51
|
Szydlowski L, Lan TCT, Shibata N, Goryanin I. Metabolic engineering of a novel strain of electrogenic bacterium Arcobacter butzleri to create a platform for single analyte detection using a microbial fuel cell. Enzyme Microb Technol 2020; 139:109564. [PMID: 32732044 DOI: 10.1016/j.enzmictec.2020.109564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Electrogenic bacteria metabolize organic substrates by transferring electrons to the external electrode, with subsequent electricity generation. In this proof-of-concept study, we present a novel strain of a known, electrogenic Arcobacter butzleri that can grow primarily on acetate and lactate and its electric current density is positively correlated (R2 = 0.95) to the COD concentrations up to 200 ppm. Using CRISPR-Cas9 and Cpf1, we engineered knockout Arcobacter butzleri mutants in either the acetate or lactate metabolic pathway, limiting their energy metabolism to a single carbon source. After genome editing, the expression of either acetate kinase, ackA, or lactate permease, lctP, was inhibited, as indicated by qPCR results. All mutants retain electrogenic activity when inoculated into a microbial fuel cell, yielding average current densities of 81-82 mA/m2, with wild type controls reaching 85-87 mA2. In the case of mutants, however, current is only generated in the presence of the substrate for the remaining pathway. Thus, we demonstrate that it is possible to obtain electric signal corresponding to the specific organic compound via genome editing. The outcome of this study also indicates that the application of electrogenic bacteria can be expanded by genome engineering.
Collapse
Affiliation(s)
| | | | | | - Igor Goryanin
- Okinawa Institute of Science and Technology, Japan; The School of Informatics, University of Edinburgh, United Kingdom; Tianjin Institute for Industrial Biotechnology, China
| |
Collapse
|
52
|
Yamakawa CK, Kastell L, Mahler MR, Martinez JL, Mussatto SI. Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability. BIORESOURCE TECHNOLOGY 2020; 309:123374. [PMID: 32320924 DOI: 10.1016/j.biortech.2020.123374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Feasible bioprocessing of lignocellulosic biomass requires the use of microbial strains with tolerance to inhibitor compounds and osmotic pressure, able to provide high product yield and productivity. In this sense, this study evaluated the potential of two non-conventional yeasts, Hansenula polymorpha CBS 4732 and Debaryomyces hansenii CBS 767, for use on biomass conversion in a biorefinery perspective. The ability of the strains to consume pentose and hexose sugars, to resist the toxic compounds present in hydrolysates, as well as to produce sugar alcohols and ethanol, was investigated. H. polymorpha showed highlighted resistance to toxic compounds and relevant ability to consume xylose and produce xylitol and ethanol under these conditions, at 37 °C. D. hansenii was a great producer of arabitol from glucose. The implications for sustainability due to the use of these yeasts in biorefineries was discussed. These results open up new perspectives for the development of the biorefinery sector.
Collapse
Affiliation(s)
- Celina K Yamakawa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Laura Kastell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Mikkel R Mahler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - José L Martinez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
53
|
Aldrete-Tapia J, Escalante-Minakata P, Martínez-Peniche R, Tamplin M, Hernández-Iturriaga M. Yeast and bacterial diversity, dynamics and fermentative kinetics during small-scale tequila spontaneous fermentation. Food Microbiol 2020; 86:103339. [DOI: 10.1016/j.fm.2019.103339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
|
54
|
Zhou Q, Liu Y, Yuan W. Kinetic modeling of butyric acid effects on butanol fermentation by Clostridium saccharoperbutylacetonicum. N Biotechnol 2020; 55:118-126. [DOI: 10.1016/j.nbt.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 01/05/2023]
|
55
|
Domański J, Marchut-Mikołajczyk O, Cieciura-Włoch W, Patelski P, Dziekońska-Kubczak U, Januszewicz B, Zhang B, Dziugan P. Production of Methane, Hydrogen and Ethanol from Secale cereale L. Straw Pretreated with Sulfuric Acid. Molecules 2020; 25:molecules25041013. [PMID: 32102411 PMCID: PMC7070859 DOI: 10.3390/molecules25041013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
The study describes sulfuric acid pretreatment of straw from Secale cereale L. (rye straw) to evaluate the effect of acid concentration and treatment time on the efficiency of biofuel production. The highest ethanol yield occurred after the enzyme treatment at a dose of 15 filter paper unit (FPU) per gram of rye straw (subjected to chemical hydrolysis with 2% sulfuric acid (SA) at 121 °C for 1 h) during 120 h. Anaerobic digestion of rye straw treated with 10% SA at 121 °C during 1 h allowed to obtain 347.42 L methane/kg volatile solids (VS). Most hydrogen was released during dark fermentation of rye straw after pretreatment of 2% SA, 121 °C, 1 h and 1% SA, 121 °C, 2 h—131.99 and 134.71 L hydrogen/kg VS, respectively. If the rye straw produced in the European Union were processed into methane, hydrogen, ethanol, the annual electricity production in 2018 could reach 9.87 TWh (terawatt-hours), 1.16 TWh, and 0.60 TWh, respectively.
Collapse
Affiliation(s)
- Jarosław Domański
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
- Correspondence: ; Tel.: +48-42-631-34-84
| | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
| | - Piotr Patelski
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (U.D.-K.)
| | - Urszula Dziekońska-Kubczak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (U.D.-K.)
| | - Bartłomiej Januszewicz
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Bolin Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Piotr Dziugan
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
| |
Collapse
|
56
|
Shinkawa S, Mitsuzawa S. Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:31. [PMID: 32127918 PMCID: PMC7045521 DOI: 10.1186/s13068-020-1669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies. RESULTS The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes. CONCLUSIONS A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Collapse
Affiliation(s)
- Satoru Shinkawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| | - Shigenobu Mitsuzawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| |
Collapse
|
57
|
Characterization of microbial communities in ethanol biorefineries. J Ind Microbiol Biotechnol 2019; 47:183-195. [PMID: 31848793 DOI: 10.1007/s10295-019-02254-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Bacterial contamination of corn-based ethanol biorefineries can reduce their efficiency and hence increase their carbon footprint. To enhance our understanding of these bacterial contaminants, we temporally sampled four biorefineries in the Midwestern USA that suffered from chronic contamination and characterized their microbiomes using both 16S rRNA sequencing and shotgun metagenomics. These microbiotas were determined to be relatively simple, with 13 operational taxonomic units (OTUs) accounting for 90% of the bacterial population. They were dominated by Firmicutes (89%), with Lactobacillus comprising 80% of the OTUs from this phylum. Shotgun metagenomics confirmed our 16S rRNA data and allowed us to characterize bacterial succession at the species level, with the results of this analysis being that Lb. helveticus was the dominant contaminant in this fermentation. Taken together, these results provide insights into the microbiome of ethanol biorefineries and identifies a species likely to be commonly responsible for chronic contamination of these facilities.
Collapse
|
58
|
Gabba M, Frallicciardi J, van 't Klooster J, Henderson R, Syga Ł, Mans R, van Maris AJA, Poolman B. Weak Acid Permeation in Synthetic Lipid Vesicles and Across the Yeast Plasma Membrane. Biophys J 2019; 118:422-434. [PMID: 31843263 PMCID: PMC6976801 DOI: 10.1016/j.bpj.2019.11.3384] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude). We observe a relation between the molecule permeability and the saturation of the lipid acyl chain (i.e., lipid packing) in the synthetic lipid vesicles. By analyzing wild-type yeast and a manifold knockout strain lacking all putative lactic acid transporters, we conclude that the yeast plasma membrane is impermeable to lactic acid on timescales up to ∼2.5 h.
Collapse
Affiliation(s)
- Matteo Gabba
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Joury van 't Klooster
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ryan Henderson
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Łukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Robert Mans
- Department of Industrial Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, Delft University of Technology, Delft, the Netherlands; Industrial Biotechnology Division, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
59
|
Cheng MH, Dien BS, Lee DK, Singh V. Sugar production from bioenergy sorghum by using pilot scale continuous hydrothermal pretreatment combined with disk refining. BIORESOURCE TECHNOLOGY 2019; 289:121663. [PMID: 31234074 DOI: 10.1016/j.biortech.2019.121663] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Chemical-free pretreatments are attracting increased interest because they generate less inhibitor in hydrolysates. In this study, pilot-scaled continuous hydrothermal (PCH) pretreatment followed by disk refining was evaluated and compared to laboratory-scale batch hot water (LHW) pretreatment. Bioenergy sorghum bagasse (BSB) was pretreated at 160-190 °C for 10 min with and without subsequent disk milling. Hydrothermal pretreatment and disk milling synergistically improved glucose and xylose release by 10-20% compared to hydrothermal pretreatment alone. Maximum yields of glucose and xylose of 82.55% and 70.78%, respectively were achieved, when BSB was pretreated at 190 °C and 180 °C followed by disk milling. LHW pretreated BSB had 5-15% higher sugar yields compared to PCH for all pretreatment conditions. The surface area improvement was also performed. PCH pretreatment combined with disk milling increased BSB surface area by 31.80-106.93%, which was greater than observed using LHW pretreatment.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce S Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - D K Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
60
|
Effects of intrinsic microbial stress factors on viability and physiological condition of yeasts isolated from spontaneously fermented cereal doughs. Int J Food Microbiol 2019; 304:75-88. [PMID: 31174038 DOI: 10.1016/j.ijfoodmicro.2019.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
Abstract
Fermented cereal doughs constitute a predominant part of West African diets. The environment of fermented doughs can be hostile for microbial survival due to high levels of microbial metabolites such as weak carboxylic organic acids and ethanol. In order to get a better understanding of the intrinsic factors affecting the microbial successions of yeasts during dough fermentation, survival and physiological responses of the yeasts associated with West African fermented cereal doughs were investigated at exposure to relevant concentrations of microbial inhibitory compounds. Three strains each of the predominant species, i.e. Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kudriavzevii as well as the opportunistic pathogen Candida glabrata were studied. The strains were exposed to individual stress factors of cereal doughs, i.e. (i) pH 3.4, (ii) 3% (v/v) ethanol (EtOHpH3.4), (iii) 285 mM lactic acid (LApH3.4) and (iv) 150 mM acetic acid (AApH3.4) as well as to combinations of these stress factors, i.e. (v) (LA + AA)pH 3.4 and (vi) (LA + AA+EtOH)pH 3.4. Growth and single cell viability were studied by flow cytometry using combined SYTO 13 and propidium iodide (PI) staining. Intracellular pH (pHi), plasma membrane integrity and micro-colony development of stressed cells were studied by fluorescence microscopy using PI and carboxyfluorescein diacetate succinimidyl ester (CFDA-se). Viability of the yeast strains was not affected by pH 3.4 and 3% (v/v) ethanol (EtOHpH3.4). 285 mM lactic acid (LApH3.4) reduced the specific growth rate (μmax) from 0.27-0.41 h-1 to 0.11-0.26 h-1 and the viability from 100% to 2.6-41.7% at 72 h of exposure in most yeast strains, except for two strains of C. glabrata. 150 mM acetic acid (AApH3.4) as well as the combinations (LA + AA)pH 3.4 and (LA + AA+EtOH)pH 3.4 reduced μmax to 0.0 h-1 and induced significant cell death for all the yeast strains. Exposed to (LA + AA+EtOH)pH 3.4, the most resistant yeast strains belonged to S. cerevisiae followed by P. kudriavzevii, whereas C. glabrata and K. marxianus were more sensitive. Strain variations were observed within all four species. When transferred to non-stress conditions, i.e. MYGP, pH 5.6, after exposure to (LA + AA+EtOH)pH 3.4 for 6 h, 45% of the single cells of the most resistant S. cerevisiae strain kept their plasma membrane integrity, recovered their pHi to near physiological range (pHi = 6.1-7.4) and resumed proliferation after 3-24 h of lag phase. The results obtained are valuable in order to change processing conditions of the dough to favor the survival of preferable yeast species, i.e. S. cerevisiae and K. marxianus and inhibit opportunistic pathogen yeast species as C. glabrata.
Collapse
|
61
|
Laluce C, Igbojionu LI, Silva JL, Ribeiro CA. Statistical prediction of interactions between low concentrations of inhibitors on yeast cells responses added to the SD-medium at low pH values. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:114. [PMID: 31086566 PMCID: PMC6507146 DOI: 10.1186/s13068-019-1453-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In the present work, the main inhibitors of the yeast cells (vanillin, furfural, formic, and levulinic acid) were generated by pretreatments or hydrolysis (sulfuric acid or enzymes) to convert reducing sugars into ethanol. Inhibitors were added at increasing concentrations to the SD-medium containing yeast extract while negative effects on yeast cells were observed. Statistical analyses were applied to predict and interpret results related to biomass production. RESULTS Inhibitors affected productivities and yields of biomass and ethanol when added to SD-medium. Based on the 23 full-central-composite design, "predicted" and "observed" values of ethanol and biomass were obtained in presence of the major inhibitors, which were acetic acid, formic acid, and levulinic acids. Increases in biomass and ethanol production are described in the Response surface graphs (RSM graphs) that resulted from multiple interactions between inhibitors. Positive interactions between the inhibitors occurred at low concentrations and pH values. The results were experimentally validated. CONCLUSIONS Statistical analysis is an extremely useful tool for predicting data during process monitoring, while re-adjustments of conditions can be performed, whenever necessary. In addition, the development of new strains of yeast with high tolerance to biomass inhibitors will have a major impact on the production of second-generation ethanol. Increases in fermentation activity of the yeast Saccharomyces cerevisiae in a mixture containing low concentrations of inhibitors were observed.
Collapse
Affiliation(s)
- Cecilia Laluce
- Institute of Research in Bioenergy (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni, 55, Araraquara, SP CEP 14800-060 Brazil
| | - Longinus I. Igbojionu
- Institute of Research in Bioenergy (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni, 55, Araraquara, SP CEP 14800-060 Brazil
| | - José L. Silva
- Institute of Research in Bioenergy (IPBEN), Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni, 55, Araraquara, SP CEP 14800-060 Brazil
| | - Clóvis A. Ribeiro
- Dept Analytical Chemistry, Institute of Chemistry, State University of São Paulo, Júlio de Mesquita Filho-UNESP, R. Professor Francisco Degni, 55, Araraquara, São Paulo CEP 14800-060 Brazil
| |
Collapse
|
62
|
Effect of Co-Inoculation with Saccharomyces cerevisiae and Lactic Acid Bacteria on the Content of Propan-2-ol, Acetaldehyde and Weak Acids in Fermented Distillery Mashes. Int J Mol Sci 2019; 20:ijms20071659. [PMID: 30987119 PMCID: PMC6479555 DOI: 10.3390/ijms20071659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34–6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34–4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.
Collapse
|
63
|
Hydrogels based on gelatin: Effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
64
|
Siedler S, Balti R, Neves AR. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 2019; 56:138-146. [DOI: 10.1016/j.copbio.2018.11.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
|
65
|
Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Antonie van Leeuwenhoek 2019; 112:1177-1187. [PMID: 30830509 DOI: 10.1007/s10482-019-01250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
The presence of microbial contaminants is common in the sugarcane ethanol industry and can decrease process yield, reduce yeast cell viability and induce yeast cell flocculation. To evaluate the effect of microbial contamination on the fermentation process, we compared the use of sterilized and non-sterilized sugarcane must in the performance of Saccharomyces cerevisiae with similar fermentation conditions to those used in Brazilian mills. Non-sterilized sugarcane must had values of 103 and 108 CFU mL-1 of wild yeast and bacterial contamination, respectively; decreased total reducing sugar (TRS); and increased lactic and acetic acids, glycerol and ethanol concentrations during storage. During fermentation cycles with sterilized and non-sterilized sugarcane must, S. cerevisiae viability did not change, whereas ethanol yield varied from 74.1 to 80.2%, but it did not seem to be related to must microbial contamination. Ethanol productivity decreased throughout the fermentation cycles and was more pronounced in the last two fermentation cycles with non-sterilized must, but that may be related to the decrease in must TRS. High values of the ratio of total acid production per ethanol were reported at the end of the last two fermentation cycles conducted with non-sterilized must. Additionally, the values of wild yeast contamination increased from 102 to 103 CFU mL-1 and bacterial contamination increased from 104 to 106 CFU mL-1 when comparing the first and last fermentation cycles with non-sterilized must. In addition to the increase in microbial contamination and acid concentration, ethanol yield and yeast viability rates were not directly affected by the microbial contamination present in the non-sterilized sugarcane must.
Collapse
|
66
|
Biological Treatment of Wastewater from Pyrolysis Plant: Effect of Organics Concentration, pH and Temperature. WATER 2019. [DOI: 10.3390/w11020336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biological treatment of the aqueous residue produced during poplar wood pyrolysis was investigated. The biological treatment experiments were carried out at two different pH conditions (controlled at 7, uncontrolled) in batch mode at three different temperatures (15 °C, 25 °C and 30 °C) and initial total organic carbon of the water ranging from 800 mg/L to 2800 mg/L. Results show that a substantial removal of organic carbon could be achieved in aerobic conditions after biomass acclimation. After 72 h of treatment, total organic carbon (TOC) removal mean values of 49.47% and 53.03% were observed at 30 °C for solution at 1400 and 2000 mg/L initial TOC, respectively. In the case of 1400 mg/L, a further mineralization (61.80%) was achieved during 144 h of treatment, by using a two-step process. A kinetic study of the process was also made, showing that organics mineralization followed a first-order kinetic model.
Collapse
|
67
|
Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Pacholczyk-Sienicka B, Ciepielowski G, Albrecht Ł, Patelski P. The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation. Molecules 2019; 24:E610. [PMID: 30744140 PMCID: PMC6384725 DOI: 10.3390/molecules24030610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
This study set out to assess the acetone content in rye sweet mashes prepared using the thermal-pressure method of starch liberation, and to investigate the formation of 2-propanol during the fermentation process. In the first set of experiments, we evaluated the correlation between the color and the content of acetone and furfural in industrially produced sweet mashes (n = 37). The L * value was negatively correlated with the content of both acetone and furfural, while chromatic parameters a * and b * and the yellowness index (YI) had strong positive correlations with acetone (r > 0.9) and furfural (r > 0.8 for a * and r > 0.9 for b * and YI). In the second set of experiments, we assessed the concentration of acetone and 2-propanol in distillery rye mashes, fermented by S. cerevisiae yeast and lactic acid bacteria. The influence of fermentation temperature on the formation of 2-propanol was also evaluated. The presence of 2-propanol in the post-fermentation media was confirmed, while a decrease in acetone content was observed. Fermentation temperature (27 °C or 35 °C) was found to have a significant effect on the concentration of 2-propanol in trials inoculated with lactic bacteria. The content of 2-propanol was more than 11 times higher in trials fermented at the higher temperature. In the case of yeast-fermented mashes, the temperature did not affect 2-propanol content. The acetone in the sweet mash was assumed to be a precursor of 2-propanol, which was found in the fermented mashes.
Collapse
Affiliation(s)
- Katarzyna Pielech-Przybylska
- Department of Spirit and Yeast Technology, Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Maria Balcerek
- Department of Spirit and Yeast Technology, Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Urszula Dziekońska-Kubczak
- Department of Spirit and Yeast Technology, Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Grzegorz Ciepielowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Piotr Patelski
- Department of Spirit and Yeast Technology, Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| |
Collapse
|
68
|
Pan X, Raftery JP, Botre C, DeSessa MR, Jaladi T, Karim MN. Estimation of Unmeasured States in a Bioreactor under Unknown Disturbances. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b02235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xinghua Pan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| | - Jonathan P. Raftery
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| | - Chiranjivi Botre
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| | - Melanie R. DeSessa
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| | - Tejasvi Jaladi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| | - M. Nazmul Karim
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
69
|
Ahangangoda Arachchige MS, Mizutani O, Toyama H. Yeast strains from coconut toddy in Sri Lanka show high tolerance to inhibitors derived from the hydrolysis of lignocellulosic materials. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1676167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Osamu Mizutani
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hirohide Toyama
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
70
|
Godoy-Reyes TM, Llopis-Lorente A, García-Fernández A, Gaviña P, Costero AM, Martínez-Máñez R, Sancenón F. Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chem Commun (Camb) 2019; 55:5785-5788. [PMID: 31041959 DOI: 10.1039/c9cc02602a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mesoporous silica nanoparticles capped with acetylcholinesterase, through boronic ester linkages, selectively release an entrapped cargo in the presence of acetylcholine.
Collapse
Affiliation(s)
- Tania M Godoy-Reyes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de València, Spain
| | | | | | | | | | | | | |
Collapse
|
71
|
Essien D, Richard TL. Ensiled Wet Storage Accelerates Pretreatment for Bioconversion of Corn Stover. Front Bioeng Biotechnol 2018; 6:195. [PMID: 30619843 PMCID: PMC6302026 DOI: 10.3389/fbioe.2018.00195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/27/2018] [Indexed: 01/31/2023] Open
Abstract
Organic acids produced during ensiled wet storage are beneficial during the storage process, both for biomass preservation, and to aid in mild in-situ pretreatment. However, there is concern these acids could later have negative impacts on downstream processes, especially microbial fermentation. Organic acids can inhibit microbial metabolism or growth, which in turn could affect biofuel productivity or yield. This study investigated the interaction of organic acids produced during ensiled storage with subsequent pretreatment of the resulting corn stover silage, as well as the potential for interference with downstream ethanol fermentation. Interaction with pretreatment was observed by measuring xylan and glucan removal and the formation of inhibitors. The results indicated that organic acids generally do not impede downstream processes and in fact can be beneficial. The levels of organic acids produced during 220 days of storage jar tests at 23°C or 37°C, and their transformation during pretreatment, remained below inhibitory levels. Concentrations of individual acids did not exceed 6 g per liter of the pretreated volume, and < 5% on a dry matter basis. Whereas, unensiled corn stover required 15 min of 190°C pretreatment to optimize sugar release, ensiled corn stover could be treated equally effectively at a lower pretreatment duration of 10 min. Furthermore, the different organic acid profiles that accumulate at various storage moisture levels (35-65%) do not differ significantly in their impact on downstream ethanol fermentation. These results indicate biorefineries using ensiled corn stover feedstock at 35-65% moisture levels can expect as good or better biofuel yields as with unensiled stover, while reducing pretreatment costs.
Collapse
Affiliation(s)
- Dzidzor Essien
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, United States
| | | |
Collapse
|
72
|
Sawatzki A, Hans S, Narayanan H, Haby B, Krausch N, Sokolov M, Glauche F, Riedel SL, Neubauer P, Cruz Bournazou MN. Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform. Bioengineering (Basel) 2018; 5:E101. [PMID: 30469407 PMCID: PMC6316240 DOI: 10.3390/bioengineering5040101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023] Open
Abstract
Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing. We present an automated experiment facility that integrates online data handling, visualization and treatment using multivariate analysis approaches to design and operate dynamical experimental campaigns in up to 48 mini-bioreactors (8⁻12 mL) in parallel. In this study, the characterization of Saccharomyces cerevisiae AH22 secreting recombinant endopolygalacturonase is performed, running and comparing 16 experimental conditions in triplicate. Data-driven multivariate methods were developed to allow for fast, automated decision making as well as online predictive data analysis regarding endopolygalacturonase production. Using dynamic process information, a cultivation with abnormal behavior could be detected by principal component analysis as well as two clusters of similarly behaving cultivations, later classified according to the feeding rate. By decision tree analysis, cultivation conditions leading to an optimal recombinant product formation could be identified automatically. The developed method is easily adaptable to different strains and cultivation strategies, and suitable for automatized process development reducing the experimental times and costs.
Collapse
Affiliation(s)
- Annina Sawatzki
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Sebastian Hans
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | | | - Benjamin Haby
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Niels Krausch
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Michael Sokolov
- ETH Zürich, Rämistrasse 101, CH-8092 Zurich, Switzerland.
- DataHow AG, c/o ETH Zürich, HCl, F137, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland.
| | - Florian Glauche
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Sebastian L Riedel
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| | - Mariano Nicolas Cruz Bournazou
- Department of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstr. 71-76, ACK24, D-13355 Berlin, Germany.
| |
Collapse
|
73
|
Fernández-Niño M, Pulido S, Stefanoska D, Pérez C, González-Ramos D, van Maris AJA, Marchal K, Nevoigt E, Swinnen S. Identification of novel genes involved in acetic acid tolerance of Saccharomyces cerevisiae using pooled-segregant RNA sequencing. FEMS Yeast Res 2018; 18:5097782. [DOI: 10.1093/femsyr/foy100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel Fernández-Niño
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
- Department of Chemical Engineering, Universidad de los Andes, Cra 1 N° 18A - 12, 111711 Bogotá, Colombia
| | - Sergio Pulido
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Despina Stefanoska
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Camilo Pérez
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Department of Information Technology, ID lab, IMEC, Ghent University, Technologiepark 15, 9052 Ghent, Belgium
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
74
|
Nair RB, Osadolor OA, Ravula VK, Lennartsson PR, Taherzadeh MJ. Lignocellulose integration to 1G-ethanol process using filamentous fungi: fermentation prospects of edible strain of Neurospora intermedia. BMC Biotechnol 2018; 18:49. [PMID: 30119626 PMCID: PMC6098641 DOI: 10.1186/s12896-018-0444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Background Integration of first- and second-generation ethanol processes is one among the alternate approaches that efficiently address the current socio-economic issues of the bioethanol sector. Edible filamentous fungus capable of utilizing pentoses from lignocelluloses and also possessing biomass application as potential animal feed component was used as the fermentation strain for the integration model. This study presents various fermentation aspects of using edible filamentous fungi in the integrated first and second generation ethanol process model. Results Fermentation of edible strain of N. intermedia on the integrated first and second-generation ethanol substrate (the mixture of dilute acid pretreated and enzymatically hydrolyzed wheat straw and thin stillage from the first-generation ethanol process), showed an ethanol yield maximum of 0.23 ± 0.05 g/g dry substrate. The growth of fungal pellets in presence of fermentation inhibitors (such as acetic acid, HMF and furfural) resulted in about 11 to 45% increase in ethanol production as compared to filamentous forms, at similar growth conditions in the liquid straw hydrolysate. Fungal cultivations in the airlift reactor showed strong correlation with media viscosity, reaching a maximum of 209.8 ± 3.7 cP and resulting in 18.2 ± 1.3 g/L biomass during the growth phase of fungal pellets. Conclusion N. intermedia fermentation showed high sensitivity to the dilute acid lignocellulose pretreatment process, with improved fermentation performance at milder acidic concentrations. The rheological examinations showed media viscosity to be the most critical factor influencing the oxygen transfer rate during the N. intermedia fermentation process. Mycelial pellet morphology showed better fermentation efficiency and high tolerance towards fermentation inhibitors.
Collapse
Affiliation(s)
- Ramkumar B Nair
- Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, SE, Sweden. .,Mycorena AB, Stena Center 1 A, 41292, Gothenburg, SE, Sweden.
| | - Osagie A Osadolor
- Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, SE, Sweden
| | - Vamsi K Ravula
- Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, SE, Sweden
| | - Patrik R Lennartsson
- Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, SE, Sweden
| | | |
Collapse
|
75
|
Ceccato-Antonini SR. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World J Microbiol Biotechnol 2018; 34:80. [PMID: 29802468 DOI: 10.1007/s11274-018-2463-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Abstract
Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.
Collapse
Affiliation(s)
- Sandra Regina Ceccato-Antonini
- Laboratory of Molecular and Agricultural Microbiology, Department Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciencias Agrárias, Universidade Federal de São Carlos, Via Anhanguera km 174, Araras, SP, 13600-970, Brazil.
| |
Collapse
|
76
|
Nguyen TTM, Ishida Y, Kato S, Iwaki A, Izawa S. The VFH1
(YLL056C
) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae. Yeast 2018; 35:465-475. [DOI: 10.1002/yea.3313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Trinh Thi My Nguyen
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
- Department of Molecular and Environmental Biotechnology; University of Science, Vietnam National University in Ho Chi Minh City; Ho Chi Minh City Vietnam
| | - Yoko Ishida
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Sae Kato
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Aya Iwaki
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| |
Collapse
|
77
|
Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Antoł A, Travisano M, Nespolo RF. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol 2018; 8:4619-4630. [PMID: 29760902 PMCID: PMC5938455 DOI: 10.1002/ece3.3979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/27/2023] Open
Abstract
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
Collapse
Affiliation(s)
| | - Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | | | - María Josefina Poupin
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Thomas Ledger
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China.,CSIRO Oceans & Atmosphere Hobart TAS Australia
| | - Andrzej Antoł
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis MN USA
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile.,Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB) Santiago Chile
| |
Collapse
|
78
|
Pan S, Jia B, Liu H, Wang Z, Chai MZ, Ding MZ, Zhou X, Li X, Li C, Li BZ, Yuan YJ. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:107. [PMID: 29643937 PMCID: PMC5891932 DOI: 10.1186/s13068-018-1107-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae. RESULTS Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. CONCLUSIONS Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae. We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.
Collapse
Affiliation(s)
- Shuo Pan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bin Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Meng-Zhe Chai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Chun Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
79
|
Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. ENERGIES 2018. [DOI: 10.3390/en11040786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
80
|
Ingledew WM. Wallowing with the Yeasts Used to Make Alcohol. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0614-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- W. M. Ingledew
- Department of Food and Bioproduct Sciences, University of Saskatchewan, (retired) c/o 1421 Saturna Drive, Parksville, B.C. V9P2Y1 Canada
| |
Collapse
|
81
|
Peyer LC, Zarnkow M, Jacob F, De Schutter DP, Arendt EK. Sour Brewing: Impact of Lactobacillus Amylovorus FST2.11 on Technological and Quality Attributes of Acid Beers. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-3861-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lorenzo C. Peyer
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Martin Zarnkow
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | | | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
82
|
Narendranath NV, Thomas KC, Ingledew WM. Acetic Acid and Lactic Acid Inhibition of Growth ofSaccharomyces Cerevisiaeby Different Mechanisms. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-59-0187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Neelakantam V. Narendranath
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - Kolothumannil C. Thomas
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - W. Michael Ingledew
- Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| |
Collapse
|
83
|
Johnravindar D, Karthikeyan OP, Selvam A, Murugesan K, Wong JWC. Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate. BIORESOURCE TECHNOLOGY 2018; 248:221-228. [PMID: 28736146 DOI: 10.1016/j.biortech.2017.06.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
In present study, the efficiency of three oleaginous yeasts i.e., Yarrowia lipolytica, Rhodotorula glutinis and Cryptococcus curvatus were compared for their lipid assimilation capacities using three different FW-leachates as a medium. The FW-leachates were collected from dry anaerobic digesters and diluted to achieve carbohydrate content of 25gL-1 prior to yeast inoculations. Around 5% of yeast cultures were individually mixed in three different FW-leachate mediums and incubated under 30°C and 150rpm agitation for 6days. The Y. lipolytica produced high biomass with lipid contents of 49.0±2% on dry weight basis. Whereas, the acetic acid concentration of >6gL-1 inhibited the growth of R. glutinis. The study observed that the selection of appropriate FW-leachate composition is highly important for biolipid accumulation by oleaginous yeasts.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Ammaiyappan Selvam
- Department of Plant Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Kumarasamy Murugesan
- Deparment of Environmental Science, Periyar University, Salem, Tamil Nadu, India
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
84
|
Bao C, Zeng H, Zhang Y, Zhang L, Lu X, Guo Z, Miao S, Zheng B. Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. Int J Biol Macromol 2017; 105:671-679. [DOI: 10.1016/j.ijbiomac.2017.07.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023]
|
85
|
Mahboubi A, Ylitervo P, Doyen W, De Wever H, Molenberghs B, Taherzadeh MJ. Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 241:296-308. [PMID: 28575793 DOI: 10.1016/j.biortech.2017.05.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Finding a technological approach that eases the production of lignocellulosic bioethanol has long been considered as a great industrial challenge. In the current study a membrane bioreactor (MBR) set-up using integrated permeate channel (IPC) membrane panels was used to simultaneously ferment pentose and hexose sugars to ethanol in continuous fermentation of high suspended solid wheat straw hydrolysate. The MBR was optimized to flawlessly operated at high SS concentrations of up to 20% without any significant changes in the permeate flux and transmembrane pressure. By the help of the retained high cell concentration, the yeast cells were capable of tolerating and detoxifying the inhibitory medium and succeeded to co-consume all glucose and up to 83% of xylose in a continuous fermentation mode leading to up to 83% of the theoretical ethanol yield.
Collapse
Affiliation(s)
- Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium.
| | - Päivi Ylitervo
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Wim Doyen
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium
| | - Heleen De Wever
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium
| | - Bart Molenberghs
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium
| | | |
Collapse
|
86
|
The Effect of Different Starch Liberation and Saccharification Methods on the Microbial Contaminations of Distillery Mashes, Fermentation Efficiency, and Spirits Quality. Molecules 2017; 22:molecules22101647. [PMID: 28974014 PMCID: PMC6151438 DOI: 10.3390/molecules22101647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the influence of different starch liberation and saccharification methods on microbiological contamination of distillery mashes. Moreover, the effect of hop α-acid preparation for protection against microbial infections was assessed. The quality of agricultural distillates was also evaluated. When applying the pressureless liberation of starch (PLS) and malt as a source of amylolytic enzymes, the lactic acid bacteria count in the mashes increased several times during fermentation. The mashes obtained using the pressure-thermal method and malt enzymes revealed a similar pattern. Samples prepared using cereal malt exhibited higher concentrations of lactic and acetic acids, as compared to mashes prepared using enzymes of microbial origin. The use of hop α-acids led to the reduction of bacterial contamination in all tested mashes. As a result, fermentation of both mashes prepared with microbial origin enzyme preparations and with barley malt resulted in satisfactory efficiency and distillates with low concentrations of aldehydes.
Collapse
|
87
|
Wang X, Zhang P, Cui P, Cheng W, Zhang S. Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
88
|
Kashid M, Ghosalkar A. Evaluation of fermentation kinetics of acid-treated corn cob hydrolysate for xylose fermentation in the presence of acetic acid by Pichia stipitis. 3 Biotech 2017; 7:240. [PMID: 28702938 DOI: 10.1007/s13205-017-0873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/03/2017] [Indexed: 11/29/2022] Open
Abstract
The efficient utilization of lignocellulosic biomass for ethanol production depends on the fermentability of the biomass hydrolysate obtained after pretreatment. In this work we evaluated the kinetics of ethanol production from xylose using Pichia stipitis in acid-treated corn cob hydrolysate. Acetic acid is one of the main inhibitors in corn cob hydrolysate that negatively impacts kinetics of xylose fermentation by P. stipitis. Unstructured kinetic model has been formulated that describes cell mass growth and ethanol production as a function of xylose, oxygen, ethanol, and acetic acid concentration. Kinetic parameters were estimated under different operating conditions affecting xylose fermentation. This is the first report on kinetics of xylose fermentation by P. stipitis which includes inhibition of acetic acid on growth and product formation. In the presence of acetic acid in the hydrolysate, the model accurately predicted reduction in maximum specific growth rate (from 0.23 to 0.15 h-1) and increase in ethanol yield per unit biomass (from 3 to 6.2 gg-1), which was also observed during experimental trials. Presence of acetic acid in the fermentation led to significant reduction in the cell growth rate, reduction in xylose consumption and ethanol production rate. The developed model accurately described physiological state of P. stipitis during corn cob hydrolysate fermentation. Proposed model can be used to predict the influence of xylose, ethanol, oxygen, and acetic acid concentration on cell growth and ethanol productivity in industrial fermentation.
Collapse
Affiliation(s)
- Mohan Kashid
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Praj Matrix R&D Center, Division of Praj Industries Ltd., Urawade, Pirangut, Pune, 412115, India.
| | - Anand Ghosalkar
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
- Praj Matrix R&D Center, Division of Praj Industries Ltd., Urawade, Pirangut, Pune, 412115, India
| |
Collapse
|
89
|
Kawazoe N, Kimata Y, Izawa S. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1192. [PMID: 28702017 PMCID: PMC5487434 DOI: 10.3389/fmicb.2017.01192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.
Collapse
Affiliation(s)
- Nozomi Kawazoe
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| | - Yukio Kimata
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
90
|
Combination of natural antimicrobials and sodium dodecyl sulfate for disruption of biofilms formed by contaminant bacteria isolated from sugarcane mills. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Deparis Q, Claes A, Foulquié-Moreno MR, Thevelein JM. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 2017; 17:3861662. [PMID: 28586408 PMCID: PMC5812522 DOI: 10.1093/femsyr/fox036] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023] Open
Abstract
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way.
Collapse
Affiliation(s)
- Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Arne Claes
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
92
|
Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng 2017; 114:1531-1538. [PMID: 28294288 DOI: 10.1002/bit.26288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/14/2023]
Abstract
Biorenewable chemicals such as short and medium chain fatty acids enable functional or direct substitution of petroleum-derived building blocks, allowing reduction of anthropogenic greenhouse gases while meeting market needs of high-demand products like aliphatic alcohols and alpha olefins. However, producing these fatty acids in microorganisms can be challenging due to toxicity issues. Octanoic acid (C8) can disrupt the integrity of the cell membrane in yeast, and exogenous supplementation of oleic acid has been shown to help alleviate this. We recently engineered the Saccharomyces cerevisiae enzyme acetyl-CoA carboxylase by replacing serine residue 1157 with alanine to prevent deactivation by phosphorylation. Expression of Acc1S1157A in S. cerevisiae resulted in an increase in total fatty acid production, with the largest increase for oleic acid. In this study, we evaluated the effect of this modified lipid profile on C8 toxicity to the yeast. Expression of Acc1S1157A in S. cerevisiae BY4741 increased the percentage of oleic acid 3.1- and 1.6-fold in the absence and presence of octanoic acid challenge, respectively. Following exposure to 0.9 mM of C8 for 24 h, the engineered yeast had a 10-fold higher cell density relative to the baseline strain. Moreover, overexpressing Acc1S1157A allowed survival at C8 concentrations that were lethal for the baseline strain. This marked reduction of toxicity was shown to be due to higher membrane integrity as an 11-fold decrease in leakage of intracellular magnesium was observed. Due to the increase in oleic acid, this approach has the potential to reduce toxicity of other valuable bioproducts such as shorter chain aliphatic acids and alcohols and other membrane stressors. In an initial screen, increased resistance to n-butanol, 2-propanol, and hexanoic acid was demonstrated with cell densities 3.2-, 1.8-, and 29-fold higher than the baseline strain, respectively. Biotechnol. Bioeng. 2017;114: 1531-1538. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pamela B Besada-Lombana
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Ruben Fernandez-Moya
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Jacob Fenster
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| |
Collapse
|
93
|
Fischer J, Lopes VS, Cardoso SL, Coutinho Filho U, Cardoso VL. MACHINE LEARNING TECHNIQUES APPLIED TO LIGNOCELLULOSIC ETHANOL IN SIMULTANEOUS HYDROLYSIS AND FERMENTATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170341s20150475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
94
|
Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng 2017; 39:19-28. [DOI: 10.1016/j.ymben.2016.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
|
95
|
Jahnke JP, Benyamin MS, Sumner JJ, Mackie DM. Using Reverse Osmosis Membranes to Couple Direct Ethanol Fuel Cells with Ongoing Fermentations. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin P. Jahnke
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20740, United States
| | - Marcus S. Benyamin
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20740, United States
| | - James J. Sumner
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20740, United States
| | - David M. Mackie
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20740, United States
| |
Collapse
|
96
|
Yang X, Wang K, Wang H, Zhang J, Mao Z. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process. BIORESOURCE TECHNOLOGY 2016; 220:609-614. [PMID: 27619712 DOI: 10.1016/j.biortech.2016.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water.
Collapse
Affiliation(s)
- Xinchao Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ke Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huijun Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonggui Mao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
97
|
Yang X, Wang K, Zhang J, Tang L, Mao Z. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2392-2398. [PMID: 27858795 DOI: 10.2166/wst.2016.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.
Collapse
Affiliation(s)
- Xinchao Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China E-mail: ; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ke Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China E-mail:
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China E-mail:
| | - Lei Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China E-mail:
| | - Zhonggui Mao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China E-mail:
| |
Collapse
|
98
|
Ma H, Yang J, Jia Y, Wang Q, Ma X, Sonomoto K. Alleviation of harmful effect in stillage reflux in food waste ethanol fermentation based on metabolic and side-product accumulation regulation. BIORESOURCE TECHNOLOGY 2016; 218:463-468. [PMID: 27394991 DOI: 10.1016/j.biortech.2016.06.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Stillage reflux fermentation in food waste ethanol fermentation could reduce sewage discharge but exert a harmful effect because of side-product accumulation. In this study, regulation methods based on metabolic regulation and side-product alleviation were conducted. Result demonstrated that controlling the proper oxidation-reduction potential value (-150mV to -250mV) could reduce the harmful effect, improve ethanol yield by 21%, and reduce fermentation time by 20%. The methods of adding calcium carbonate to adjust the accumulated lactic acid showed that ethanol yield increased by 17.3%, and fermentation time decreased by 20%. The accumulated glyceal also shows that these two methods can reduce the harmful effect. Fermentation time lasted for seven times without effect, and metabolic regulation had a better effect than side-product regulation.
Collapse
Affiliation(s)
- Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, China.
| | - Jian Yang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, China
| | - Yan Jia
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, China
| | - Xiaoyu Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, China
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
99
|
Induction of simultaneous and sequential malolactic fermentation in durian wine. Int J Food Microbiol 2016; 230:1-9. [DOI: 10.1016/j.ijfoodmicro.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022]
|
100
|
Rogers CM, Veatch D, Covey A, Staton C, Bochman ML. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae. Food Microbiol 2016; 57:151-8. [DOI: 10.1016/j.fm.2016.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
|