51
|
Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nat Commun 2014; 5:4638. [PMID: 25144244 PMCID: PMC4237202 DOI: 10.1038/ncomms5638] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022] Open
Abstract
Polyglutamine repeat expansion in ataxin-3 causes neurodegeneration in the most common dominant ataxia, Spinocerebellar Ataxia Type 3 (SCA3). Since reducing levels of disease proteins improves pathology in animals, we investigated how ataxin-3 is degraded. Here we show that, unlike most proteins, ataxin-3 turnover does not require its ubiquitination, but is regulated by Ubiquitin-Binding Site 2 (UbS2) on its N terminus. Mutating UbS2 decreases ataxin-3 protein levels in cultured mammalian cells and in Drosophila melanogaster by increasing its proteasomal turnover. Ataxin-3 interacts with the proteasome-associated proteins Rad23A/B through UbS2. Knockdown of Rad23 in cultured cells and in Drosophila results in lower levels of ataxin-3 protein. Importantly, reducing Rad23 suppresses ataxin-3-dependent degeneration in flies. We present a mechanism for ubiquitination-independent degradation that is impeded by protein interactions with proteasome-associated factors. We conclude that UbS2 is a potential target through which to enhance ataxin-3 degradation for SCA3 therapy.
Collapse
|
52
|
Förster F, Schuller JM, Unverdorben P, Aufderheide A. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation. Biomolecules 2014; 4:774-94. [PMID: 25102382 PMCID: PMC4192671 DOI: 10.3390/biom4030774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS).
Collapse
Affiliation(s)
- Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Jan M Schuller
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Pia Unverdorben
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Antje Aufderheide
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| |
Collapse
|
53
|
Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 2014; 3:824-47. [PMID: 25100021 PMCID: PMC4197631 DOI: 10.3390/cells3030824] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/05/2022] Open
Abstract
Quality control of protein folding inside the endoplasmic reticulum (ER) includes chaperone-mediated assistance in folding and the selective targeting of terminally misfolded species to a pathway called ER-associated protein degradation, or simply ERAD. Once selected for ERAD, substrates will be transported (back) into the cytosol, a step called retrotranslocation. Although still ill defined, retrotranslocation likely involves a protein conducting channel that is in part formed by specific membrane-embedded E3 ubiquitin ligases. Early during retrotranslocation, reversible self-ubiquitination of these ligases is thought to aid in initiation of substrate transfer across the membrane. Once being at least partially exposed to the cytosol, substrates will become ubiquitinated on the cytosolic side of the ER membrane by the same E3 ubiquitin ligases. Ubiquitin on substrates was originally thought to be a permanent modification that (1) promotes late steps of retrotranslocation by recruiting the energy-providing ATPase Cdc48p/p97 via binding to its associated adaptor proteins and that (2) serves to target substrates to the proteasome. Recently it became evident, however, that the poly-ubiquitin chains (PUCs) on ERAD substrates are often subject to extensive remodeling, or processing, at several stages during ERAD. This review recapitulates the current knowledge and recent findings about PUC processing on ERAD substrates and ubiquitination of ERAD machinery components and discusses their functional consequences.
Collapse
|
54
|
Lin XP, Feng L, Xie CG, Chen DB, Pei Z, Liang XL, Xie QY, Li XH, Pan SY. Valproic acid attenuates the suppression of acetyl histone H3 and CREB activity in an inducible cell model of Machado-Joseph disease. Int J Dev Neurosci 2014; 38:17-22. [PMID: 25068645 DOI: 10.1016/j.ijdevneu.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022] Open
Abstract
Machado-Joseph disease (MJD) is caused by a (CAG)n trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract. This disease is considered the most common form of spinocerebellar ataxia (SCA). In the present study, we developed stable inducible cell lines (PC12Tet-On-Ataxin-3-Q28/84) expressing ataxin-3 with either normal or abnormal CAG repeats under doxycycline control. The expression of acetyl histone H3 and the induction of c-Fos in response to cAMP were strongly suppressed in cells expressing the protein with the expanded polyglutamine tract. Treatment with valproic acid, a histone deacetylase inhibitor (HDACi), attenuated mutant ataxin-3-induced cell toxicity and suppression of acetyl histone H3, phosphorylated cAMP-responsive element binding protein (p-CREB) as well as c-Fos expression. These results indicate that VPA can stimulate the up-regulation of gene transcription through hyperacetylation. Thus, VPA might have a therapeutic effect on MJD.
Collapse
Affiliation(s)
- X P Lin
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - L Feng
- Department of Neurological Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - C G Xie
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - D B Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Z Pei
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - X L Liang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Q Y Xie
- Department of Hyperbaric Oxygen Therapy, Guangzhou General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong Province, China
| | - X H Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - S Y Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
55
|
Evers MM, Toonen LJA, van Roon-Mom WMC. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 2014; 49:1513-31. [PMID: 24293103 PMCID: PMC4012159 DOI: 10.1007/s12035-013-8596-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
Ataxin-3 is a ubiquitously expressed deubiqutinating enzyme with important functions in the proteasomal protein degradation pathway and regulation of transcription. The C-terminus of the ataxin-3 protein contains a polyglutamine (PolyQ) region that, when mutationally expanded to over 52 glutamines, causes the neurodegenerative disease spinocerebellar ataxia 3 (SCA3). In spite of extensive research, the molecular mechanisms underlying the cellular toxicity resulting from mutant ataxin-3 remain elusive and no preventive treatment is currently available. It has become clear over the last decade that the hallmark intracellular ataxin-3 aggregates are likely not the main toxic entity in SCA3. Instead, the soluble PolyQ containing fragments arising from proteolytic cleavage of ataxin-3 by caspases and calpains are now regarded to be of greater influence in pathogenesis. In addition, recent evidence suggests potential involvement of a RNA toxicity component in SCA3 and other PolyQ expansion disorders, increasing the pathogenic complexity. Herein, we review the functioning of ataxin-3 and the involvement of known protein and RNA toxicity mechanisms of mutant ataxin-3 that have been discovered, as well as future opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Melvin M. Evers
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Lodewijk J. A. Toonen
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Willeke M. C. van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
56
|
de Chiara C, Pastore A. Kaleidoscopic protein-protein interactions in the life and death of ataxin-1: new strategies against protein aggregation. Trends Neurosci 2014; 37:211-8. [PMID: 24636457 PMCID: PMC3988977 DOI: 10.1016/j.tins.2014.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/26/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Understanding how proteins protect themselves from aberrant aggregation is of primary interest for understanding basic biology, protein biochemistry, and human disease. We discuss the paradigmatic example of ataxin-1 (Atx1), the protein responsible for neurodegenerative spinocerebellar ataxia type 1 (SCA1). This disease is part of the increasing family of pathologies caused by protein aggregation and misfolding. We discuss the importance of protein-protein interactions not only in the nonpathological function of Atx1 but also in protecting the protein from aggregation and misfolding. The lessons learned from Atx1 may lead to a more general understanding of the cell's protective strategies against aggregation. The obtained knowledge may suggest a new perspective for designing specific therapeutic strategies for the cure of misfolding diseases.
Collapse
Affiliation(s)
- Cesira de Chiara
- National Institute for Medical Research (NIMR), Medical Research Council (MRC), The Ridgeway, London NW7 1AA, UK
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King's College London, Denmark Hill Campus, London, UK.
| |
Collapse
|
57
|
Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology 2014; 81:166-75. [PMID: 24486383 DOI: 10.1016/j.neuropharm.2014.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxias (SCAs), caused by expanded CAG repeats encoding a long polyglutamine (polyQ) tract in the respective proteins, are characterized by the accumulation of intranuclear and cytoplasmic misfolded polyQ aggregation that leads to cell death. Suppression of aggregate formation can inhibit a wide range of downstream pathogenic events and is expected to be a therapeutic strategy for SCAs. Here we show the anti-aggregation potential of Gardenia jasminoides (G. jasminoides) and its components/metabolite geniposide, crocin, and genipin, in ATXN3/Q75-GFP 293 cells, a putative SCA3 cell model. We found the aggregation can be significantly prohibited by G. jasminoides, genipin, geniposide and crocin. Meanwhile, G. jasminoides, genipin, geniposide, and crocin up-regulated anti-oxidative markers NFE2L2, NQO1, GCLC and GSTP1, and reduced the production of reactive oxidative species (ROS) in the same cell models. All of them further inhibited the aggregation in neurally differentiated SH-SY5Y ATXN3/Q75-GFP cells. Our results demonstrate that G. jasminoides, genipin, geniposide and crocin work on polyQ-aggregation reduction by suppressing ROS. These findings indicate the therapeutic applications of G. jasminoides in treating SCAs. Furthermore, oxidative stress inhibition could be a good target for drug development of anti-polyQ aggregation.
Collapse
|
58
|
Structural and mechanistic insights into the arginine/lysine-rich peptide motifs that interact with P97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2672-8. [DOI: 10.1016/j.bbapap.2013.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/05/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022]
|
59
|
Liu S, Yang H, Zhao J, Zhang YH, Song AX, Hu HY. NEDD8 ultimate buster-1 long (NUB1L) protein promotes transfer of NEDD8 to proteasome for degradation through the P97UFD1/NPL4 complex. J Biol Chem 2013; 288:31339-49. [PMID: 24019527 DOI: 10.1074/jbc.m113.484816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NEDD8 protein and neddylation levels in cells are modulated by NUB1L or NUB1 through proteasomal degradation, but the underlying molecular mechanism is not well understood. Here, we report that NUB1L down-regulated the protein levels of NEDD8 and neddylation through specifically recognizing NEDD8 and P97/VCP. NUB1L directly interacted with NEDD8, but not with ubiquitin, on the key residue Asn-51 of NEDD8 and with P97/VCP on its positively charged VCP binding motif. In coordination with the P97-UFD1-NPL4 complex (P97(UFD1/NPL4)), NUB1L promotes transfer of NEDD8 to proteasome for degradation. This mechanism is also exemplified by the canonical neddylation of cullin 1 for SCF (SKP1-cullin1-F-box) ubiquitin E3 ligases that is exquisitely regulated by the turnover of NEDD8.
Collapse
Affiliation(s)
- Shuai Liu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
60
|
Zhou L, Wang H, Wang P, Ren H, Chen D, Ying Z, Wang G. Ataxin-3 protects cells against H2O2-induced oxidative stress by enhancing the interaction between Bcl-XL and Bax. Neuroscience 2013; 243:14-21. [DOI: 10.1016/j.neuroscience.2013.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/17/2022]
|
61
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
62
|
Evers MM, Tran HD, Zalachoras I, Pepers BA, Meijer OC, den Dunnen JT, van Ommen GJB, Aartsma-Rus A, van Roon-Mom WMC. Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis 2013; 58:49-56. [PMID: 23659897 DOI: 10.1016/j.nbd.2013.04.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/17/2013] [Accepted: 04/21/2013] [Indexed: 11/17/2022] Open
Abstract
Spinocerebellar ataxia type 3 is caused by a polyglutamine expansion in the ataxin-3 protein, resulting in gain of toxic function of the mutant protein. The expanded glutamine stretch in the protein is the result of a CAG triplet repeat expansion in the penultimate exon of the ATXN3 gene. Several gene silencing approaches to reduce mutant ataxin-3 toxicity in this disease aim to lower ataxin-3 protein levels, but since this protein is involved in deubiquitination and proteasomal protein degradation, its long-term silencing might not be desirable. Here, we propose a novel protein modification approach to reduce mutant ataxin-3 toxicity by removing the toxic polyglutamine repeat from the ataxin-3 protein through antisense oligonucleotide-mediated exon skipping while maintaining important wild type functions of the protein. In vitro studies showed that exon skipping did not negatively impact the ubiquitin binding capacity of ataxin-3. Our in vivo studies showed no toxic properties of the novel truncated ataxin-3 protein. These results suggest that exon skipping may be a novel therapeutic approach to reduce polyglutamine-induced toxicity in spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Melvin M Evers
- Department of Human Genetics, Leiden University Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Liu Y, Ye Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr Protein Pept Sci 2013; 13:436-46. [PMID: 22812527 DOI: 10.2174/138920312802430608] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/06/2011] [Accepted: 06/11/2012] [Indexed: 11/22/2022]
Abstract
To maintain protein homeostasis in the ER, an ER protein quality control system retains unfolded polypeptides and misassembled membrane proteins, allowing only properly folded proteins to exit the ER. Misfolded proteins held in the ER are retrotranslocated into the cytosol, ubiquitinated, and degraded by the proteasome through the ER-associated degradation pathway (ERAD). By timely eliminating misfolded proteins, the ERAD system alleviates cytotoxic stress imposed by protein misfolding. It is well established that ER-associated ubiquitin ligases play pivotal roles in ERAD by assembling ubiquitin conjugates on retrotranslocation substrates, which serve as degradation signals for the proteasome. Surprisingly, recent studies have revealed an equally important function for deubiquitinases (DUBs), enzymes that disassemble ubiquitin chains, in ERAD. Intriguingly, many ERAD specific DUBs are physically associated with the retrotranslocation- driving ATPase p97. Here we discuss the potential functions of p97-associated DUBs including ataxin-3 and YOD1. Our goal is to integrate the emerging evidence into models that may explain how protein quality control could benefit from deubiquitination, a process previously deemed destructive for proteasomal degradation.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
64
|
Claessen JHL, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL. Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 2013; 14:343-52. [PMID: 23335262 DOI: 10.1002/cbic.201200701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Indexed: 12/26/2022]
Abstract
Protein ubiquitylation controls many cellular pathways, and timely removal of ubiquitin by deubiquitylating enzymes (DUBs) is essential to govern these different functions. To map endogenous expression of individual DUBs as well as that of any interacting proteins, we developed a catch-and-release ubiquitin probe. Ubiquitin was equipped with an activity-based warhead and a cleavable linker attached to a biotin affinity-handle through tandem site-specific modification, in which we combined intein chemistry with sortase-mediated ligation. The resulting probe is cell-impermeable and was therefore delivered to the cytosol of perfringolysin O (PFO)-permeabilized cells. This allowed us to retrieve and identify 34 DUBs and their interacting partners. We also noted the expression, in host cells infected with Chlamydia trachomatis, of two additional DUBs. Furthermore, we retrieved and identified chlamydial DUB1 (ChlaDUB1) and DUB2 (ChlaDUB2), demonstrating by experiment that ChlaDUB2, the presence and activity of which had not been detected in infected cells, is in fact expressed during the course of infection.
Collapse
Affiliation(s)
- Jasper H L Claessen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Martin D Witte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Nicholas C Yoder
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Angela Y Zhu
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, 02142, Cambridge, MA, USA
| |
Collapse
|
65
|
Clemen CS, Eichinger L, Schroder R. Reply: Hereditary spastic paraplegia caused by a mutation in the VCP gene VCP: A Jack of all trades in neuro- and myodegeneration? Brain 2012. [DOI: 10.1093/brain/aws202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
66
|
Laço MN, Cortes L, Travis SM, Paulson HL, Rego AC. Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS One 2012; 7:e43563. [PMID: 22970133 PMCID: PMC3435318 DOI: 10.1371/journal.pone.0043563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 07/26/2012] [Indexed: 01/11/2023] Open
Abstract
Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins.
Collapse
Affiliation(s)
- Mário N. Laço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luisa Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sue M. Travis
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (HLP); (ACR)
| | - A. Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail: (HLP); (ACR)
| |
Collapse
|
67
|
Petrakis S, Raskó T, Russ J, Friedrich RP, Stroedicke M, Riechers SP, Muehlenberg K, Möller A, Reinhardt A, Vinayagam A, Schaefer MH, Boutros M, Tricoire H, Andrade-Navarro MA, Wanker EE. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1. PLoS Genet 2012; 8:e1002897. [PMID: 22916034 PMCID: PMC3420947 DOI: 10.1371/journal.pgen.1002897] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 07/02/2012] [Indexed: 02/06/2023] Open
Abstract
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Collapse
Affiliation(s)
- Spyros Petrakis
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Tamás Raskó
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jenny Russ
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Ralf P. Friedrich
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martin Stroedicke
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Katja Muehlenberg
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Angeli Möller
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anita Reinhardt
- Unité BFA (EAC 7059), Université Paris Diderot-Paris7/CNRS, Paris, France
| | | | - Martin H. Schaefer
- Computational Biology and Data Mining, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Hervé Tricoire
- Unité BFA (EAC 7059), Université Paris Diderot-Paris7/CNRS, Paris, France
| | | | - Erich E. Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
68
|
Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14:117-23. [PMID: 22298039 DOI: 10.1038/ncb2407] [Citation(s) in RCA: 652] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ATP-driven chaperone valosin-containing protein (VCP)/p97 governs critical steps in ubiquitin-dependent protein quality control and intracellular signalling pathways. It cooperates with diverse partner proteins to help process ubiquitin-labelled proteins for recycling or degradation by the proteasome in many cellular contexts. Recent studies have uncovered unexpected cellular functions for p97 in autophagy, endosomal sorting and regulating protein degradation at the outer mitochondrial membrane, and elucidated a role for p97 in key chromatin-associated processes. These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.
Collapse
|
69
|
McGurk L, Bonini NM. Protein interacting with C kinase (PICK1) is a suppressor of spinocerebellar ataxia 3-associated neurodegeneration in Drosophila. Hum Mol Genet 2012; 21:76-84. [PMID: 21949352 PMCID: PMC3235011 DOI: 10.1093/hmg/ddr439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/12/2011] [Accepted: 09/20/2011] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant ataxia. The disease is caused by an expansion of a CAG-trinucelotide repeat region within the coding sequence of the ATXN3 gene, and this results in an expanded polyglutamine (polyQ) tract within the Ataxin-3 protein. The polyQ expansion leads to neuronal dysfunction and cell death. Here, we tested the ability of a number of proteins that interact with Ataxin-3 to modulate SCA3 pathogenicity using Drosophila. Of 10 candidates, we found four novel enhancers and one suppressor. The suppressor, PICK1 (Protein interacting with C kinase 1), is a transport protein that regulates the trafficking of ion channel subunits involved in calcium homeostasis to and from the plasma membrane. In line with calcium homeostasis being a potential pathway mis-regulated in SCA3, we also found that down-regulation of Nach, an acid sensing ion channel, mitigates SCA3 pathogenesis in flies. Modulation of PICK1 could be targeted in other neurodegenerative diseases, as the toxicity of SCA1 and tau was also suppressed when PICK1 was down-regulated. These findings indicate that interaction proteins may define a rich source of modifier pathways to target in disease situations.
Collapse
Affiliation(s)
| | - Nancy M. Bonini
- Department of Biology, University of Pennsylvania,
- Howard Hughes Medical Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
70
|
Costa MDC, Paulson HL. Toward understanding Machado-Joseph disease. Prog Neurobiol 2011; 97:239-57. [PMID: 22133674 DOI: 10.1016/j.pneurobio.2011.11.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common inherited spinocerebellar ataxia and one of many polyglutamine neurodegenerative diseases. In MJD, a CAG repeat expansion encodes an abnormally long polyglutamine (polyQ) tract in the disease protein, ATXN3. Here we review MJD, focusing primarily on the function and dysfunction of ATXN3 and on advances toward potential therapies. ATXN3 is a deubiquitinating enzyme (DUB) whose highly specialized properties suggest that it participates in ubiquitin-dependent proteostasis. By virtue of its interactions with VCP, various ubiquitin ligases and other ubiquitin-linked proteins, ATXN3 may help regulate the stability or activity of many proteins in diverse cellular pathways implicated in proteotoxic stress response, aging, and cell differentiation. Expansion of the polyQ tract in ATXN3 is thought to promote an altered conformation in the protein, leading to changes in interactions with native partners and to the formation of insoluble aggregates. The development of a wide range of cellular and animal models of MJD has been crucial to the emerging understanding of ATXN3 dysfunction upon polyQ expansion. Despite many advances, however, the principal molecular mechanisms by which mutant ATXN3 elicits neurotoxicity remain elusive. In a chronic degenerative disease like MJD, it is conceivable that mutant ATXN3 triggers multiple, interconnected pathogenic cascades that precipitate cellular dysfunction and eventual cell death. A better understanding of these complex molecular mechanisms will be important as scientists and clinicians begin to focus on developing effective therapies for this incurable, fatal disorder.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Department of Neurology, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
71
|
Shorter J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 2011; 6:e26319. [PMID: 22022600 PMCID: PMC3194798 DOI: 10.1371/journal.pone.0026319] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/23/2011] [Indexed: 12/21/2022] Open
Abstract
Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers.
Collapse
Affiliation(s)
- James Shorter
- Stellar-Chance Laboratories, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|
72
|
Stapf C, Cartwright E, Bycroft M, Hofmann K, Buchberger A. The general definition of the p97/valosin-containing protein (VCP)-interacting motif (VIM) delineates a new family of p97 cofactors. J Biol Chem 2011; 286:38670-38678. [PMID: 21896481 DOI: 10.1074/jbc.m111.274472] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX(5)AAX(2)R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors.
Collapse
Affiliation(s)
- Christopher Stapf
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Edward Cartwright
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | - Mark Bycroft
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | - Kay Hofmann
- Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, 51429 Bergisch-Gladbach, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
73
|
Lajoie P, Snapp EL. Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin. J Cell Sci 2011; 124:3332-43. [PMID: 21896647 DOI: 10.1242/jcs.087510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is caused by expanded glutamine repeats within the huntingtin (Htt) protein. Mutant Htt (mHtt) in the cytoplasm has been linked to induction of the luminal endoplasmic reticulum (ER) stress pathway, the unfolded protein response (UPR). How mHtt impacts the susceptibility of the ER lumen to stress remains poorly understood. To investigate molecular differences in the ER in cells expressing mHtt, we used live-cell imaging of a sensitive reporter of the misfolded secretory protein burden, GFP fused to the ER chaperone BiP (also known as GRP78), which decreases in mobility as it binds increasing amounts of misfolded proteins. Striatal neurons expressing full-length mHtt showed no differences in BiP-GFP mobility and no evidence of UPR activation compared with wild-type cells at steady state. However, mHtt-expressing cells were acutely sensitive to misfolded secretory proteins. Treatment with ER stressors, tunicamycin or DTT, rapidly decreased BiP-GFP mobility in mHtt striatal cells and accelerated UPR activation compared with wild-type cells. mHtt-expressing cells exhibited decreased misfolded protein flux as a result of ER associated degradation (ERAD) dysfunction. Furthermore, UPR-adapted mHtt cells succumbed to misfolded protein stresses that could be tolerated by adapted wild-type cells. Thus, mHtt expression impairs misfolded secretory protein turnover, decreases the ER stress threshold, and increases cell vulnerability to insults.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | |
Collapse
|
74
|
Matos CA, de Macedo-Ribeiro S, Carvalho AL. Polyglutamine diseases: The special case of ataxin-3 and Machado–Joseph disease. Prog Neurobiol 2011; 95:26-48. [DOI: 10.1016/j.pneurobio.2011.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
75
|
Li HJ, Xue Y, Jia DJ, Wang T, hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. THE PLANT CELL 2011; 23:3288-302. [PMID: 21954464 PMCID: PMC3203432 DOI: 10.1105/tpc.111.088914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao hi
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
76
|
Hübener J, Vauti F, Funke C, Wolburg H, Ye Y, Schmidt T, Wolburg-Buchholz K, Schmitt I, Gardyan A, Driessen S, Arnold HH, Nguyen HP, Riess O. N-terminal ataxin-3 causes neurological symptoms with inclusions, endoplasmic reticulum stress and ribosomal dislocation. ACTA ACUST UNITED AC 2011; 134:1925-42. [PMID: 21653538 DOI: 10.1093/brain/awr118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutant ataxin-3 is aberrantly folded and proteolytically cleaved in spinocerebellar ataxia type 3. The C-terminal region of the protein includes a polyglutamine stretch that is expanded in spinocerebellar ataxia type 3. Here, we report on the analysis of an ataxin-3 mutant mouse that has been obtained by gene trap integration. The ataxin-3 fusion protein encompasses 259 N-terminal amino acids including the Josephin domain and an ubiquitin-interacting motif but lacks the C-terminus with the polyglutamine stretch, the valosin-containing protein binding region and part of the ubiquitin-interacting motif 2. Homozygous ataxin-3 mutant mice were viable and showed no apparent anatomical defects at birth. However, at the age of 9 months, homozygous and heterozygous mutant mice revealed significantly altered behaviour and progressing deficits of motor coordination followed by premature death at ∼12 months. At this time, prominent extranuclear protein aggregates and neuronal cell death was found in mutant mice. This was associated with disturbances of the endoplasmic reticulum-mediated unfolded protein response, consistent with the normal role of ataxin-3 in endoplasmic reticulum homeostasis. Thus, the ataxin-3 gene trap model provides evidence for a contribution of the non-polyglutamine containing ataxin-3 N-terminus, which mimics a calpain fragment that has been observed in spinocerebellar ataxia type 3. Consistent with the disease in humans, gene trap mice develop cytoplasmic inclusion bodies and implicate impaired unfolded protein response in the pathogenesis of spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Jeannette Hübener
- Department of Medical Genetics, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Teixeira-Castro A, Ailion M, Jalles A, Brignull HR, Vilaça JL, Dias N, Rodrigues P, Oliveira JF, Neves-Carvalho A, Morimoto RI, Maciel P. Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 2011; 20:2996-3009. [PMID: 21546381 DOI: 10.1093/hmg/ddr203] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The risk of developing neurodegenerative diseases increases with age. Although many of the molecular pathways regulating proteotoxic stress and longevity are well characterized, their contribution to disease susceptibility remains unclear. In this study, we describe a new Caenorhabditis elegans model of Machado-Joseph disease pathogenesis. Pan-neuronal expression of mutant ATXN3 leads to a polyQ-length dependent, neuron subtype-specific aggregation and neuronal dysfunction. Analysis of different neurons revealed a pattern of dorsal nerve cord and sensory neuron susceptibility to mutant ataxin-3 that was distinct from the aggregation and toxicity profiles of polyQ-alone proteins. This reveals that the sequences flanking the polyQ-stretch in ATXN3 have a dominant influence on cell-intrinsic neuronal factors that modulate polyQ-mediated pathogenesis. Aging influences the ATXN3 phenotypes which can be suppressed by the downregulation of the insulin/insulin growth factor-1-like signaling pathway and activation of heat shock factor-1.
Collapse
Affiliation(s)
- Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO. FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 2011; 20:2928-41. [DOI: 10.1093/hmg/ddr197] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
79
|
The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol 2011; 13:273-81. [DOI: 10.1038/ncb2200] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 12/17/2010] [Indexed: 12/11/2022]
|
80
|
Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol Cell Biol 2011; 31:1528-39. [PMID: 21282470 DOI: 10.1128/mcb.00962-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaperone-related AAA ATPase Cdc48 (p97/VCP in higher eukaryotes) segregates ubiquitylated proteins for subsequent degradation by the 26S proteasome or for nonproteolytic fates. The specific outcome of Cdc48 activity is controlled by the evolutionary conserved cofactors Ufd2 and Ufd3, which antagonistically regulate the substrates' ubiquitylation states. In contrast to the interaction of Ufd3 and Cdc48, the interaction between the ubiquitin chain elongating enzyme Ufd2 and Cdc48 has not been precisely mapped. Consequently, it is still unknown whether physiological functions of Ufd2 in fact require Cdc48 binding. Here, we show that Ufd2 binds to the C-terminal tail of Cdc48, unlike the human Ufd2 homologue E4B, which interacts with the N domain of p97. The binding sites for Ufd2 and Ufd3 on Cdc48 overlap and depend critically on the conserved residue Y834 but are not identical. Saccharomyces cerevisiae cdc48 mutants altered in residue Y834 or lacking the C-terminal tail are viable and exhibit normal growth. Importantly, however, loss of Ufd2 and Ufd3 binding in these mutants phenocopies defects of Δufd2 and Δufd3 mutants in the ubiquitin fusion degradation (UFD) and Ole1 fatty acid desaturase activation (OLE) pathways. These results indicate that key cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation require their interaction with Cdc48.
Collapse
|
81
|
Valosin-containing protein gene mutations: cellular phenotypes relevant to neurodegeneration. J Mol Neurosci 2011; 44:91-102. [PMID: 21249466 PMCID: PMC3084943 DOI: 10.1007/s12031-010-9489-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/22/2010] [Indexed: 01/12/2023]
Abstract
Previously, we identified valosin-containing protein (VCP) as a mediator of ER stress-induced cell death. Mutations in the VCP gene including R93, R155, and R191 have been described that manifest clinically as hereditary inclusion body myopathy with Paget’s disease of bone and frontotemporal dementia. In addition, other studies have demonstrated that as a consequence of a mutation generated in the second ATP binding domain of VCP (K524A), cells accumulated large cytoplasmic vacuoles and underwent programmed cell death. In order to better understand the biochemical and molecular consequences of the clinically relevant VCP mutations as well as the genetically engineered ATPase-inactive mutant K524A and any relationship these may have to ER stress-induced cell death, we introduced analogous mutations separately and together into the human VCP gene and evaluated their effect on proteasome activity, Huntingtin protein aggregation and ER stress-induced cell death. Our results indicate that the VCP K524A mutant and the triple mutant VCP R93C-R155C-K524A block protein degradation, trigger Huntingtin aggregate formation, and render cells highly susceptible to ER stress-induced cell death as compared to VCPWT or other VCP mutants.
Collapse
|
82
|
Chapman E, Fry AN, Kang M. The complexities of p97 function in health and disease. MOLECULAR BIOSYSTEMS 2010; 7:700-10. [PMID: 21152665 DOI: 10.1039/c0mb00176g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p97 is a homohexameric, toroidal machine that harnesses the energy of ATP binding and hydrolysis to effect structural reorganization of a diverse and primarily uncharacterized set of substrate proteins. This action has been linked to endoplasmic reticulum associated degradation (ERAD), homotypic membrane fusion, transcription factor control, cell cycle progression, DNA repair, and post-mitotic spindle disassembly. Exactly how these diverse processes use p97 is not fully understood, but it is clear that binding sites, primarily on the N- and C-domains of p97, facilitate this diversity by coordinating a growing collection of cofactors. These cofactors act at the levels of mechanism, sub-cellular localization, and substrate modification. Another unifying theme is the use of ubiquitylation. Both p97 and many of the associated cofactors have demonstrable ubiquitin-binding competence. The present review will discuss some of the current mechanistic studies and controversies and how these relate to cofactors as well as discussing potential therapeutic targeting of p97.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Molecular Biology, The Scripps Research Institute, Skaggs Molecular Biology Building, 10596 Torrey Pines Road, Rm. 203, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
83
|
Mallik M, Lakhotia SC. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet 2010; 89:497-526. [DOI: 10.1007/s12041-010-0072-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
84
|
Clemen CS, Tangavelou K, Strucksberg KH, Just S, Gaertner L, Regus-Leidig H, Stumpf M, Reimann J, Coras R, Morgan RO, Fernandez MP, Hofmann A, Müller S, Schoser B, Hanisch FG, Rottbauer W, Blümcke I, von Hörsten S, Eichinger L, Schröder R. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. ACTA ACUST UNITED AC 2010; 133:2920-41. [PMID: 20833645 DOI: 10.1093/brain/awq222] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations of the human valosin-containing protein gene cause autosomal-dominant inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. We identified strumpellin as a novel valosin-containing protein binding partner. Strumpellin mutations have been shown to cause hereditary spastic paraplegia. We demonstrate that strumpellin is a ubiquitously expressed protein present in cytosolic and endoplasmic reticulum cell fractions. Overexpression or ablation of wild-type strumpellin caused significantly reduced wound closure velocities in wound healing assays, whereas overexpression of the disease-causing strumpellin N471D mutant showed no functional effect. Strumpellin knockdown experiments in human neuroblastoma cells resulted in a dramatic reduction of axonal outgrowth. Knockdown studies in zebrafish revealed severe cardiac contractile dysfunction, tail curvature and impaired motility. The latter phenotype is due to a loss of central and peripheral motoneuron formation. These data imply a strumpellin loss-of-function pathogenesis in hereditary spastic paraplegia. In the human central nervous system strumpellin shows a presynaptic localization. We further identified strumpellin in pathological protein aggregates in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, various myofibrillar myopathies and in cortical neurons of a Huntington's disease mouse model. Beyond hereditary spastic paraplegia, our findings imply that mutant forms of strumpellin and valosin-containing protein may have a concerted pathogenic role in various protein aggregate diseases.
Collapse
Affiliation(s)
- Christoph S Clemen
- Institute of Biochemistry I, University of Cologne, Joseph-Stelzmann-Street 52, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Masino L, Nicastro G, Calder L, Vendruscolo M, Pastore A. Functional interactions as a survival strategy against abnormal aggregation. FASEB J 2010; 25:45-54. [PMID: 20810784 PMCID: PMC3005437 DOI: 10.1096/fj.10-161208] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the protein responsible for Spinocerebellar ataxia type 3, a polyglutamine expansion disease, represents one of such examples. Polyglutamine expansion is central for determining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated by its N-terminal Josephin domain. This work aims at identifying the regions that promote Josephin fibrillogenesis and rationalizing the mechanisms that protect Josephin and nonexpanded ataxin-3 from aberrant aggregation. Using different biophysical techniques, aggregation propensity predictions and rational design of amino acid substitutions, we show that Josephin has an intrinsic tendency to fibrillize under native conditions and that fibrillization is promoted by two solvent-exposed patches, which are also involved in recognition of natural substrates, such as ubiquitin. Indeed, designed mutations at these patches or substrate binding significantly reduce Josephin aggregation kinetics. Our results provide evidence that protein nonpathologic function can play an active role in preventing aberrant fibrillization and suggest the molecular mechanism whereby this occurs in ataxin-3.—Masino, L., Nicastro, G., Calder, L., Vendruscolo, M., Pastore, A. Functional interactions as a survival strategy against abnormal aggregation.
Collapse
Affiliation(s)
- Laura Masino
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
86
|
Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 2010; 6:e1001075. [PMID: 20865169 PMCID: PMC2928793 DOI: 10.1371/journal.pgen.1001075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022] Open
Abstract
The most common Rhodopsin (Rh) mutation associated with autosomal dominant retinitis pigmentosa (ADRP) in North America is the substitution of proline 23 by histidine (Rh(P23H)). Unlike the wild-type Rh, mutant Rh(P23H) exhibits folding defects and forms intracellular aggregates. The mechanisms responsible for the recognition and clearance of misfolded Rh(P23H) and their relevance to photoreceptor neuron (PN) degeneration are poorly understood. Folding-deficient membrane proteins are subjected to Endoplasmic Reticulum (ER) quality control, and we have recently shown that Rh(P23H) is a substrate of the ER-associated degradation (ERAD) effector VCP/ter94, a chaperone that extracts misfolded proteins from the ER (a process called retrotranslocation) and facilitates their proteasomal degradation. Here, we used Drosophila, in which Rh1(P37H) (the equivalent of mammalian Rh(P23H)) is expressed in PNs, and found that the endogenous Rh1 is required for Rh1(P37H) toxicity. Genetic inactivation of VCP increased the levels of misfolded Rh1(P37H) and further activated the Ire1/Xbp1 ER stress pathway in the Rh1(P37H) retina. Despite this, Rh1(P37H) flies with decreased VCP function displayed a potent suppression of retinal degeneration and blindness, indicating that VCP activity promotes neurodegeneration in the Rh1(P37H) retina. Pharmacological treatment of Rh1(P37H) flies with the VCP/ERAD inhibitor Eeyarestatin I or with the proteasome inhibitor MG132 also led to a strong suppression of retinal degeneration. Collectively, our findings raise the possibility that excessive retrotranslocation and/or degradation of visual pigment is a primary cause of PN degeneration.
Collapse
Affiliation(s)
- Ana Griciuc
- Department of Protein Science, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Neuherberg, Germany
| | - Liviu Aron
- Department of Molecular Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Michel J. Roux
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Angela Giangrande
- Department of Cell and Developmental Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Marius Ueffing
- Department of Protein Science, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
87
|
Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep 2010; 11:479-85. [PMID: 20414249 DOI: 10.1038/embor.2010.49] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 03/11/2010] [Accepted: 03/17/2010] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-selective chaperone p97 is involved in major proteolytic pathways of eukaryotic cells and has been implicated in several human proteinopathies. Moreover, mutations in p97 cause the disorder inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD). The molecular basis underlying impaired degradation and pathological aggregation of ubiquitinated proteins in IBMPFD is unknown. Here, we identify perturbed co-factor binding as a common defect of IBMPFD-causing mutant p97. We show that IBMPFD mutations induce conformational changes in the p97 N domain, the main binding site for regulatory co-factors. Consistently, mutant p97 proteins exhibit strongly altered co-factor interactions. Specifically, binding of the ubiquitin ligase E4B is reduced, whereas binding of ataxin 3 is enhanced, thus resembling the accumulation of mutant ataxin 3 on p97 in spinocerebellar ataxia type 3. Our results suggest that imbalanced co-factor binding to p97 is a key pathological feature of IBMPFD and potentially of other proteinopathies involving p97.
Collapse
|
88
|
Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nóbrega C, Brouillet E, Hantraye P, Pedroso de Lima MC, Déglon N, de Almeida LP. Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 2010; 19:2380-94. [PMID: 20308049 DOI: 10.1093/hmg/ddq111] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) is a fatal, autosomal dominant disorder caused by a cytosine-adenine-guanine expansion in the coding region of the MJD1 gene. RNA interference has potential as a therapeutic approach but raises the issue of the role of wild-type ataxin-3 (WT ATX3) in MJD and of whether the expression of the wild-type protein must be maintained. To address this issue, we both overexpressed and silenced WT ATX3 in a rat model of MJD. We showed that (i) overexpression of WT ATX3 did not protect against MJD pathology, (ii) knockdown of WT ATX3 did not aggravate MJD pathology and that (iii) non-allele-specific silencing of ataxin-3 strongly reduced neuropathology in a rat model of MJD. Our findings indicate that therapeutic strategies involving non-allele-specific silencing to treat MJD patients may be safe and effective.
Collapse
Affiliation(s)
- Sandro Alves
- Center for Neurosciences & Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Deubiquitination is a crucial mechanism in ubiquitin-mediated signalling networks. The importance of Dubs (deubiquitinating enzymes) as regulators of diverse cellular processes is becoming ever clearer as new roles are elucidated and new pathways are shown to be affected by this mechanism. Recent work, reviewed in the present paper, provides new perspective on the widening influence of Dubs and a new tool to focus studies of not only Dub interactions, but also potentially many more cellular systems.
Collapse
|
90
|
Griciuc A, Aron L, Piccoli G, Ueffing M. Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:424-34. [PMID: 20097236 DOI: 10.1016/j.bbamcr.2010.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/29/2009] [Accepted: 01/15/2010] [Indexed: 11/15/2022]
Abstract
Dominant mutations in the visual pigment Rhodopsin (Rh) cause retinitis pigmentosa (RP) characterized by progressive blindness and retinal degeneration. The most common Rh mutation, Rh(P23H) forms aggregates in the endoplasmic reticulum (ER) and impairs the proteasome; however, the mechanisms linking Rh aggregate formation to proteasome dysfunction and photoreceptor cell loss remain unclear. Using mammalian cell cultures, we provide the first evidence that misfolded Rh(P23H) is a substrate of the ERAD effector VCP, an ATP-dependent chaperone that extracts misfolded proteins from the ER and escorts them for proteasomal degradation. VCP co-localizes with misfolded Rh(P23H) in retinal cells and requires functional N-terminal and D1 ATPase domains to form a complex with Rh(P23H) aggregates. Furthermore, VCP uses its D2 ATPase activity to promote Rh(P23H) aggregate retrotranslocation and proteasomal delivery. Our results raise the possibility that modulation of VCP and ERAD activity might have potential therapeutic significance for RP.
Collapse
Affiliation(s)
- Ana Griciuc
- Department of Protein Science, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
91
|
Melzer N, Villmann C, Becker K, Harvey K, Harvey RJ, Vogel N, Kluck CJ, Kneussel M, Becker CM. Multifunctional basic motif in the glycine receptor intracellular domain induces subunit-specific sorting. J Biol Chem 2009; 285:3730-3739. [PMID: 19959465 DOI: 10.1074/jbc.m109.030460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated ion channel that mediates fast synaptic inhibition in the vertebrate central nervous system. As a member of the family of Cys-loop receptors, it assembles from five homologous subunits (GlyRalpha1-4 and -beta). Each subunit contains an extracellular ligand binding domain, four transmembrane domains (TM), and an intracellular domain, formed by the loop connecting TM3 and TM4 (TM3-4 loop). The TM3-4 loops of the subunits GlyRalpha1 and -alpha3 harbor a conserved basic motif, which is part of a potential nuclear localization signal. When tested for functionality by live cell imaging of green fluorescent protein and beta-galactosidase-tagged domain constructs, the TM3-4 loops of GlyRalpha1 and -alpha3, but not of GlyRalpha2 and -beta, exhibited nuclear sorting activity. Subunit specificity may be attributed to slight amino acid alterations in the basic motif. In yeast two-hybrid screening and GST pulldown assays, karyopherin alpha3 and alpha4 were found to interact with the TM3-4 loop, providing a molecular mechanism for the observed intracellular trafficking. These results indicate that the multifunctional basic motif of the TM3-4 loop is capable of mediating a karyopherin-dependent intracellular sorting of full-length GlyRs.
Collapse
Affiliation(s)
- Nima Melzer
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Carmen Villmann
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Kristina Becker
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Kirsten Harvey
- the Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, United Kingdom, and
| | - Robert J Harvey
- the Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, United Kingdom, and
| | - Nico Vogel
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph J Kluck
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Matthias Kneussel
- the Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Hamburg 20251, Germany
| | - Cord-Michael Becker
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
92
|
Mori-Konya C, Kato N, Maeda R, Yasuda K, Higashimae N, Noguchi M, Koike M, Kimura Y, Ohizumi H, Hori S, Kakizuka A. p97/valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation. Genes Cells 2009; 14:483-97. [PMID: 19335618 DOI: 10.1111/j.1365-2443.2009.01286.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p97/valosin-containing protein (VCP) is a member of the AAA family proteins, which plays various important roles in cells by using its ATPase activity. But mechanism of regulating its ATPase activity is mostly unknown. We report here that VCP is highly modified throughout the protein via acetylation and phosphorylation. In addition to six previously identified phosphorylation sites, we identified at least 14 serines, 14 threonines, 6 tyrosines and 22 lysines as potential modification sites. Interestingly, these sites included Lys251 and Lys524, which are very critical for the ATP binding in Walker A motif of D1 and D2 domains, respectively. It is notable that 16 sites are in the N-terminal region and 16 sites are clustered in D2alpha domain (from Pro646 to Gly765). Indeed, amino acid substitution of Lys696 and Thr761 profoundly affect VCP ATPase activities. From these results, we propose that D2alpha domain acts as a VCP ATPase Regulatory domain or "VAR domain". VCP modifications including those in this VAR domain may endorse adaptive and multiple functions to VCP in different cell conditions such as in the cell cycle and with abnormal protein accumulation.
Collapse
Affiliation(s)
- Chiho Mori-Konya
- The Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies and Solution Oriented Research for Science and Technology (JST), Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Jung J, Xu K, Lessing D, Bonini NM. Preventing Ataxin-3 protein cleavage mitigates degeneration in a Drosophila model of SCA3. Hum Mol Genet 2009; 18:4843-52. [PMID: 19783548 PMCID: PMC2778376 DOI: 10.1093/hmg/ddp456] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein cleavage is a common feature in human neurodegenerative disease. Ataxin-3 protein with an expanded polyglutamine (polyQ) repeat causes spinocerebellar ataxia type-3 (SCA3), also called Machado–Joseph disease, and is cleaved in mammalian cells, transgenic mice and SCA3 patient brain tissue. However, the pathological significance of Ataxin-3 cleavage has not been carefully examined. To gain insight into the significance of Ataxin-3 cleavage, we developed a Drosophila SL2 cell-based model as well as transgenic fly models. Our data indicate that Ataxin-3 protein cleavage is conserved in the fly and may be caspase-dependent as reported previously. Importantly, comparison of flies expressing either wild-type or caspase-site mutant proteins indicates that Ataxin-3 cleavage enhances neuronal loss in vivo. This genetic in vivo confirmation of the pathological role of Ataxin-3 cleavage indicates that therapies targeting Ataxin-3 cleavage might slow disease progression in SCA3 patients.
Collapse
Affiliation(s)
- Joonil Jung
- Department of Biology and University of Pennsylvania
| | - Kexiang Xu
- Department of Biology and University of Pennsylvania
| | - Derek Lessing
- Department of Biology and University of Pennsylvania
- Howard Hughes Medical Institute, Philadelphila, PA 19104-6018, USA
| | - Nancy M. Bonini
- Department of Biology and University of Pennsylvania
- Howard Hughes Medical Institute, Philadelphila, PA 19104-6018, USA
- To whom correspondence should be addressed at: Department of Biology, University of Pennsylvania, Howard Hughes Medical Institute, Philadelphia, PA 19104-6018, USA. Tel: +1 2155739267; Fax: +1 2155735754;
| |
Collapse
|
94
|
Mazzucchelli S, De Palma A, Riva M, D'Urzo A, Pozzi C, Pastori V, Comelli F, Fusi P, Vanoni M, Tortora P, Mauri P, Regonesi ME. Proteomic and biochemical analyses unveil tight interaction of ataxin-3 with tubulin. Int J Biochem Cell Biol 2009; 41:2485-92. [PMID: 19666135 DOI: 10.1016/j.biocel.2009.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/29/2009] [Accepted: 08/01/2009] [Indexed: 10/20/2022]
Abstract
Ataxin-3 consists of an N-terminal globular Josephin domain and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers an inherited neurodegenerative disorder, spinocerebellar ataxia type 3, when its length exceeds a critical threshold. The pathology results from protein misfolding and intracellular accumulation of fibrillar amyloid-like aggregates. Plenty of work has been carried out to elucidate the protein's physiological role(s), which has shown that ataxin-3 is multifunctional; it acts as a transcriptional repressor, and also has polyubiquitin-binding/ubiquitin-hydrolase activity. In addition, a recent report shows that it participates in sorting misfolded protein to aggresomes, close to the microtubule-organizing center. Since a thorough understanding of the protein's physiological role(s) requires the identification of all the molecular partners interacting with ataxin-3, we pursued this goal by taking advantage of two-dimensional chromatography coupled to tandem mass spectrometry. We found that different ataxin-3 constructs, including the sole Josephin domain, bound alpha- and beta-tubulin from soluble rat brain extracts. Coimmunoprecipitation experiments confirmed this interaction. Also, normal ataxin-3 overexpressed in COS7 cultured cells partially colocalized with microtubules, whereas an expanded variant only occasionally did so, probably due to aggregation. Furthermore, by surface plasmon resonance we determined a dissociation constant of 50-70nM between ataxin-3 and tubulin dimer, which strongly supports the hypothesis of a direct interaction of this protein with microtubules in vivo. These findings suggest an involvement of ataxin-3 in directing aggregated protein to aggresomes, and shed light on the mode of interaction among the different molecular partners participating in the process.
Collapse
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, I-20126 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ying Z, Wang H, Fan H, Zhu X, Zhou J, Fei E, Wang G. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum Mol Genet 2009; 18:4268-81. [PMID: 19661182 DOI: 10.1093/hmg/ddp380] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) and ataxin-3 are two neurodegenerative disease proteins in association with familial amyotrophic lateral sclerosis and Machado-Joseph disease/spinocerebellar ataxia type 3. Both normal and mutant types of SOD1 and ataxin-3 are degraded by the proteasome. It was recently reported that these two proteins are associated with the endoplasmic reticulum (ER). Mammalian gp78 is an E3 ubiquitin ligase involved in ER-associated degradation (ERAD). Here, we show that gp78 interacts with both SOD1 and ataxin-3. Overexpression of gp78 promotes the ubiquitination and degradation of these two proteins, whereas knockdown of gp78 stabilizes them. Moreover, gp78 represses aggregate formation of mutant SOD1 and protect cells against mutant SOD1-induced cell death. Furthermore, gp78 is increased in cells transfected with these two mutant proteins as well as in ALS mice. Thus, our results suggest that gp78 functions in the regulation of SOD1 and ataxin-3 to target them for ERAD.
Collapse
Affiliation(s)
- Zheng Ying
- Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
96
|
ATX-3, CDC-48 and UBXN-5: a new trimolecular complex in Caenorhabditis elegans. Biochem Biophys Res Commun 2009; 386:575-81. [PMID: 19545544 DOI: 10.1016/j.bbrc.2009.06.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/22/2022]
Abstract
Ataxin-3 is the protein involved in Machado-Joseph disease, a neurodegenerative disorder caused by a polyglutamine expansion. Ataxin-3 binds ubiquitylated proteins and acts as a deubiquitylating enzyme in vitro. It was previously proposed that ataxin-3, along with the VCP/p97 protein, escorts ubiquitylated substrates for proteasomal degradation, although other players of this escort complex were not identified yet. In this work, we show that the Caenorhabditis elegans ataxin-3 protein (ATX-3) interacts with both VCP/p97 worm homologs, CDC-48.1 and CDC-48.2 and we map the interaction domains. We describe a motility defect in both ATX-3 and CDC-48.1 mutants and, in addition, we identify a new protein interactor, UBXN-5, potentially an adaptor of the CDC-48-ATX-3 escort complex. CDC-48 binds to both ATX-3 and UBXN-5 in a non-competitive manner, suggesting the formation of a trimolecular complex. Both CDC-48 and ATX-3, but not UBXN-5, were able to bind K-48 polyubiquitin chains, the standard signal for proteasomal degradation. Additionally, we describe several common interactors of ATX-3 and UBXN-5, some of which can be in vivo targets of this complex.
Collapse
|
97
|
Morreale G, Conforti L, Coadwell J, Wilbrey AL, Coleman MP. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J 2009; 276:1208-20. [PMID: 19175675 DOI: 10.1111/j.1742-4658.2008.06858.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S. cerevisiae. A conserved structural motif for cofactor binding would therefore be expected. We report a VCP-binding motif (VBM) shared by mammalian ubiquitin ligase E4b (Ube4b)-ubiquitin fusion degradation protein 2a (Ufd2a), hydroxymethylglutaryl reductase degradation protein 1 (Hrd1)-synoviolin and ataxin 3, and a related sequence in M(r) 78,000 glycoprotein-Amfr with slightly different binding properties, and show that Ube4b and Hrd1 compete for binding to the N-terminal domain of VCP. Each of these proteins is involved in ERAD, but none has an S. cerevisiae homologue containing the VBM. Some other invertebrate model organisms also lack the VBM in one or more of these proteins, in contrast to vertebrates, where the VBM is widely conserved. Thus, consistent with their importance in ERAD, evolution has developed at least two ways to bring these proteins together with VCP-Cdc48p. However, the differing molecular architecture of VCP-Cdc48p complexes indicates a key point of divergence in the molecular details of ERAD mechanisms.
Collapse
Affiliation(s)
- Giacomo Morreale
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, UK.
| | | | | | | | | |
Collapse
|
98
|
Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, Mazzola F, Di Stefano M, Hartley R, Babetto E, Smith T, Gilley J, Billington RA, Genazzani AA, Ribchester RR, Magni G, Coleman M. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. ACTA ACUST UNITED AC 2009; 184:491-500. [PMID: 19237596 PMCID: PMC2654131 DOI: 10.1083/jcb.200807175] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration.
Collapse
Affiliation(s)
- Laura Conforti
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Vitalis A, Wang X, Pappu RV. Atomistic simulations of the effects of polyglutamine chain length and solvent quality on conformational equilibria and spontaneous homodimerization. J Mol Biol 2008; 384:279-97. [PMID: 18824003 PMCID: PMC2847503 DOI: 10.1016/j.jmb.2008.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 09/01/2008] [Accepted: 09/10/2008] [Indexed: 12/28/2022]
Abstract
Aggregation of expanded polyglutamine tracts is associated with nine different neurodegenerative diseases, including Huntington's disease. Experiments and computer simulations have demonstrated that monomeric forms of polyglutamine molecules sample heterogeneous sets of collapsed structures in water. The current work focuses on a mechanistic characterization of polyglutamine homodimerization as a function of chain length and temperature. These studies were carried out using molecular simulations based on a recently developed continuum solvation model that was designed for studying conformational and binding equilibria of intrinsically disordered molecules such as polyglutamine systems. The main results are as follows: Polyglutamine molecules form disordered, collapsed globules in aqueous solution. These molecules spontaneously associate at conditions approaching those of typical in vitro experiments for chains of length N>/=15. The spontaneity of these homotypic associations increases with increasing chain length and decreases with increasing temperature. Similar and generic driving forces govern both collapse and spontaneous homodimerization of polyglutamine in aqueous milieus. Collapse and dimerization maximize self-interactions and reduce the interface between polyglutamine molecules and the surrounding solvent. Other than these generic considerations, there do not appear to be any specific structural requirements for either chain collapse or chain dimerization; that is, both collapse and dimerization are nonspecific in that disordered globules form disordered dimers. In fact, it is shown that the driving force for intermolecular associations is governed by spontaneous conformational fluctuations within monomeric polyglutamine. These results suggest that polyglutamine aggregation is unlikely to follow a homogeneous nucleation mechanism with the monomer as the critical nucleus. Instead, the results support the formation of disordered, non-beta-sheet-like soluble molten oligomers as early intermediates--a proposal that is congruent with recent experimental data.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biomedical Engineering and Center for Computational Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | | | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Computational Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|
100
|
Duennwald ML, Lindquist S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 2008; 22:3308-19. [PMID: 19015277 DOI: 10.1101/gad.1673408] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein misfolding, whether caused by aging, environmental factors, or genetic mutations, is a common basis for neurodegenerative diseases. The misfolding of proteins with abnormally long polyglutamine (polyQ) expansions causes several neurodegenerative disorders, such as Huntington's disease (HD). Although many cellular pathways have been documented to be impaired in HD, the primary triggers of polyQ toxicity remain elusive. We report that yeast cells and neuron-like PC12 cells expressing polyQ-expanded huntingtin (htt) fragments display a surprisingly specific, immediate, and drastic defect in endoplasmic reticulum (ER)-associated degradation (ERAD). We further decipher the mechanistic basis for this defect in ERAD: the entrapment of the essential ERAD proteins Npl4, Ufd1, and p97 by polyQ-expanded htt fragments. In both yeast and mammalian neuron-like cells, overexpression of Npl4 and Ufd1 ameliorates polyQ toxicity. Our results establish that impaired ER protein homeostasis is a broad and highly conserved contributor to polyQ toxicity in yeast, in PC12 cells, and, importantly, in striatal cells expressing full-length polyQ-expanded huntingtin.
Collapse
Affiliation(s)
- Martin L Duennwald
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|