authors analyzed patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers and identified 14 ancestral population clusters that correlate well with self-described ethnicity and shared cultural or linguistic properties. The results suggest that African populations may have maintained a large and subdivided population structure throughout much of their evolutionary history. In this chapter, we synthesize recent work documenting evidence of African population structure and discuss the implications for inferences about evolutionary history in both African populations and anatomically modern humans as a whole.
Collapse
Affiliation(s)
- C A Lambert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
87
|
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MHY, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prüfer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Höber B, Höffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Ž, Gušic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PLF, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Pääbo S. A draft sequence of the Neandertal genome. Science 2010; 328:710-722. [PMID: 20448178 PMCID: PMC5100745 DOI: 10.1126/science.1188021] [Citation(s) in RCA: 2160] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Collapse
Affiliation(s)
- Richard E. Green
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Johannes Krause
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Adrian W. Briggs
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Udo Stenzel
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Martin Kircher
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heng Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Weiwei Zhai
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Markus Hsi-Yang Fritz
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nancy F. Hansen
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Y. Durand
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Anna-Sapfo Malaspinas
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Jeffrey D. Jensen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tomas Marques-Bonet
- Howard Hughes Medical Institute, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute of Evolutionary Biology (UPF-CSIC), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Can Alkan
- Howard Hughes Medical Institute, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Hernán A. Burbano
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Jeffrey M. Good
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rigo Schultz
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Anne Butthof
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Barbara Höber
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Barbara Höffner
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Madlen Siegemund
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carsten Russ
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nathaniel Novod
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Christine Verna
- Department of Human Evolution, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Pavao Rudan
- Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia
| | - Dejana Brajkovic
- Croatian Academy of Sciences and Arts, Institute for Quaternary Paleontology and Geology, Ante Kovacica 5, HR-10000 Zagreb, Croatia
| | - Željko Kucan
- Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia
| | - Ivan Gušic
- Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia
| | | | | | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (UPF-CSIC), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marco de la Rasilla
- Área de Prehistoria Departamento de Historia Universidad de Oviedo, Oviedo, Spain
| | - Javier Fortea
- Área de Prehistoria Departamento de Historia Universidad de Oviedo, Oviedo, Spain
| | - Antonio Rosas
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Ralf W. Schmitz
- Der Landschaftverband Rheinlund–Landesmuseum Bonn, Bachstrasse 5-9, D-53115 Bonn, Germany
- Abteilung für Vor- und Frühgeschichtliche Archäologie, Universität Bonn, Germany
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel Falush
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Ewan Birney
- European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Michael Lachmann
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - David Reich
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| |
Collapse
|
88
|
de Filippo C, Heyn P, Barham L, Stoneking M, Pakendorf B. Genetic perspectives on forager-farmer interaction in the Luangwa valley of Zambia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 141:382-94. [PMID: 19918997 DOI: 10.1002/ajpa.21155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The transformation from a foraging way of life to a reliance on domesticated plants and animals often led to the expansion of agropastoralist populations at the expense of hunter-gatherers (HGs). In Africa, one of these expansions involved the Niger-Congo Bantu-speaking populations that started to spread southwards from Cameroon/Nigeria approximately 4,000 years ago, bringing agricultural technologies. Genetic studies have shown different degrees of gene flow (sometimes involving sex-biased migrations) between Bantu agriculturalists and HGs. Although these studies have covered many parts of sub-Saharan Africa, the central part (e.g. Zambia) was not yet studied, and the interactions between immigrating food-producers and local HGs are still unclear. Archeological evidence from the Luangwa Valley of Zambia suggests a long period of coexistence ( approximately 1,700 years) of early food-producers and HGs. To investigate if this apparent coexistence was accompanied by genetic admixture, we analyzed the mtDNA control region, Y chromosomal unique event polymorphisms, and 12 associated Y- short tandem repeats in two food-producing groups (Bisa and Kunda) that live today in the Luangwa Valley, and compared these data with available published data on African HGs. Our results suggest that both the Bisa and Kunda experienced at most low levels of admixture with HGs, and these levels do not differ between the maternal and paternal lineages. Coalescent simulations indicate that the genetic data best fit a demographic scenario with a long divergence (62,500 years) and little or no gene flow between the ancestors of the Bisa/Kunda and existing HGs. This scenario contrasts with the archaeological evidence for a long period of coexistence between the two different communities in the Luangwa Valley, and suggests a process of sociocultural boundary maintenance may have characterized their interaction.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Institute for Evolutionary Anthropology, Leipzig D-04103, Germany.
| | | | | | | | | |
Collapse
|
89
|
Morelli L, Contu D, Santoni F, Whalen MB, Francalacci P, Cucca F. A comparison of Y-chromosome variation in Sardinia and Anatolia is more consistent with cultural rather than demic diffusion of agriculture. PLoS One 2010; 5:e10419. [PMID: 20454687 PMCID: PMC2861676 DOI: 10.1371/journal.pone.0010419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/09/2010] [Indexed: 11/18/2022] Open
Abstract
Two alternative models have been proposed to explain the spread of agriculture in Europe during the Neolithic period. The demic diffusion model postulates the spreading of farmers from the Middle East along a Southeast to Northeast axis. Conversely, the cultural diffusion model assumes transmission of agricultural techniques without substantial movements of people. Support for the demic model derives largely from the observation of frequency gradients among some genetic variants, in particular haplogroups defined by single nucleotide polymorphisms (SNPs) in the Y-chromosome. A recent network analysis of the R-M269 Y chromosome lineage has purportedly corroborated Neolithic expansion from Anatolia, the site of diffusion of agriculture. However, the data are still controversial and the analyses so far performed are prone to a number of biases. In the present study we show that the addition of a single marker, DYSA7.2, dramatically changes the shape of the R-M269 network into a topology showing a clear Western-Eastern dichotomy not consistent with a radial diffusion of people from the Middle East. We have also assessed other Y-chromosome haplogroups proposed to be markers of the Neolithic diffusion of farmers and compared their intra-lineage variation—defined by short tandem repeats (STRs)—in Anatolia and in Sardinia, the only Western population where these lineages are present at appreciable frequencies and where there is substantial archaeological and genetic evidence of pre-Neolithic human occupation. The data indicate that Sardinia does not contain a subset of the variability present in Anatolia and that the shared variability between these populations is best explained by an earlier, pre-Neolithic dispersal of haplogroups from a common ancestral gene pool. Overall, these results are consistent with the cultural diffusion and do not support the demic model of agriculture diffusion.
Collapse
Affiliation(s)
- Laura Morelli
- Dipartimento di Zoologia e Genetica evoluzionistica, Università di Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
90
|
Veeramah KR, Connell BA, Ansari Pour N, Powell A, Plaster CA, Zeitlyn D, Mendell NR, Weale ME, Bradman N, Thomas MG. Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria. BMC Evol Biol 2010; 10:92. [PMID: 20356404 PMCID: PMC2867817 DOI: 10.1186/1471-2148-10-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/31/2010] [Indexed: 11/21/2022] Open
Abstract
Background The Cross River region in Nigeria is an extremely diverse area linguistically with over 60 distinct languages still spoken today. It is also a region of great historical importance, being a) adjacent to the likely homeland from which Bantu-speaking people migrated across most of sub-Saharan Africa 3000-5000 years ago and b) the location of Calabar, one of the largest centres during the Atlantic slave trade. Over 1000 DNA samples from 24 clans representing speakers of the six most prominent languages in the region were collected and typed for Y-chromosome (SNPs and microsatellites) and mtDNA markers (Hypervariable Segment 1) in order to examine whether there has been substantial gene flow between groups speaking different languages in the region. In addition the Cross River region was analysed in the context of a larger geographical scale by comparison to bordering Igbo speaking groups as well as neighbouring Cameroon populations and more distant Ghanaian communities. Results The Cross River region was shown to be extremely homogenous for both Y-chromosome and mtDNA markers with language spoken having no noticeable effect on the genetic structure of the region, consistent with estimates of inter-language gene flow of 10% per generation based on sociological data. However the groups in the region could clearly be differentiated from others in Cameroon and Ghana (and to a lesser extent Igbo populations). Significant correlations between genetic distance and both geographic and linguistic distance were observed at this larger scale. Conclusions Previous studies have found significant correlations between genetic variation and language in Africa over large geographic distances, often across language families. However the broad sampling strategies of these datasets have limited their utility for understanding the relationship within language families. This is the first study to show that at very fine geographic/linguistic scales language differences can be maintained in the presence of substantial gene flow over an extended period of time and demonstrates the value of dense sampling strategies and having DNA of known and detailed provenance, a practice that is generally rare when investigating sub-Saharan African demographic processes using genetic data.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Centre for Society and Genetics, University of California, Los Angeles, 90095-722, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gomes V, Sánchez-Diz P, Amorim A, Carracedo A, Gusmão L. Digging deeper into East African human Y chromosome lineages. Hum Genet 2010; 127:603-13. [PMID: 20213473 DOI: 10.1007/s00439-010-0808-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/19/2010] [Indexed: 12/17/2022]
Abstract
The most significant and widely studied remodeling of the African genetic landscape is the Bantu expansion, which led to an almost total replacement of the previous populations from the sub-Saharan region. However, a poor knowledge exists about other population movements, namely, the Nilotic migration, which is a pastoralist dispersal that, contrary to the Bantu expansion, impacted only East African populations. Here, samples from a Ugandan Nilotic-speaking population were studied for 37 Y chromosome-specific SNPs, and the obtained data were compared with those already available for other sub-Saharan population groups. Although Uganda lies on the fringe of both Bantu and Nilotic expansions, a low admixture with Bantu populations was detected, with haplogroups carrying M13, M182 and M75 mutations prevailing in Nilotes together with a low frequency of the main Bantu haplogroups from clade E1b1a-M2. The results of a comparative analysis with data from other population groups allowed a deeper characterization of some lineages in our sample, clarifying some doubts about the origin of some particular Y-SNPs in different ethnic groups, such as M150, M112 and M75. Moreover, it was also possible to identify a new Y-SNP apparently specific to Nilotic groups, as well as the presence of particular haplogroups that characterize Nilotic populations. The detection of a new haplogroup B2a1b defined by G1, could be, therefore, important to differentiate Nilotes from other groups, helping to trace migration and admixture events that occurred in eastern Africa.
Collapse
Affiliation(s)
- Verónica Gomes
- Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | | | | | | | | |
Collapse
|
92
|
Karafet TM, Hallmark B, Cox MP, Sudoyo H, Downey S, Lansing JS, Hammer MF. Major east-west division underlies Y chromosome stratification across Indonesia. Mol Biol Evol 2010; 27:1833-44. [PMID: 20207712 DOI: 10.1093/molbev/msq063] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The early history of island Southeast Asia is often characterized as the story of two major population dispersals: the initial Paleolithic colonization of Sahul approximately 45 ka ago and the much later Neolithic expansion of Austronesian-speaking farmers approximately 4 ka ago. Here, in the largest survey of Indonesian Y chromosomes to date, we present evidence for multiple genetic strata that likely arose through a series of distinct migratory processes. We genotype an extensive battery of Y chromosome markers, including 85 single-nucleotide polymorphisms/indels and 12 short tandem repeats, in a sample of 1,917 men from 32 communities located across Indonesia. We find that the paternal gene pool is sharply subdivided between western and eastern locations, with a boundary running between the islands of Bali and Flores. Analysis of molecular variance reveals one of the highest levels of between-group variance yet reported for human Y chromosome data (e.g., Phi(ST) = 0.47). Eastern Y chromosome haplogroups are closely related to Melanesian lineages (i.e., within the C, M, and S subclades) and likely reflect the initial wave of colonization of the region, whereas the majority of western Y chromosomes (i.e., O-M119*, O-P203, and O-M95*) are related to haplogroups that may have entered Indonesia during the Paleolithic from mainland Asia. In addition, two novel markers (P201 and P203) provide significantly enhanced phylogenetic resolution of two key haplogroups (O-M122 and O-M119) that are often associated with the Austronesian expansion. This more refined picture leads us to put forward a four-phase colonization model in which Paleolithic migrations of hunter-gatherers shape the primary structure of current Indonesian Y chromosome diversity, and Neolithic incursions make only a minor impact on the paternal gene pool, despite the large cultural impact of the Austronesian expansion.
Collapse
|
93
|
A predominantly neolithic origin for European paternal lineages. PLoS Biol 2010; 8:e1000285. [PMID: 20087410 PMCID: PMC2799514 DOI: 10.1371/journal.pbio.1000285] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022] Open
Abstract
The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transition.
Collapse
|
94
|
Human Y chromosome haplogroup R-V88: a paternal genetic record of early mid Holocene trans-Saharan connections and the spread of Chadic languages. Eur J Hum Genet 2010; 18:800-7. [PMID: 20051990 DOI: 10.1038/ejhg.2009.231] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although human Y chromosomes belonging to haplogroup R1b are quite rare in Africa, being found mainly in Asia and Europe, a group of chromosomes within the paragroup R-P25(*) are found concentrated in the central-western part of the African continent, where they can be detected at frequencies as high as 95%. Phylogenetic evidence and coalescence time estimates suggest that R-P25(*) chromosomes (or their phylogenetic ancestor) may have been carried to Africa by an Asia-to-Africa back migration in prehistoric times. Here, we describe six new mutations that define the relationships among the African R-P25(*) Y chromosomes and between these African chromosomes and earlier reported R-P25 Eurasian sub-lineages. The incorporation of these new mutations into a phylogeny of the R1b haplogroup led to the identification of a new clade (R1b1a or R-V88) encompassing all the African R-P25(*) and about half of the few European/west Asian R-P25(*) chromosomes. A worldwide phylogeographic analysis of the R1b haplogroup provided strong support to the Asia-to-Africa back-migration hypothesis. The analysis of the distribution of the R-V88 haplogroup in >1800 males from 69 African populations revealed a striking genetic contiguity between the Chadic-speaking peoples from the central Sahel and several other Afroasiatic-speaking groups from North Africa. The R-V88 coalescence time was estimated at 9.2-5.6 [corrected] kya, in the early mid Holocene. We suggest that R-V88 is a paternal genetic record of the proposed mid-Holocene migration of proto-Chadic Afroasiatic speakers through the Central Sahara into the Lake Chad Basin, and geomorphological evidence is consistent with this view.
Collapse
|
95
|
Stefflova K, Dulik MC, Pai AA, Walker AH, Zeigler-Johnson CM, Gueye SM, Schurr TG, Rebbeck TR. Evaluation of group genetic ancestry of populations from Philadelphia and Dakar in the context of sex-biased admixture in the Americas. PLoS One 2009; 4:e7842. [PMID: 19946364 PMCID: PMC2776971 DOI: 10.1371/journal.pone.0007842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans. PRINCIPAL FINDINGS We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of approximately 12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9-10% mtDNAs and approximately 31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas. CONCLUSIONS We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas.
Collapse
Affiliation(s)
- Klara Stefflova
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Castrì L, Tofanelli S, Garagnani P, Bini C, Fosella X, Pelotti S, Paoli G, Pettener D, Luiselli D. mtDNA variability in two Bantu-speaking populations (Shona and Hutu) from Eastern Africa: implications for peopling and migration patterns in sub-Saharan Africa. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140:302-11. [PMID: 19425093 DOI: 10.1002/ajpa.21070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we report novel data on mitochondrial DNA in two of the largest eastern Bantu-speaking populations, the Shona from Zimbabwe and the Hutu from Rwanda. The goal is to evaluate the genetic relationships of these two ethnic groups with other Bantu-speaking populations. Moreover, by comparing our data with those from other Niger-Congo speaking populations, we aim to clarify some aspects of evolutionary and demographic processes accompanying the spread of Bantu languages in sub-Saharan Africa and to test if patterns of genetic variation fit with models of population expansion based on linguistic and archeological data. The results indicate that the Shona and Hutu are closely related to the other Bantu-speaking populations. However, there are some differences in haplogroup composition between the two populations, mainly due to different genetic contributions from neighboring populations. This result is confirmed by estimates of migration rates which show high levels of gene flow not only between pairs of Bantu-speaking populations, but also between Bantu and non-Bantu speakers. The observed pattern of genetic variability (high genetic homogeneity and high levels of gene flow) supports a linguistic model suggesting a gradual spread of Bantu-speakers, with strong interactions between the different lines of Bantu-speaker descent, and is also in agreement with recent archeological findings. In conclusion, our data emphasize the role that population admixture has played at different times and to varying degrees in the dispersal of Bantu languages.
Collapse
Affiliation(s)
- Loredana Castrì
- Dipartimento di Biologia Evoluzionistica Sperimentale, Unità di Antropologia, Università di Bologna, I-40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
A multi-perspective view of genetic variation in Cameroon. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140:454-64. [DOI: 10.1002/ajpa.21088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
98
|
Poloni ES, Naciri Y, Bucho R, Niba R, Kervaire B, Excoffier L, Langaney A, Sanchez-Mazas A. Genetic evidence for complexity in ethnic differentiation and history in East Africa. Ann Hum Genet 2009; 73:582-600. [PMID: 19706029 DOI: 10.1111/j.1469-1809.2009.00541.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Afro-Asiatic and Nilo-Saharan language families come into contact in Western Ethiopia. Ethnic diversity is particularly high in the South, where the Nilo-Saharan Nyangatom and the Afro-Asiatic Daasanach dwell. Despite their linguistic differentiation, both populations rely on a similar agripastoralist mode of subsistence. Analysis of mitochondrial DNA extracted from Nyangatom and Daasanach archival sera revealed high levels of diversity, with most sequences belonging to the L haplogroups, the basal branches of the mitochondrial phylogeny. However, in sharp contrast with other Ethiopian populations, only 5% of the Nyangatom and Daasanach sequences belong to haplogroups M and N. The Nyangatom and Daasanach were found to be significantly differentiated, while each of them displays close affinities with some Tanzanian populations. The strong genetic structure found over East Africa was neither associated with geography nor with language, a result confirmed by the analysis of 6711 HVS-I sequences of 136 populations mainly from Africa. Processes of migration, language shift and group absorption are documented by linguists and ethnographers for the Nyangatom and Daasanach, thus pointing to the probably transient and plastic nature of these ethnic groups. These processes, associated with periods of isolation, could explain the high diversity and strong genetic structure found in East Africa.
Collapse
Affiliation(s)
- Estella S Poloni
- Département d'Anthropologie et d'Ecologie, Université de Genève, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Novelletto A. Y chromosome variation in Europe: Continental and local processes in the formation of the extant gene pool. Ann Hum Biol 2009; 34:139-72. [PMID: 17558587 DOI: 10.1080/03014460701206843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The polymorphism of the male-specific portion of the Y chromosome has been increasingly used to describe the composition of the European gene pool and to reconstruct its formation. Here the theoretical grounds and the limitations of this approach are presented, together with the different views on debated issues. The emerging picture for the composition of the male gene pool of the continent is illustrated, but local peculiarities that represent departures from the main trends are also highlighted, in order to illustrate the main unifying feature, i.e. the overlay of recent patterns onto more ancient ones. A synopsis of the main findings and conclusions obtained in regional studies has also been compiled.
Collapse
|
100
|
Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 2009; 182:1207-18. [PMID: 19506307 DOI: 10.1534/genetics.109.102509] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximate Bayesian computation (ABC) techniques permit inferences in complex demographic models, but are computationally inefficient. A Markov chain Monte Carlo (MCMC) approach has been proposed (Marjoram et al. 2003), but it suffers from computational problems and poor mixing. We propose several methodological developments to overcome the shortcomings of this MCMC approach and hence realize substantial computational advances over standard ABC. The principal idea is to relax the tolerance within MCMC to permit good mixing, but retain a good approximation to the posterior by a combination of subsampling the output and regression adjustment. We also propose to use a partial least-squares (PLS) transformation to choose informative statistics. The accuracy of our approach is examined in the case of the divergence of two populations with and without migration. In that case, our ABC-MCMC approach needs considerably lower computation time to reach the same accuracy than conventional ABC. We then apply our method to a more complex case with the estimation of divergence times and migration rates between three African populations.
Collapse
|