51
|
A host susceptibility gene, DR1, facilitates influenza A virus replication by suppressing host innate immunity and enhancing viral RNA replication. J Virol 2015; 89:3671-82. [PMID: 25589657 DOI: 10.1128/jvi.03610-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) depends on cellular factors to complete its replication cycle; thus, investigation of the factors utilized by IAV may facilitate antiviral drug development. To this end, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNA interference (RNAi) screen. Knockdown (KD) of DR1 resulted in reductions of viral RNA and protein production, demonstrating that DR1 acts as a positive host factor in IAV replication. Genome-wide transcriptomic analysis showed that there was a strong induction of interferon-stimulated gene (ISG) expression after prolonged DR1 KD. We found that beta interferon (IFN-β) was induced by DR1 KD, thereby activating the JAK-STAT pathway to turn on ISG expression, which led to a strong inhibition of IAV replication. This result suggests that DR1 in normal cells suppresses IFN induction, probably to prevent undesired cytokine production, but that this suppression may create a milieu that favors IAV replication once cells are infected. Furthermore, biochemical assays of viral RNA replication showed that DR1 KD suppressed viral RNA replication. We also showed that DR1 associated with all three subunits of the viral RNA-dependent RNA polymerase (RdRp) complex, indicating that DR1 may interact with individual components of the viral RdRp complex to enhance viral RNA replication. Thus, DR1 may be considered a novel host susceptibility gene for IAV replication via a dual mechanism, not only suppressing the host defense to indirectly favor IAV replication but also directly facilitating viral RNA replication. IMPORTANCE Investigations of virus-host interactions involved in influenza A virus (IAV) replication are important for understanding viral pathogenesis and host defenses, which may manipulate influenza virus infection or prevent the emergence of drug resistance caused by a high error rate during viral RNA replication. For this purpose, a cellular transcriptional repressor, DR1, was identified from a genome-wide RNAi screen as a positive regulator in IAV replication. In the current studies, we showed that DR1 suppressed the gene expression of a large set of host innate immunity genes, which indirectly facilitated IAV replication in the event of IAV infection. Besides this scenario, DR1 also directly enhanced the viral RdRp activity, likely through associating with individual components of the viral RdRp complex. Thus, DR1 represents a novel host susceptibility gene for IAV replication via multiple functions, not only suppressing the host defense but also enhancing viral RNA replication. DR1 may be a potential target for drug development against influenza virus infection.
Collapse
|
52
|
Abstract
Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.
Collapse
|
53
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
54
|
GASPARINI R, AMICIZIA D, LAI PL, BRAGAZZI NL, PANATTO D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2014; 55:69-85. [PMID: 25902573 PMCID: PMC4718311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 12/01/2022]
Abstract
Influenza is a contagious respiratory acute viral disease characterized by a short incubation period, high fever and respiratory and systemic symptoms. The burden of influenza is very heavy. Indeed, the World Health Organization (WHO) estimates that annual epidemics affect 5-15% of the world's population, causing up to 4-5 million severe cases and from 250,000 to 500,000 deaths. In order to design anti-influenza molecules and compounds, it is important to understand the complex replication cycle of the influenza virus. Replication is achieved through various stages. First, the virus must engage the sialic acid receptors present on the free surface of the cells of the respiratory tract. The virus can then enter the cells by different routes (clathrin-mediated endocytosis or CME, caveolae-dependent endocytosis or CDE, clathrin-caveolae-independent endocytosis, or macropinocytosis). CME is the most usual pathway; the virus is internalized into an endosomal compartment, from which it must emerge in order to release its nucleic acid into the cytosol. The ribonucleoprotein must then reach the nucleus in order to begin the process of translation of its genes and to transcribe and replicate its nucleic acid. Subsequently, the RNA segments, surrounded by the nucleoproteins, must migrate to the cell membrane in order to enable viral assembly. Finally, the virus must be freed to invade other cells of the respiratory tract. All this is achieved through a synchronized action of molecules that perform multiple enzymatic and catalytic reactions, currently known only in part, and for which many inhibitory or competitive molecules have been studied. Some of these studies have led to the development of drugs that have been approved, such as Amantadine, Rimantadine, Oseltamivir, Zanamivir, Peramivir, Laninamivir, Ribavirin and Arbidol. This review focuses on the influenza life-cycle and on the currently available drugs, while potential antiviral compounds for the prevention and treatment of influenza are considered in the subsequent review.
Collapse
Affiliation(s)
- R. GASPARINI
- Department of Health Sciences of Genoa University, Genoa, Italy Inter-University Centre for Research on Influenza and Other Transmitted Diseases (CIRI-IT)
| | | | | | | | | |
Collapse
|
55
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
56
|
Differential host cell gene expression and regulation of cell cycle progression by nonstructural protein 11 of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:430508. [PMID: 24719865 PMCID: PMC3955671 DOI: 10.1155/2014/430508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/07/2014] [Indexed: 02/08/2023]
Abstract
Nonstructural protein 11 (nsp11) of porcine reproductive and respiratory syndrome virus (PRRSV) is a viral endoribonuclease with an unknown function. The regulation of cellular gene expression by nsp11 was examined by RNA microarrays using MARC-nsp11 cells constitutively expressing nsp11. In these cells, the interferon-β, interferon regulatory factor 3, and nuclear factor-κB activities were suppressed compared to those of parental cells, suggesting that nsp11 might serve as a viral interferon antagonist. Differential cellular transcriptome was examined using Affymetrix exon chips representing 28,536 transcripts, and after statistical analyses 66 cellular genes were shown to be upregulated and 104 genes were downregulated by nsp11. These genes were grouped into 5 major signaling pathways according to their functional relations: histone-related, cell cycle and DNA replication, mitogen activated protein kinase signaling, complement, and ubiquitin-proteasome pathways. Of these, the modulation of cell cycle by nsp11 was further investigated since many of the regulated genes fell in this particular pathway. Flow cytometry showed that nsp11 caused the delay of cell cycle progression at the S phase and the BrdU staining confirmed the cell cycle arrest in nsp11-expressing cells. The study provides insights into the understanding of specific cellular responses to nsp11 during PRRSV infection.
Collapse
|
57
|
You Z, De Falco M, Kamada K, Pisani FM, Masai H. The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase α-primase and stimulate its ability to synthesize RNA primers. PLoS One 2013; 8:e72408. [PMID: 23977294 PMCID: PMC3748026 DOI: 10.1371/journal.pone.0072408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 07/16/2013] [Indexed: 01/14/2023] Open
Abstract
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
58
|
Turrell L, Lyall JW, Tiley LS, Fodor E, Vreede FT. The role and assembly mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. Nat Commun 2013; 4:1591. [PMID: 23481399 PMCID: PMC4168216 DOI: 10.1038/ncomms2589] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/08/2013] [Indexed: 12/04/2022] Open
Abstract
The nucleoprotein of negative strand RNA viruses forms a major component of the ribonucleoprotein complex that is responsible for viral transcription and replication. However, the precise role of nucleoprotein in viral RNA transcription and replication is not clear. Here we show that nucleoprotein of influenza A virus is entirely dispensable for replication and transcription of short viral RNA-like templates in vivo, suggesting that nucleoprotein represents an elongation factor for the viral RNA polymerase. We also find that the recruitment of nucleoprotein to nascent ribonucleoprotein complexes during replication of full length viral genes is mediated through nucleoprotein-nucleoprotein homo-oligomerisation in a “tail loop-first” orientation and is independent of RNA binding. This work demonstrates that nucleoprotein does not regulate the initiation and termination of transcription and replication by the viral polymerase in vivo and provides new mechanistic insights into the assembly and regulation of viral ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Lauren Turrell
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
59
|
Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 2012; 87:110-23. [PMID: 23055567 DOI: 10.1128/jvi.00939-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription and replication of the influenza A virus RNA genome occur in the nucleus through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. Cellular factors that associate with the viral polymerase complex play important roles in these processes. To look for cellular factors that could associate with influenza A virus PA protein, we have carried out a yeast two-hybrid screen using a HeLa cell cDNA library. We identified six cellular proteins that may interact with PA. We focused our study on one of the new PA-interacting proteins, HAX1, a protein with antiapoptotic function. By using glutathione S-transferase pulldown and coimmunoprecipitation assays, we demonstrate that HAX1 specifically interacts with PA in vitro and in vivo and that HAX1 interacts with the nuclear localization signal domain of PA. Nuclear accumulation of PA was increased in HAX1-knockdown cells, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can impede nuclear transport of PA. As a consequence, knockdown of HAX1 resulted in a significant increase in virus yield and polymerase activity in a minigenome assay, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can inhibit influenza A virus propagation. Together, these results not only provide insight into the mechanism underlying nuclear transport of PA but also identify an intrinsic host factor that restricts influenza A virus infection.
Collapse
|
60
|
Partial and full PCR-based reverse genetics strategy for influenza viruses. PLoS One 2012; 7:e46378. [PMID: 23029501 PMCID: PMC3460856 DOI: 10.1371/journal.pone.0046378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 12/30/2022] Open
Abstract
Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids.
Collapse
|
61
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86:9122-33. [PMID: 22696656 DOI: 10.1128/jvi.00789-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
62
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012. [PMID: 22696656 DOI: 10.1128/jv1.00789.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
63
|
Modeling the intracellular dynamics of influenza virus replication to understand the control of viral RNA synthesis. J Virol 2012; 86:7806-17. [PMID: 22593159 DOI: 10.1128/jvi.00080-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation.
Collapse
|
64
|
Pampeno C, Hurtado A, Meruelo D. ATM kinase is activated by sindbis viral vector infection. Virus Res 2012; 166:97-102. [PMID: 22475743 DOI: 10.1016/j.virusres.2012.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/27/2022]
Abstract
Sindbis virus is a prototypic member of the Alphavirus genus, Togaviridae family. Sindbis replication results in cellular cytotoxicity, a feature that has been exploited by our laboratory for treatment of in vivo tumors. Understanding the interactions between Sindbis vectors and the host cell can lead to better virus production and increased efficacy of gene therapy vectors. Here we present studies investigating a possible cellular response to genotoxic effects of Sindbis vector infection. The Ataxia Telangiectasia Mutated (ATM) kinase, a sentinel against genomic and cellular stress, was activated by Sindbis vector infection at 3h post infection. ATM substrates, Mcm3 and the γH2AX histone, were subsequently phosphorylated, however, substrates involved with checkpoint arrest of DNA replication, p53, Chk1 and Chk2, were not differentially phosphorylated compared with uninfected cells. The ATM response suggests nuclear pertubation, resulting from cessation of host protein synthesis, as an early event in Sindbis vector infection.
Collapse
Affiliation(s)
- Christine Pampeno
- Gene Therapy Center, Cancer Institute and Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
65
|
Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J Gen Virol 2012; 93:194-202. [PMID: 21918010 DOI: 10.1099/vir.0.033902-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucumber mosaic virus (CMV) RNAs were found to serve as cap donors for rice stripe virus (RSV) transcription initiation during their co-infection of Nicotiana benthamiana. The 5' end of CMV RNAs was cleaved preferentially at residues that had multiple-base complementarity to the 3' end of the RSV template. The length requirement for CMV capped primers to be suitable for elongation varied between 12 and 20 nt, and those of 12-16 nt were optimal for elongation and generated more CMV-RSV chimeric mRNA transcripts. The original cap donors that were cleaved from CMV RNAs were predominantly short (10-13 nt). However, the CMV capped RNA leaders that underwent long-distance elongation were found to contain up to five repetitions of additional AC dinucleotides. Sequence analysis revealed that these AC dinucleotides were used to increase the size of short cap donors in multiple prime-and-realign cycles. Each prime-and-realign cycle added an AC dinucleotide onto the capped RNA leaders; thus, the original cap donors were gradually converted to longer capped RNA leaders (of 12-20 nt). Interestingly, the original 10 nt (or 11 nt) cap donor cleaved from CMV RNA1/2 did not undergo direct extension; only capped RNA leaders that had been increased to ≥12 nt were used for direct elongation. These findings suggest that this repetitive priming and realignment may serve to convert short capped CMV RNA leaders into longer, more suitable sizes to render a more stabilized transcription complex for elongation during RSV transcription initiation.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianqi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, PR China
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
66
|
Molecular mechanisms of transcription and replication of the influenza A virus genome. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1151-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
67
|
Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 2011; 7:e1002397. [PMID: 22114566 PMCID: PMC3219729 DOI: 10.1371/journal.ppat.1002397] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 10/10/2011] [Indexed: 01/15/2023] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimeric complex responsible for viral genome transcription and replication in the nucleus of infected cells. We recently carried out a proteomic analysis of purified polymerase expressed in human cells and identified a number of polymerase-associated cellular proteins. Here we characterise the role of one such host factors, SFPQ/PSF, during virus infection. Down-regulation of SFPQ/PSF by silencing with two independent siRNAs reduced the virus yield by 2–5 log in low-multiplicity infections, while the replication of unrelated viruses as VSV or Adenovirus was almost unaffected. As the SFPQ/PSF protein is frequently associated to NonO/p54, we tested the potential implication of the latter in influenza virus replication. However, down-regulation of NonO/p54 by silencing with two independent siRNAs did not affect virus yields. Down-regulation of SFPQ/PSF by siRNA silencing led to a reduction and delay of influenza virus gene expression. Immunofluorescence analyses showed a good correlation between SFPQ/PSF and NP levels in infected cells. Analysis of virus RNA accumulation in silenced cells showed that production of mRNA, cRNA and vRNA is reduced by more than 5-fold but splicing is not affected. Likewise, the accumulation of viral mRNA in cicloheximide-treated cells was reduced by 3-fold. In contrast, down-regulation of SFPQ/PSF in a recombinant virus replicon system indicated that, while the accumulation of viral mRNA is reduced by 5-fold, vRNA levels are slightly increased. In vitro transcription of recombinant RNPs generated in SFPQ/PSF-silenced cells indicated a 4–5-fold reduction in polyadenylation but no alteration in cap snatching. These results indicate that SFPQ/PSF is a host factor essential for influenza virus transcription that increases the efficiency of viral mRNA polyadenylation and open the possibility to develop new antivirals targeting the accumulation of primary transcripts, a very early step during infection. The influenza A viruses cause annual epidemics and occasional pandemics of respiratory infections that may be life threatening. The viral genome contains 8 RNA molecules forming ribonucleoproteins that replicate and transcribe in the nucleus of infected cells. Influenza viruses are intracellular parasites that need the host cell machinery to replicate. To better understand this virus-cell interplay we purified the viral RNA polymerase expressed in human cells and identified several specifically associated cellular proteins. Here we characterise the role of one of them, the proline-glutamine rich splicing factor (SFPQ/PSF). Down-regulation of SFPQ/PSF indicated that it is essential for virus multiplication. Specifically, the accumulation of messenger and genomic virus-specific RNAs was reduced by SFPQ/PSF silencing in infected cells. Furthermore, transcription of parental ribonucleoproteins was affected by SFPQ/PSF down-regulation. The consequences of silencing SFPQ/PSF on the transcription and replication of a viral recombinant replicon indicated that it is required for virus transcription but not for virus RNA replication. In vitro transcription experiments indicated that SFPQ/PSF increases the efficiency of virus mRNA polyadenylation. This is the first description of a cellular factor essential for influenza virus transcription and opens the possibility to identify inhibitors that target this host-virus interaction and block virus gene expression.
Collapse
Affiliation(s)
- Sara Landeras-Bueno
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Núria Jorba
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Maite Pérez-Cidoncha
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Bunyola, Mallorca, Spain
- * E-mail:
| |
Collapse
|
68
|
Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J Virol 2011; 86:1750-7. [PMID: 22090127 DOI: 10.1128/jvi.06203-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.
Collapse
|
69
|
Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol 2011; 85:13010-8. [PMID: 21994455 DOI: 10.1128/jvi.02651-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.
Collapse
|
70
|
Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P, Gutierrez S, Nieto A. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell Microbiol 2011; 13:1894-906. [PMID: 21899694 DOI: 10.1111/j.1462-5822.2011.01679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influenza virus establishes close functional and structural connections with the nucleus of the infected cell. Thus, viral ribonucleoproteins (RNPs) are closely bound to chromatin components and the main constituent of viral RNPs, the nucleoprotein (NP) protein, interacts with histone tails. Using a yeast two-hybrid screening, we previously found that the PA influenza virus polymerase subunit interacts with the CHD6 protein, a member of the CHD family of chromatin remodelers. Here we show that CHD6 also interacts with the viral polymerase complex and colocalizes with viral RNPs in the infected cells. To study the relationships between RNPs, chromatin and CHD6, we have analysed whether NP and CHD6 binds to peptides representing trimethylated lysines of histone 3 tails that mark transcriptionally active or inactive chromatin. Upon infection, NP binds to marks of repressed chromatin and, interestingly an important recruitment of CHD6 to these heterochromatin marks occurs in this situation. Silencing experiments indicate that CHD6 acts as a negative modulator of influenza virus replication. Hence, the CHD6 association with inactive chromatin could be part of a process where the influenza virus triggers modifications of chromatin-associated proteins that could contribute to the pathogenic events used by the virus to induce host cell shut-off.
Collapse
Affiliation(s)
- Roberto Alfonso
- Centro Nacional de Biotecnología. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
71
|
Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J Virol 2011; 85:8569-81. [PMID: 21715506 DOI: 10.1128/jvi.00496-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The trimeric RNA polymerase complex (3P, for PA-PB1-PB2) of influenza A virus (IAV) is an important viral determinant of pathogenicity and host range restriction. Specific interactions of the polymerase complex with host proteins may be determining factors in both of these characteristics and play important roles in the viral life cycle. To investigate this question, we performed a comprehensive proteomic analysis of human host proteins associated with the polymerase of the well-characterized H5N1 Vietnam/1203/04 isolate. We identified over 400 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), of which over 300 were found to bind to the PA subunit alone. The most intriguing and novel finding was the large number of mitochondrial proteins (∼20%) that associated with the PA subunit. These proteins mediate molecular transport across the mitochondrial membrane or regulate membrane potential and may in concert with the identified mitochondrion-associated apoptosis inducing factor (AIFM1) have roles in the induction of apoptosis upon association with PA. Additionally, we identified host factors that associated with the PA-PB1 (68 proteins) and/or the 3P complex (34 proteins) including proteins that have roles in innate antiviral signaling (e.g., ZAPS or HaxI) or are cellular RNA polymerase accessory factors (e.g., polymerase I transcript release factor [PTRF] or Supt5H). IAV strain-specific host factor binding to the polymerase was not observed in our analysis. Overall, this study has shed light into the complex contributions of the IAV polymerase to host cell pathogenicity and allows for direct investigations into the biological significance of these newly described interactions.
Collapse
|
72
|
Replication-coupled and host factor-mediated encapsidation of the influenza virus genome by viral nucleoprotein. J Virol 2011; 85:6197-204. [PMID: 21507964 DOI: 10.1128/jvi.00277-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The influenza virus RNA-dependent RNA polymerase is capable of initiating replication but mainly catalyzes abortive RNA synthesis in the absence of viral and host regulatory factors. Previously, we reported that IREF-1/minichromosome maintenance (MCM) complex stimulates a de novo initiated replication reaction by stabilizing an initiated replication complex through scaffolding between the viral polymerase and nascent cRNA to which MCM binds. In addition, several lines of genetic and biochemical evidence suggest that viral nucleoprotein (NP) is involved in successful replication. Here, using cell-free systems, we have shown the precise stimulatory mechanism of virus genome replication by NP. Stepwise cell-free replication reactions revealed that exogenously added NP free of RNA activates the viral polymerase during promoter escape while it is incapable of encapsidating the nascent cRNA. However, we found that a previously identified cellular protein, RAF-2p48/NPI-5/UAP56, facilitates replication reaction-coupled encapsidation as an NP molecular chaperone. These findings demonstrate that replication of the virus genome is followed by its encapsidation by NP in collaboration with its chaperone.
Collapse
|
73
|
Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol 2011; 8:207-15. [PMID: 21358279 DOI: 10.4161/rna.8.2.14513] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The influenza A viruses are the causative agents of respiratory disease that occurs as yearly epidemics and occasional pandemics. These viruses are endemic in wild avian species and can sometimes break the species barrier to infect and generate new virus lineages in humans. The influenza A virus genome consists of eight single-stranded, negative-polarity RNAs that form ribonucleoprotein complexes by association to the RNA polymerase and the nucleoprotein. In this review we focus on the structure of this RNA-synthesis machines and the included RNA polymerase, and on the mechanisms by which they express their genetic information as mRNAs and generate progeny ribonucleoproteins that will become incorporated into new infectious virions. New structural, biochemical and genetic data are rapidly accumulating in this very active area of research. We discuss these results and attempt to integrate the information into structural and functional models that may help the design of new experiments and further our knowledge on virus RNA replication and gene expression. This interplay between structural and functional data will eventually provide new targets for controlled attenuation or antiviral therapy.
Collapse
|
74
|
Base-pairing promotes leader selection to prime in vitro influenza genome transcription. Virology 2010; 409:17-26. [PMID: 21051068 DOI: 10.1016/j.virol.2010.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022]
Abstract
The requirements for alignment of capped leader sequences along the viral genome during influenza transcription initiation (cap-snatching) have long been an enigma. In this study, competition experiments using an in vitro transcription assay revealed that influenza virus transcriptase prefers leader sequences with base complementarity to the 3'-ultimate residues of the viral template, 10 or 11 nt from the 5' cap. Internal priming at the 3'-penultimate residue, as well as prime-and-realign was observed. The nucleotide identity immediately 5' of the base-pairing residues also affected cap donor usage. Application to the in vitro system of RNA molecules with increased base complementarity to the viral RNA template showed stronger reduction of globin RNA leader initiated influenza transcription compared to those with a single base-pairing possibility. Altogether the results indicated an optimal cap donor consensus sequence of (7m)G-(N)(7-8)-(A/U/G)-(A/U)-AGC-3'.
Collapse
|
75
|
Moncorgé O, Mura M, Barclay WS. Evidence for avian and human host cell factors that affect the activity of influenza virus polymerase. J Virol 2010; 84:9978-86. [PMID: 20631125 PMCID: PMC2937815 DOI: 10.1128/jvi.01134-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/07/2010] [Indexed: 01/01/2023] Open
Abstract
Typical avian influenza A viruses do not replicate efficiently in humans. The molecular basis of host range restriction and adaptation of avian influenza A viruses to a new host species is still not completely understood. Genetic determinants of host range adaptation have been found on the polymerase complex (PB1, PB2, and PA) as well as on the nucleoprotein (NP). These four viral proteins constitute the minimal set for transcription and replication of influenza viral RNA. It is widely documented that in human cells, avian-derived influenza A viral polymerase is poorly active, but despite extensive study, the reason for this blockade is not known. We monitored the activity of influenza A viral polymerases in heterokaryons formed between avian (DF1) and human (293T) cells. We have discovered that a positive factor present in avian cells enhances the activity of the avian influenza virus polymerase. We found no evidence for the existence of an inhibitory factor for avian virus polymerase in human cells, and we suggest, instead, that the restriction of avian influenza virus polymerases in human cells is the consequence of the absence or the low expression of a compatible positive cofactor. Finally, our results strongly suggest that the well-known adaptative mutation E627K on viral protein PB2 facilitates the ability of a human positive factor to enhance replication of influenza virus in human cells.
Collapse
Affiliation(s)
- Olivier Moncorgé
- Department of Virology, Division of Infectious Diseases, Imperial College London, Wright Fleming Institute, Norfolk Place, W2 1PG London, United Kingdom
| | - Manuela Mura
- Department of Virology, Division of Infectious Diseases, Imperial College London, Wright Fleming Institute, Norfolk Place, W2 1PG London, United Kingdom
| | - Wendy S. Barclay
- Department of Virology, Division of Infectious Diseases, Imperial College London, Wright Fleming Institute, Norfolk Place, W2 1PG London, United Kingdom
| |
Collapse
|
76
|
Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 2010; 7:427-39. [PMID: 20542247 DOI: 10.1016/j.chom.2010.05.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 11/20/2022]
Abstract
Influenza viruses cause epidemics and pandemics. Like all viruses, influenza viruses rely on the host cellular machinery to support their life cycle. Accordingly, identification of the host functions co-opted for viral replication is of interest to understand the mechanisms of the virus life cycle and to find new targets for the development of antiviral compounds. Among the various approaches used to explore host factor involvement in the influenza virus replication cycle, perhaps the most powerful is RNAi-based genome-wide screening, which has shed new light on the search for host factors involved in virus replication. In this review, we examine the cellular genes identified to date as important for influenza virus replication in genome-wide screens, assess pathways that were repeatedly identified in these studies, and discuss how these pathways might be involved in the individual steps of influenza virus replication, ultimately leading to a comprehensive understanding of the virus life cycle.
Collapse
|
77
|
Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. mBio 2010; 1. [PMID: 20842206 PMCID: PMC2934610 DOI: 10.1128/mbio.00204-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 12/31/2022] Open
Abstract
Evidence has recently accumulated suggesting that small noncoding RNAs, and particularly microRNAs, have the potential to strongly affect the replication and pathogenic potential of a range of human virus species. Here, we report the use of deep sequencing to comprehensively analyze small viral RNAs (18 to 27 nucleotides [nt]) produced during infection by influenza A virus. Although influenza A virus differs from most other RNA viruses in that it replicates its genome in the nucleus and is therefore exposed to the nuclear microRNA processing factors Drosha and DGCR8, we did not observe any microRNAs encoded by influenza virus genes. However, influenza virus infection did induce the expression of very high levels—over 100,000 copies per cell by 8 h postinfection—of a population of 18- to 27-nt small viral leader RNAs (leRNAs) that originated from the precise 5′ ends of all eight influenza virus genomic RNA (vRNA) segments. Like the vRNAs themselves, our data indicate that the leRNAs also bear a 5′-terminal triphosphate and are therefore not capable of functioning as microRNAs. Instead, the high-level production of leRNAs may imply a role in another aspect of the viral life cycle, such as regulation of the switch from viral mRNA transcription to genomic RNA synthesis. Influenza A virus is an important human pathogen that has the potential to give rise to serious pandemics. Here, we demonstrate that influenza A virus induces the expression of very high levels of small viral leader RNAs (leRNAs) within hours of infection. These RNAs are unusual in that they bear a 5′ triphosphate and originate from the very 5′ ends of the eight viral genomic RNA (vRNA) segments. Their high expression may imply an important role in the viral life cycle that could potentially serve as a novel target for antiviral drugs.
Collapse
|
78
|
[Function of influenza virus RNA polymerase based on structure]. Uirusu 2009; 59:1-11. [PMID: 19927983 DOI: 10.2222/jsv.59.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Studies using cell-free RNA synthesis systems and reverse genetics have been contributing to understanding of the molecular mechanism of replication and transcription of the influenza virus genome, which is the most essential process through the virus life cycle. Recently, it is noted that this mechanism is also involved in host range determination of the virus. In the light of the fact that viruses resistant to previously developed anti-influenza virus drugs emerge, establishment of a rational screening strategy of drugs for novel molecular targets is highly required. Further to clarify the detailed function of viral factors involved in replication and transcription of the virus genome and to devise anti-viral methods, determination of the 3D structures of viral factors should give a breakthrough. In this review, we summarize the recent accumulating information on the 3D structures of viral factors and discuss their function based on their structures.
Collapse
|
79
|
Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T. Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun 2009; 391:570-4. [PMID: 19932088 DOI: 10.1016/j.bbrc.2009.11.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022]
Abstract
The influenza virus RNA polymerase (RdRp) was purified from insect cells (around 0.2mg/l). The RdRp catalyzed all the biochemical reactions of influenza virus transcription and replication in vitro; dinucleotide ApG and globin mRNA-primed transcription, de novo initiation (replication), and polyadenylation. The optimal Mg concentration, pH and temperature were 8mM, 8.0 and 25 degrees C, respectively, which were slightly different from those measured for RdRp of virions. This system is a single-round transcription system. K(m) (microM) were 10.74+/-0.26 (GTP), 33.22+/-3.37 (ATP), 28.93+/-0.48 (CTP) and 22.01+/-1.48 (UTP), and V(max) (fmol nucleotide/pmol RdRp/min) were 2.40+/-0.032 (GTP), 1.95+/-0.17 (ATP), 2.07+/-0.17 (CTP), and 1.52+/-0.38 (UTP), which agreed with high mutation of influenza viruses.
Collapse
Affiliation(s)
- Shijian Zhang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, 411 Hefei Road, 200025 Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Jorba N, Coloma R, Ortín J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog 2009; 5:e1000462. [PMID: 19478885 PMCID: PMC2682650 DOI: 10.1371/journal.ppat.1000462] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/30/2009] [Indexed: 11/18/2022] Open
Abstract
The influenza A viruses genome comprises eight single-stranded RNA segments of negative polarity. Each one is included in a ribonucleoprotein particle (vRNP) containing the polymerase complex and a number of nucleoprotein (NP) monomers. Viral RNA replication proceeds by formation of a complementary RNP of positive polarity (cRNP) that serves as intermediate to generate many progeny vRNPs. Transcription initiation takes place by a cap-snatching mechanism whereby the polymerase steals a cellular capped oligonucleotide and uses it as primer to copy the vRNP template. Transcription termination occurs prematurely at the polyadenylation signal, which the polymerase copies repeatedly to generate a 3′-terminal polyA. Here we studied the mechanisms of the viral RNA replication and transcription. We used efficient systems for recombinant RNP transcription/replication in vivo and well-defined polymerase mutants deficient in either RNA replication or transcription to address the roles of the polymerase complex present in the template RNP and newly synthesised polymerase complexes during replication and transcription. The results of trans-complementation experiments showed that soluble polymerase complexes can synthesise progeny RNA in trans and become incorporated into progeny vRNPs, but only transcription in cis could be detected. These results are compatible with a new model for virus RNA replication, whereby a template RNP would be replicated in trans by a soluble polymerase complex and a polymerase complex distinct from the replicative enzyme would direct the encapsidation of progeny vRNA. In contrast, transcription of the vRNP would occur in cis and the resident polymerase complex would be responsible for mRNA synthesis and polyadenylation. The influenza A viruses produce annual epidemics and occasional pandemics of respiratory disease. There is great concern about a potential new pandemic being caused by presently circulating avian influenza viruses, and hence increasing interest in understanding how the virus replicates its genome. This comprises eight molecules of RNA, each one bound to a polymerase complex and encapsidated by multiple copies of the nucleoprotein, in the form of ribonucleoprotein complexes (RNPs). These structures are responsible for virus RNA replication and transcription but the detailed mechanisms of these processes are not fully understood. We report here the results of genetic complementation experiments using proficient in vitro and in vivo recombinant systems for transcription and replication, and polymerase point mutants that are either transcription-defective or replication-defective. These results are compatible with a new model for virus replication whereby a polymerase distinct from that present in the parental RNP is responsible for RNA replication in trans and the progeny RNP is associated to a polymerase distinct from that performing replication. In contrast, transcription is carried out in cis by the polymerase resident in the RNP.
Collapse
Affiliation(s)
- Núria Jorba
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
| | - Rocío Coloma
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
81
|
Structure-function studies of the influenza virus RNA polymerase PA subunit. ACTA ACUST UNITED AC 2009; 52:450-8. [PMID: 19471867 DOI: 10.1007/s11427-009-0060-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/18/2009] [Indexed: 10/20/2022]
|
82
|
Kashiwagi T, Leung BW, Deng T, Chen H, Brownlee GG. The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. PLoS One 2009; 4:e5473. [PMID: 19421324 PMCID: PMC2674210 DOI: 10.1371/journal.pone.0005473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/14/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The RNA polymerase of influenza virus is a heterotrimeric complex of PB1, PB2 and PA subunits which cooperate in the transcription and replication of the viral genome. Previous research has shown that the N-terminal region of the PA subunit of influenza A/WSN/33 (H1N1) virus is involved in promoter binding. METHODOLOGY/PRINCIPAL FINDINGS Here we extend our studies of the influenza RNA polymerase to that of influenza strains A/HongKong/156/97 (H5N1) and A/Vietnam/1194/04 (H5N1). Both H5N1 strains, originally isolated from patients in 1997 and 2004, showed significantly higher polymerase activity compared with two classical human strains, A/WSN/33 (H1N1) and A/NT/60/68 (H3N2) in vitro. This increased polymerase activity correlated with enhanced promoter binding. The N-terminal region of the PA subunit was the major determinant of this enhanced promoter activity. CONCLUSIONS/SIGNIFICANCE Overall we suggest that the N-terminal region of the PA subunit of two recent H5N1 strains can influence promoter binding and we speculate this may be a factor in their virulence.
Collapse
|
83
|
Naffakh N, Tomoiu A, Rameix-Welti MA, van der Werf S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annu Rev Microbiol 2008; 62:403-24. [PMID: 18785841 DOI: 10.1146/annurev.micro.62.081307.162746] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although transmission of avian influenza viruses to mammals, particularly humans, has been repeatedly documented, adaptation and sustained transmission in the new host is a rare event that in the case of humans may result in pandemics. Host restriction involves multiple genetic determinants. Among the known determinants of host range, key determinants have been identified on the genes coding for the nucleoprotein and polymerase proteins that, together with the viral RNA segments, form the ribonucleoproteins (RNPs). The RNP genes form host-specific lineages and harbor host-associated genetic signatures. The functional significance of these determinants has been studied by reassortment and reverse genetics experiments, underlining the influence of the global genetic context. In some instances the molecular mechanisms have been approached, pointing to the importance of the polymerase activity and interaction with cellular host factors. Better knowledge of determinants of host restriction will allow monitoring of the pandemic potential of avian influenza viruses.
Collapse
Affiliation(s)
- Nadia Naffakh
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 3015, Institut Pasteur, Paris, 75015 France
| | | | | | | |
Collapse
|
84
|
Influenza A replication and host nuclear compartments: Many changes and many questions. J Clin Virol 2008; 43:381-90. [DOI: 10.1016/j.jcv.2008.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/14/2008] [Indexed: 11/18/2022]
|
85
|
Avian Influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J Virol 2008; 83:1320-31. [PMID: 19019950 DOI: 10.1128/jvi.00977-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strong determinants of the host range of influenza A viruses have been identified on the polymerase complex formed by the PB1, PB2, and PA subunits and on the nucleoprotein (NP). In the present study, molecular mechanisms that may involve these four core proteins and contribute to the restriction of avian influenza virus multiplication in human cells have been investigated. The efficiencies with which the polymerase complexes of a human and an avian influenza virus isolate assemble and interact with the viral NP and cellular RNA polymerase II proteins were compared in mammalian and in avian infected cells. To this end, recombinant influenza viruses expressing either human or avian-derived core proteins with a PB2 protein fused to the One-Strep purification tag at the N or C terminus were generated. Copurification experiments performed on infected cell extracts indicate that the avian-derived polymerase is assembled and interacts physically with the cellular RNA polymerase II at least as efficiently as does the human-derived polymerase in human as well as in avian cells. Restricted growth of the avian isolate in human cells correlates with low levels of the core proteins in infected cell extracts and with poor association of the NP with the polymerase compared to what is observed for the human isolate. The NP-polymerase association is restored by a Glu-to-Lys substitution at residue 627 of PB2. Overall, our data point to viral and cellular factors regulating the NP-polymerase interaction as key determinants of influenza A virus host range. Recombinant viruses expressing a tagged polymerase should prove useful for further studies of the molecular interactions between viral polymerase and host factors during the infection cycle.
Collapse
|
86
|
Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication. J Virol 2008; 83:29-36. [PMID: 18945782 DOI: 10.1128/jvi.02293-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus polymerase transcribes and replicates the eight virion RNA (vRNA) segments. Transcription is initiated with capped RNA primers excised from cellular pre-mRNAs by the intrinsic endonuclease of the viral polymerase. Viral RNA replication occurs in two steps: first a full-length copy of vRNA is made, termed cRNA, and then this cRNA is copied to produce vRNA. The synthesis of cRNAs and vRNAs is initiated without a primer, in contrast to the initiation of viral mRNA synthesis, and requires the viral nucleocapsid protein (NP). The mechanism of unprimed viral RNA replication is poorly understood. To elucidate this mechanism, we used purified recombinant influenza virus polymerase complexes and NP to establish an in vitro system that catalyzes the unprimed synthesis of cRNA and vRNA using 50-nucleotide-long RNA templates. The purified viral polymerase and NP are sufficient for catalyzing this RNA synthesis without a primer, suggesting that host cell factors are not required. We used this purified in vitro replication system to demonstrate that the RNA-binding activity of NP is not required for the unprimed synthesis of cRNA and vRNA. This result rules out two models that postulate that the RNA-binding activity of NP mediates the switch from capped RNA-primed transcription to unprimed viral RNA replication. Because we showed that NP lacking RNA-binding activity binds directly to the viral polymerase, it is likely that a direct interaction between NP and the viral polymerase results in a modification of the polymerase in favor of unprimed initiation.
Collapse
|
87
|
An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 2008; 4:111-22. [PMID: 18692771 DOI: 10.1016/j.chom.2008.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/15/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.
Collapse
|
88
|
Chase G, Deng T, Fodor E, Leung BW, Mayer D, Schwemmle M, Brownlee G. Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 2008; 377:431-9. [PMID: 18570972 DOI: 10.1016/j.virol.2008.04.040] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/15/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses.
Collapse
Affiliation(s)
- Geoffrey Chase
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
89
|
Nagata K, Kawaguchi A, Naito T. Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 2008; 18:247-60. [PMID: 18383427 DOI: 10.1002/rmv.575] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For replication and transcription of the influenza virus genome of eight-segmented and negative-stranded RNAs, not only viral factors but also host-derived cellular factors (host factors) are required. This paper focuses on the identification and characterisation of the host factors involved in replication and transcription of the influenza virus genome, reviewing recent progresses in the related molecular mechanisms. Functional assay systems for screening of host factors using cell-free reconstitution systems and an yeast-based influenza virus replicon system are highlighted. We have summarised the property of host factors comprehensively and provided a clue for the perspective in the determination mechanism of host range and virulence and the development of a new strategy to control the influenza virus.
Collapse
Affiliation(s)
- Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | |
Collapse
|
90
|
The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 2008; 454:1127-31. [PMID: 18660801 DOI: 10.1038/nature07225] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 07/02/2008] [Indexed: 12/23/2022]
Abstract
Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. The virus reproduces rapidly, mutates frequently and occasionally crosses species barriers. The recent emergence in Asia of avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here we demonstrate the importance to viral replication of a subunit interface in the viral RNA polymerase, thereby providing a new set of potential drug binding sites entirely independent of surface antigen type. No current medication targets this heterotrimeric polymerase complex. All three subunits, PB1, PB2 and PA, are required for both transcription and replication. PB1 carries the polymerase active site, PB2 includes the capped-RNA recognition domain, and PA is involved in assembly of the functional complex, but so far very little structural information has been reported for any of them. We describe the crystal structure of a large fragment of one subunit (PA) of influenza A RNA polymerase bound to a fragment of another subunit (PB1). The carboxy-terminal domain of PA forms a novel fold, and forms a deep, highly hydrophobic groove into which the amino-terminal residues of PB1 can fit by forming a 3(10) helix.
Collapse
|
91
|
Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol 2008; 82:6902-10. [PMID: 18463155 DOI: 10.1128/jvi.00627-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms regulating the synthesis of mRNA, cRNA, and viral genomic RNA (vRNA) by the influenza A virus RNA-dependent RNA polymerase are not fully understood. Previous studies in our laboratory have shown that virion-derived viral ribonucleoprotein complexes synthesize both mRNA and cRNA in vitro and early in the infection cycle in vivo. Our continued studies showed that de novo synthesis of cRNA in vitro is more sensitive to the concentrations of ATP, CTP, and GTP than capped-primer-dependent synthesis of mRNA. Using rescued recombinant influenza A/WSN/33 viruses, we now demonstrate that the 3'-terminal sequence of the vRNA promoter dictates the requirement for a high nucleoside triphosphate (NTP) concentration during de novo-initiated replication to cRNA, whereas this is not the case for the extension of capped primers during transcription to mRNA. In contrast to some other viral polymerases, for which only the initiating NTP is required at high concentrations, influenza virus polymerase requires high concentrations of the first three NTPs. In addition, we show that base pair mutations in the vRNA promoter can lead to nontemplated dead-end mutations during replication to cRNA in vivo. Based on our observations, we propose a new model for the de novo initiation of influenza virus replication.
Collapse
|