51
|
Yang L, Hu HM, Zielinska-Kwiatkowska A, Chansky HA. FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells. Biochem Biophys Res Commun 2010; 402:129-34. [PMID: 20933505 DOI: 10.1016/j.bbrc.2010.09.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
Ewing's family tumors are characterized by a specific t(11;22) chromosomal translocation that results in the formation of EWS-Fli1 oncogenic fusion protein. To investigate the effects of EWS-Fli1 on gene expression, we carried out DNA microarray analysis after specific knockdown of EWS-Fli1 through transfection of synthetic siRNAs. EWS-Fli1 knockdown increased expression of genes such as DKK1 and p57 that are known to be repressed by EWS-Fli1 fusion protein. Among other potential EWS-Fli1 targets identified by our microarray analysis, we have focused on the FOXO1 gene since it encodes a potential tumor suppressor and has not been previously reported in Ewing's cells. To better understand how EWS-Fli1 affects FOXO1 expression, we have established a doxycycline-inducible siRNA system to achieve stable and reversible knockdown of EWS-Fli1 in Ewing's sarcoma cells. Here we show that FOXO1 expression in Ewing's cells has an inverse relationship with EWS-Fli1 protein level, and FOXO1 promoter activity is increased after doxycycline-induced EWS-Fli1 knockdown. In addition, we have found that direct binding of EWS-Fli1 to FOXO1 promoter is attenuated after doxycycline-induced siRNA knockdown of the fusion protein. Together, these results suggest that suppression of FOXO1 function by EWS-Fli1 fusion protein may contribute to cellular transformation in Ewing's family tumors.
Collapse
Affiliation(s)
- Liu Yang
- Department of Orthopedics, University of Washington, Seattle, WA 98195, United States.
| | | | | | | |
Collapse
|
52
|
Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma. Sarcoma 2010; 2011. [PMID: 20953407 PMCID: PMC2952797 DOI: 10.1155/2011/276463] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/06/2010] [Indexed: 12/17/2022] Open
Abstract
The origin of Ewing's sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells, many now believe it to arise from a mesenchymal stem cell (MSC). Expression of the EWS-FLI1 fusion gene in MSCs changes cell morphology to resemble Ewing's sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation to sarcomas can occur. In knockdown experiments, Ewing's sarcoma cells develop characteristics of MSCs and the ability to differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore, EWS-FLI1 by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is possible that Ewing's sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further.
Collapse
|
53
|
Stenman G, Andersson MK, Andrén Y. New tricks from an old oncogene: gene fusion and copy number alterations of MYB in human cancer. Cell Cycle 2010; 9:2986-95. [PMID: 20647765 DOI: 10.4161/cc.9.15.12515] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MYB is a leucine zipper transcription factor that is essential for hematopoesis and for renewal of colonic crypts. There is also ample evidence showing that MYB is leukemogenic in several animal species. However, it was not until recently that clear evidence was presented showing that MYB actually is an oncogene rearranged in human cancer. In a recent study, a novel mechanism of activation of MYB involving gene fusion was identified in carcinomas of the breast and head and neck. A t(6;9) translocation was shown to generate fusions between MYB and the transcription factor gene NFIB. The fusions consistently result in loss of the 3'-end of MYB, including several highly conserved target sites for microRNAs that negatively regulate MYB expression. Deletion of these target sites may disrupt the repression of MYB, leading to overexpression of MYB-NFIB transcripts and protein and to transcriptional activation of critical MYB target genes associated with apoptosis, cell cycle control, cell growth/angiogenesis and cell adhesion. This study, together with previous and recent data showing rearrangements and copy number alterations of the MYB locus in T-cell leukemia and certain solid tumors, will be the main focus of this review.
Collapse
Affiliation(s)
- Göran Stenman
- Lundberg Laboratory for Cancer Research, Department of Pathology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
54
|
Van Rechem C, Boulay G, Pinte S, Stankovic-Valentin N, Guérardel C, Leprince D. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 2010; 30:4045-59. [PMID: 20547755 PMCID: PMC2916445 DOI: 10.1128/mcb.00582-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/09/2009] [Accepted: 05/28/2010] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor gene HIC1 encodes a transcriptional repressor involved in regulatory loops modulating P53-dependent and E2F1-dependent cell survival, growth control, and stress responses. Despite its importance, few HIC1 corepressors and target genes have been characterized thus far. Using a yeast two-hybrid approach, we identify MTA1, a subunit of the NuRD complex, as a new HIC1 corepressor. This interaction is regulated by two competitive posttranslational modifications of HIC1 at lysine 314, promotion by SUMOylation, and inhibition by acetylation. Consistent with the role of HIC1 in growth control, we demonstrate that HIC1/MTA1 complexes bind on two new target genes, Cyclin D1 and p57KIP2 in quiescent but not in growing WI38 cells. In addition, HIC1/MTA1 and HIC1/CtBP complexes differentially bind on two mutually exclusive HIC1 binding sites (HiRE) on the SIRT1 promoter. SIRT1 transcriptional activation induced by short-term serum starvation coincides with loss of occupancy of the distal sites by HIC1/MTA1 and HIC1/CtBP. Upon longer starvation, both complexes are found but on a newly identified proximal HiRE that is evolutionarily conserved and specifically enriched with repressive histone marks. Our results decipher a mechanistic link between two competitive posttranslational modifications of HIC1 and corepressor recruitment to specific genes, leading to growth control.
Collapse
Affiliation(s)
- Capucine Van Rechem
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| | - Gaylor Boulay
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| | - Sébastien Pinte
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| | - Nicolas Stankovic-Valentin
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| | - Cateline Guérardel
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| | - Dominique Leprince
- CNRS UMR 8161, Institut de Biologie de Lille, Université Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 Rue Calmette, 59017 Lille Cedex, France
| |
Collapse
|
55
|
Riggi N, Suvà ML, De Vito C, Provero P, Stehle JC, Baumer K, Cironi L, Janiszewska M, Petricevic T, Suvà D, Tercier S, Joseph JM, Guillou L, Stamenkovic I. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 2010; 24:916-32. [PMID: 20382729 DOI: 10.1101/gad.1899710] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.
Collapse
Affiliation(s)
- Nicolò Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne CH-1011, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Picarda G, Lamoureux F, Geffroy L, Delepine P, Montier T, Laud K, Tirode F, Delattre O, Heymann D, Rédini F. Preclinical evidence that use of TRAIL in Ewing's sarcoma and osteosarcoma therapy inhibits tumor growth, prevents osteolysis, and increases animal survival. Clin Cancer Res 2010; 16:2363-74. [PMID: 20371692 DOI: 10.1158/1078-0432.ccr-09-1779] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Osteosarcoma and Ewing's sarcoma are high-grade neoplasms typically arising in the bones of children and adolescents. Despite improvement in therapy, the five-year survival rate is only 20% for patients not responding to treatment or presenting with metastases. Among new therapeutic strategies, the efficacy of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily with strong antitumoral activity and minimal toxicity to most normal cells and tissues, was investigated by complementary approaches both in vitro and in preclinical models. EXPERIMENTAL DESIGN The sensitivity of osteosarcoma and Ewing's sarcoma cell lines to TRAIL was investigated in vitro by determining TRAIL receptor expression together with TRAIL effects on cell viability and apoptosis. Complementary preclinical studies were carried out in respective tumor models by inoculation of osteosarcoma or Ewing's sarcoma tumor cells in paraosseous location. In addition, a model of lung nodule dissemination was developed by i.v. injection of osteosarcoma cells. RESULTS In vitro, both osteosarcoma and Ewing's sarcoma cells that express the TRAIL death receptors were highly sensitive to TRAIL-induced caspase-8-mediated apoptosis. TRAIL administered in vivo by nonviral gene therapy inhibited primary bone tumor incidence and growth by 87% and prevented tumor-induced osteolysis, leading to a significant 2-fold increase in animal survival 40 days after tumor induction. Furthermore, TRAIL inhibited tumor nodule dissemination in lungs and increased survival in an osteosarcoma model. CONCLUSION These findings suggest that TRAIL is a promising candidate for the development of new therapeutic strategies in the most frequent malignant primary bone tumors.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Institut National de la Sante et de la Recherche Medicale UMR_S 957, Université de Nantes EA 3822, Nantes Atlantique Universités, Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
EWS/ETS proteins promote expression and regulate function of the homeodomain transcription factor BRN3A. Oncogene 2010; 29:3134-45. [PMID: 20348952 DOI: 10.1038/onc.2010.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ewing's sarcoma family tumors (ESFTs or EFTs) express neuronal markers, which indicates they may originate from cells at least partly committed to neuronal lineage. However, recent publications suggest EFT originates in mesenchymal stem cells, and EWS/ETS fusion proteins characteristic of EFT activate neuronal marker expression to confer a neural phenotype on EFT. Here we show that the neuronal marker BRN3A/POU4F1 is expressed abundantly at the protein level in primary EFT but not in rhabdomyosarcoma and neuroblastoma, and EFT cells exhibit high activity of the BRN3A proximal autoregulatory region. EWS/FLI-1 siRNA reduces BRN3A expression and promoter activity and EWS/ETS proteins are bound to the BRN3A locus, suggesting a direct function for EWS/ETS proteins in control of BRN3A expression. Differentiation-associated and autoregulatory activities of BRN3A are respectively impaired and altered in EFT cells, and EWS/FLI-1 siRNA can restore some BRN3A function. A potentially novel function for BRN3A in EFT cells is identified. These results extend the hypothesis that EWS/ETS proteins induce expression of neuronal markers such as BRN3A in EFT by showing that the function of those same markers may be restricted or controlled in an EWS/ETS-dependent manner.
Collapse
|
58
|
Abstract
Development of chemotherapeutic treatment modalities resulted in a dramatic increase in the survival of children with many types of cancer. Still, in case of some pediatric cancer entities including rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma, survival of patients remains dismal and novel treatment approaches are urgently needed. Therefore, based on the concept of targeted therapy, numerous potential targets for the treatment of these cancers have been evaluated pre-clinically or in some cases even clinically during the last decade. This review gives an overview over many different potential therapeutic targets for treatment of these childhood sarcomas, including receptor tyrosine kinases, intracellular signaling molecules, cell cycle and apoptosis regulators, proteasome, hsp90, histone deacetylases, angiogenesis regulators and sarcoma specific fusion proteins. The large number of potential therapeutic targets suggests that improved comparability of pre-clinical models might be necessary to prioritize the most effective ones for future clinical trials.
Collapse
Affiliation(s)
- Marco Wachtel
- University Children's Hospital, Department of Oncology, Zürich, Switzerland
| | | |
Collapse
|
59
|
Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family Tumors. Cancer Lett 2010; 294:57-65. [PMID: 20153576 DOI: 10.1016/j.canlet.2010.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
The chromosomal translocation t(11;22)(q24;q12) generates the EWS-Fli1 fusion gene, which contributes to the development of Ewing Family Tumors (EFTs). Although p53 mutations are found only in 5-20% of EFTs, the p53 pathway is thought to be abrogated in EFTs. The role of EWS-Fli1 in the p53 pathway in the tumor is still poorly understood. In this study, using immunoprecipitation and co-localization, we show that EWS-Fli1 interacts with p53 within the nucleus in vivo. The introduction of EWS-Fli1 resulted in significant reduction of promoter activities and mRNA levels of p21 and mdm2, meanwhile it canceled p53-dependent growth suppression. In contrast, knockdown of EWS-Fli1 expression mediated by small interfering RNAs (siRNA) also augmented the induction of p21 and mdm2 in response to DNA damage. Furthermore, using serial deletion constructs of the EWS-Fli1 fusion protein, we determined that EWS-Fli1 binding to p53 as well as inhibition of p21 and mdm2 promoter activities was mediated by its N-terminal domain (amino acid residues 65-109). These observations suggest that the N-terminal region of EWS-Fli1 might associate with p53 and impair its transcriptional activity, subsequently inhibiting the expression of its downstream genes. These results might provide new insight into the oncogenesis of EFTs by EWS-Fli1 via the inhibition of p53 function.
Collapse
|
60
|
Sohn EJ, Li H, Reidy K, Beers LF, Christensen BL, Lee SB. EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res 2010; 70:1154-63. [PMID: 20103643 DOI: 10.1158/0008-5472.can-09-1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EWS/FLI1 is a fusion gene product generated by a chromosomal translocation t(11;22)(q24;q12) found in Ewing sarcoma. EWS/FLI1 encodes an aberrant transcription factor with oncogenic properties in vitro. Paradoxically, expression of EWS/FLI1 in nontransformed primary cells results in apoptosis, but the exact mechanism remains unclear. In primary mouse embryonic fibroblasts derived from conditional EWS/FLI1 knock-in embryos, expression of EWS/FLI1 resulted in apoptosis with concomitant increase in the endogenous Caspase 3 (Casp3) mRNA. EWS/FLI1 directly bound and activated the CASP3 promoter, whereas small interfering RNA-mediated knockdown of EWS/FLI1 led to a marked decrease in CASP3 transcripts in Ewing sarcoma cell lines. Ectopic expression of EWS/FLI1 resulted in an increased expression of CASP3 protein in heterologous cell lines. Importantly, expression of EWS/FLI1 in the mouse triggered an early onset of apoptosis in kidneys and acute lethality. These findings suggest that EWS/FLI1 induces apoptosis, at least partially, through the activation of CASP3 and show the cell context-dependent roles of EWS/FLI1 in apoptosis and tumorigenesis.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Ewing's sarcoma/PNET are small round cell tumors showing a varying degree of neuroectodermal differentiation. They are one of the commonest tumors of childhood and occur in bone and within soft tissues. Traditionally, light microscopy with the aid of immunohistochemical stains was suitable for diagnosis. But now translocation analyses are being used not only for the diagnosis and classification of small round cell tumors, but to ascertain their prognostic significance, detect micrometastasis, and monitor minimal residual disease, with potential for targeted therapy. This article analyzes the pathology, biology, and molecular aspects of Ewing's sarcoma/PNET and discusses their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Saral S Desai
- Department of Pathology, Tata Memorial Hospital, Dr. Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Nirmala A Jambhekar
- Department of Pathology, Tata Memorial Hospital, Dr. Ernest Borges Road, Parel, Mumbai, Maharashtra, India,Address for correspondence: Dr. Nirmala Jambhekar, Department of Pathology, Tata Memorial Hospital, Parel, Mumbai-400 012, Maharashtra, India. E-mail:
| |
Collapse
|
62
|
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7:1902-19. [PMID: 19934273 DOI: 10.1158/1541-7786.mcr-09-0317] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
Collapse
Affiliation(s)
- Ioannis S Pateras
- Molecular Carcinogenesis Group, Laboratory of Histology-Embryology, Medical School, University of Athens, Greece
| | | | | | | | | |
Collapse
|
63
|
Ordóñez JL, Osuna D, Herrero D, de Alava E, Madoz-Gúrpide J. Advances in Ewing's sarcoma research: where are we now and what lies ahead? Cancer Res 2009; 69:7140-50. [PMID: 19738075 DOI: 10.1158/0008-5472.can-08-4041] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ewing's sarcoma family tumors (EFT) are characterized by specific chromosomal translocations, which lead to EWS/ETS transcription factors. Elucidation of EWS/ETS target gene networks within the context of other signaling pathways, together with the identification of the initiating cell, and the development of genetically engineered mice will hopefully lead to biology-based therapeutic strategies for these tumors.
Collapse
Affiliation(s)
- José Luis Ordóñez
- Laboratory of Molecular Pathology of Sarcomas, Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain
| | | | | | | | | |
Collapse
|
64
|
Sakurai T, Kondoh N, Arai M, Hamada JI, Yamada T, Kihara-Negishi F, Izawa T, Ohno H, Yamamoto M, Oikawa T. Functional roles of Fli-1, a member of the Ets family of transcription factors, in human breast malignancy. Cancer Sci 2009; 98:1775-84. [PMID: 17727680 DOI: 10.1111/j.1349-7006.2007.00598.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Ets family of transcription factors is implicated in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis. In the present study, we found that the Fli-1 gene, a member of the Ets family, was highly expressed in several breast cancer cell lines (MDA-MB231, MDA-MB436, BT-549 and HCC1395). To investigate the functional roles of Fli-1 in breast cancer malignancy, we introduced an expression plasmid containing full-length Fli-1 cDNA into MCF7 breast cancer cells in which endogenous expression of Fli-1 was barely detectable.Overexpression of Fli-1 in MCF7 cells led to inhibition of apoptosis induced by serum depletion or ultraviolet irradiation, although it did not affect cell growth rate in liquid media, colony formation in soft agar or the in vitro invasion capacity of the cells. Expression of Fli-1 and antiapoptotic bcl-2 was coordinately upregulated by serum depletion in MCF7 cells, and the upregulation was inhibited by treatment of the cells with a c-Jun-NH(2)-terminal kinase-specific inhibitor. Furthermore, expression of the bcl-2 gene and protein was enhanced in Fli-1-overexpressing MCF7 cells compared with mock-transfected cells. In addition, human bcl-2 promoter activity was transactivated by Fli-1. These results suggest that Fli-1 contributes to the malignancy of human breast cancer by inhibiting apoptosis through upregulated expression of the bcl-2 gene.
Collapse
Affiliation(s)
- Takuya Sakurai
- Department of Cell Genetics, Sasaki Institute, Kanda-Surugadai, Tokoyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 2009; 10 Suppl 1:S12. [PMID: 19594871 PMCID: PMC2709255 DOI: 10.1186/1471-2164-10-s1-s12] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intrinsically disordered proteins lack stable structure under physiological conditions, yet carry out many crucial biological functions, especially functions associated with regulation, recognition, signaling and control. Recently, human genetic diseases and related genes were organized into a bipartite graph (Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci U S A 104: 8685-8690). This diseasome network revealed several significant features such as the common genetic origin of many diseases. METHODS AND FINDINGS We analyzed the abundance of intrinsic disorder in these diseasome network proteins by means of several prediction algorithms, and we analyzed the functional repertoires of these proteins based on prior studies relating disorder to function. Our analyses revealed that (i) Intrinsic disorder is common in proteins associated with many human genetic diseases; (ii) Different disease classes vary in the IDP contents of their associated proteins; (iii) Molecular recognition features, which are relatively short loosely structured protein regions within mostly disordered sequences and which gain structure upon binding to partners, are common in the diseasome, and their abundance correlates with the intrinsic disorder level; (iv) Some disease classes have a significant fraction of genes affected by alternative splicing, and the alternatively spliced regions in the corresponding proteins are predicted to be highly disordered; and (v) Correlations were found among the various diseasome graph-related properties and intrinsic disorder. CONCLUSION These observations provide the basis for the construction of the human-genetic-disease-associated unfoldome.
Collapse
Affiliation(s)
- Uros Midic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Indiana University School of Informatics, Indianapolis, IN 46202, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zoran Obradovic
- Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
66
|
Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, Campos M, Madoz-Gúrpide J, Otero-Motta AP, Caballero G, Amaral AT, Wai DH, Braun Y, Eisenacher M, Schaefer KL, Poremba C, de Alava E. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 2009; 101:80-90. [PMID: 19491900 PMCID: PMC2694277 DOI: 10.1038/sj.bjc.6605104] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ewing sarcoma is a paradigm of solid tumour -bearing chromosomal translocations resulting in fusion proteins that act as deregulated transcription factors. Ewing sarcoma translocations fuse the EWS gene with an ETS transcription factor, mainly FLI1. Most of the EWS-FLI1 target genes still remain unknown and many have been identified in heterologous model systems. METHODS We have developed a stable RNA interference model knocking down EWS-FLI1 in the Ewing sarcoma cell line TC71. Gene expression analyses were performed to study the effect of RNA interference on the genetic signature of EWS-FLI1 and to identify genes that could contribute to tumourigenesis. RESULTS EWS-FLI1 inhibition induced apoptosis, reduced cell migratory and tumourigenic capacities, and caused reduction in tumour growth. IGF-1 was downregulated and the IGF-1/IGF-1R signalling pathway was impaired. PBK/TOPK (T-LAK cell-originated protein kinase) expression was decreased because of EWS-FLI1 inhibition. We showed that TOPK is a new target gene of EWS-FLI1. TOPK inhibition prompted a decrease in the proliferation rate and a dramatic change in the cell's ability to grow in coalescence. CONCLUSION This is the first report of TOPK activity in Ewing sarcoma and suggests a significant role of this MAPKK-like protein kinase in the Ewing sarcoma biology.
Collapse
Affiliation(s)
- D Herrero-Martín
- Molecular Pathology Program, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Campus Unamuno s/n, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Embree LJ, Azuma M, Hickstein DD. Ewing sarcoma fusion protein EWSR1/FLI1 interacts with EWSR1 leading to mitotic defects in zebrafish embryos and human cell lines. Cancer Res 2009; 69:4363-71. [PMID: 19417137 DOI: 10.1158/0008-5472.can-08-3229] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism whereby the fusion of EWSR1 with the ETS transcription factor FLI1 contributes to malignant transformation in Ewing sarcoma remains unclear. We show that injection of human or zebrafish EWSR1/FLI1 mRNA into developing zebrafish embryos leads to mitotic defects with multipolar and disorganized mitotic spindles. Expression of human EWSR1/FLI1 in HeLa cells also results in mitotic defects, along with mislocalization of Aurora kinase B, a key regulator of mitotic progression. Because these mitotic abnormalities mimic those observed with the knockdown of EWSR1 in zebrafish embryos and HeLa cells, we investigated whether EWSR1/FLI1 interacts with EWSR1 and interferes with its function. EWSR1 coimmunoprecipitates with EWSR1/FLI1, and overexpression of EWSR1 rescues the mitotic defects in EWSR1/FLI1-transfected HeLa cells. This interaction between EWSR1/FLI1 and EWSR1 in Ewing sarcoma may induce mitotic defects leading to genomic instability and subsequent malignant transformation.
Collapse
Affiliation(s)
- Lisa J Embree
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
68
|
Proctor A, Brownhill SC, Burchill SA. The promise of telomere length, telomerase activity and its regulation in the translocation-dependent cancer ESFT; clinical challenges and utility. Biochim Biophys Acta Mol Basis Dis 2009; 1792:260-74. [PMID: 19264125 DOI: 10.1016/j.bbadis.2009.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 01/12/2023]
Abstract
The Ewing's sarcoma family of tumours (ESFT) are diagnosed by EWS-ETS gene translocations. The resulting fusion proteins play a role in both the initiation and maintenance of these solid aggressive malignant tumours, suppressing cellular senescence and increasing cell proliferation and survival. EWS-ETS fusion proteins have altered transcriptional activity, inducing expression of a number of different target genes including telomerase. Up-regulation of hTERT is most likely responsible for the high levels of telomerase activity in primary ESFT, although telomerase activity and expression of hTERT are not predictive of outcome. However levels of telomerase activity in peripheral blood may be useful to monitor response to some therapeutics. Despite high levels of telomerase activity, telomeres in ESFT are frequently shorter than those of matched normal cells. Uncertainty about the role that telomerase and regulators of its activity play in the maintenance of telomere length in normal and cancer cells, and lack of studies examining the relationship between telomerase activity, regulators of its activity and their clinical significance in patient samples have limited their introduction into clinical practice. Studies in clinical samples using standardised assays are critical to establish how telomerase and regulators of its activity might best be exploited for patient benefit.
Collapse
Affiliation(s)
- Andrew Proctor
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
69
|
Amendola D, De Salvo M, Marchese R, Verga Falzacappa C, Stigliano A, Carico E, Brunetti E, Moscarini M, Bucci B. Myc down-regulation affects cyclin D1/cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell line. Cell Prolif 2009; 42:94-109. [PMID: 19143767 DOI: 10.1111/j.1365-2184.2008.00576.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES We investigated the antiproliferative effect of Myc down-regulation via cell proliferation inhibition, cell cycle perturbation and apoptosis in two human astrocytoma models (T98G and ADF) steadily expressing an inducible c-myc Anti-sense RNA. MATERIALS AND METHODS Cell growth experiments were performed using the trypan blue dye exclusion test and cell cycle analysis was evaluated by flow cytometry. Cell cycle molecules were detected by Western blot analysis, co-immunoprecipitation and reverse transcription-polymerase chain reaction assays. RESULTS We showed that Myc down-regulation in astrocytoma cells led to G1 accumulation and an inhibition of cell proliferation characterized by S phase delay. Co-immunoprecipitation experiments detected formation of inactive cyclin D1/cdk4 complexes as evaluated by presence of an active unphosphorylated form of retinoblastoma protein, the best characterized target substrate for cyclin D1/cdk4 complex, in ADF pINDc-myc anti-sense 7 cells. We also found that either p57Kip2 "apice" or p27Kip1 "apice" inhibitors bound to cyclin D1/cdk4 complex, thus, suggesting that they cooperated to inhibit the activity of cyclin D1/cdk4. Moreover, c-Myc down-regulation led to activation of the apoptotic mitochondrial pathway, characterized by release of cytochrome c and Smac/Diablo proteins and by reduction of c-IAP levels through activation of proteasome-mediated protein degradation system. CONCLUSIONS Our results suggest that c-Myc could be considered as a good target for the study of new approaches in anticancer astrocytoma treatment.
Collapse
Affiliation(s)
- D Amendola
- Centro Ricerca S. Pietro, Fatebenefratelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics.
Collapse
Affiliation(s)
- Susan Ann Burchill
- Candlelighter's Children's Cancer Research Group, Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
71
|
Lin PP, Pandey MK, Jin F, Xiong S, Deavers M, Parant JM, Lozano G. EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model. Cancer Res 2008; 68:8968-75. [PMID: 18974141 DOI: 10.1158/0008-5472.can-08-0573] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ewing's sarcoma is characterized by the t(11;22)(q24:q12) reciprocal translocation. To study the effects of the fusion gene EWS-FLI1 on development and tumor formation, a transgenic mouse model was created. A strategy of conditional expression was used to limit the potentially deleterious effects of EWS-FLI1 to certain tissues. In the absence of Cre recombinase, EWS-FLI1 was not expressed in the EWS-FLI1 transgenic mice, and they had a normal phenotype. When crossed to the Prx1-Cre transgenic mouse, which expresses Cre recombinase in the primitive mesenchymal cells of the embryonic limb bud, the EF mice were noted to have a number of developmental defects of the limbs. These included shortening of the limbs, muscle atrophy, cartilage dysplasia, and immature bone. By itself, EWS-FLI1 did not induce the formation of tumors in the EF transgenic mice. However, in the setting of p53 deletion, EWS-FLI1 accelerated the formation of sarcomas from a median time of 50 to 21 weeks. Furthermore, EWS-FLI1 altered the type of tumor that formed. Conditional deletion of p53 in mesenchymal cells (Prx1-Cre p53(lox/lox)) produced osteosarcomas as the predominant tumor. The presence of EWS-FLI1 shifted the tumor phenotype to a poorly differentiated sarcoma. The results taken together suggest that EWS-FLI1 inhibits normal limb development and accelerates the formation of poorly differentiated sarcomas.
Collapse
Affiliation(s)
- Patrick P Lin
- Department of Orthopaedic Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Ordóñez JL, Martins AS, Osuna D, Madoz–Gúrpide J, de Alava E. Targeting sarcomas: therapeutic targets and their rational. Semin Diagn Pathol 2008; 25:304-16. [DOI: 10.1053/j.semdp.2008.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
74
|
Noguera R, Machado I, Piqueras M, Lopez-Guerrero JA, Navarro S, Mayordomo E, Pellin A, Llombart-Bosch A. Tissue microarrays: applications in study of p16 and p53 alterations in Ewing's cell lines. Diagn Pathol 2008; 3 Suppl 1:S27. [PMID: 18673516 PMCID: PMC2500108 DOI: 10.1186/1746-1596-3-s1-s27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Tissue microarrays (TMAs) are used to study genomics and proteomics in several tumour tissue samples. Cell lines (CC) are of great importance in the study of the genetic changes in tumours, and some reveal several aspects of tumour oncogenesis. There are few published reports on Ewing's tumours with TMAs including original tumours (OT) and corresponding CC. Methods We have performed four TMAs, from 3 OT and the corresponding CC of successive in vivo and in vitro tumour passages. Xenotransplant CC in nude mice from OT (XT/OT) was made. Subsequently multiple XT were performed and in vitro XT cell line (CC/XT) was obtained. In vivo re-inoculation of CC/XT (XT/CC) was planned. TMAs with the successive tumour passages that grew in nude mice (XT/OT and XT/CC) were analyzed by morphologic pattern (Hematoxilin/eosin), immunohistochemical staining (CD99, FLI1, p16, p53, ki-67), fluorescent in situ hybridization-FISH-(EWSR1 break apart, p16 and p53 status) and gene fusion types. Results Heterogeneous results of the p16, p53 and ki67 in OT, XT/OT, CC/XT and XT/CC were observed. The three cell lines revealed EWS/FLI1 rearrangements. p16 gene was deleted only in one case. The deletion was detected by FISH and confirmed by PCR assays. A p53 alteration was found in the second case with monosomy and subsequently polysomic status of chromosome 17 during the evolution of CC. The PCR study revealed p53 mutation. The third case showed hypermethylation in the promoter of p16. The growth of the tumour in nude mice was more accelerated when the inoculation was performed from the CC/XT, increasing progressively over the passages. The third case did not reveal tumour growth in nude mice after the re-inoculation of CC/XT. Conclusion The study of several cores from original tumours and successive tumour passages in TMAs facilitated the analysis of the genetic alteration and protein expression in Ewing's tumours.
Collapse
Affiliation(s)
- Rosa Noguera
- Department of Pathology, University of Valencia, Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD, Aifantis I. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. ACTA ACUST UNITED AC 2008; 205:1395-408. [PMID: 18474632 PMCID: PMC2413036 DOI: 10.1084/jem.20080277] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination is a posttranslational mechanism that controls diverse cellular processes. We focus here on the ubiquitin ligase Fbw7, a recently identified hematopoietic tumor suppressor that can target for degradation several important oncogenes, including Notch1, c-Myc, and cyclin E. We have generated conditional Fbw7 knockout animals and inactivated the gene in hematopoietic stem cells (HSCs), progenitors, and their differentiated progeny. Deletion of Fbw7 specifically and rapidly affects hematopoiesis in a cell-autonomous manner. Fbw7(-/-) HSCs show defective maintenance of quiescence, leading to impaired self-renewal and a severe loss of competitive repopulating capacity. Furthermore, Fbw7(-/-) progenitors are unable to colonize the thymus, leading to a profound depletion of T cell progenitors. Deletion of Fbw7 in bone marrow (BM) stem cells and progenitors leads to the stabilization of c-Myc, a transcription factor previously implicated in HSC self-renewal. On the other hand, neither Notch1 nor cyclin E is visibly stabilized in the BM of Fbw7-deficient mice. Gene expression studies of Fbw7(-/-) HSCs and hematopoietic progenitors indicate that Fbw7 regulates, through the regulation of HSC cycle entry, the transcriptional "signature" that is associated with the quiescent, self-renewing HSC phenotype.
Collapse
Affiliation(s)
- Benjamin J Thompson
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
White DE, Burchill SA. BAY 11-7082 induces cell death through NF-kappaB-independent mechanisms in the Ewing's sarcoma family of tumours. Cancer Lett 2008; 268:212-24. [PMID: 18471963 DOI: 10.1016/j.canlet.2008.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
The role of NF-kappaB in the Ewing's sarcoma family of tumours (ESFT) and their response to fenretinide has been investigated. Basal levels of phosphorylated NF-kappaB were low in all ESFT cells. BAY 11-7082 decreased cell viability, which was accompanied by caspase-3 cleavage. This was independent of the increase in reactive oxygen species, p38(MAPK) phosphorylation and expression of NF-kappaB target proteins. NF-kappaB knockdown did not induce death under normal growth conditions, but did reduce TNFalpha-dependent cell survival. Fenretinide-induced apoptosis was independent of NF-kappaB. BAY 11-7082-induced cell death through an NF-kappaB-independent mechanism and enhanced cell death when combined with fenretinide.
Collapse
Affiliation(s)
- Danielle E White
- Candlelighter's Children's Cancer Research Group, Leeds Institute of Molecular Medicine, Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, UK.
| | | |
Collapse
|
77
|
Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ, May WA. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 2007; 27:3282-91. [DOI: 10.1038/sj.onc.1210991] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
78
|
Riggi N, Cironi L, Suvà ML, Stamenkovic I. Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007; 213:4-20. [PMID: 17691072 DOI: 10.1002/path.2209] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sarcomas comprise some of the most aggressive solid tumours that, for the most part, respond poorly to chemo- and radiation therapy and are associated with a sombre prognosis when surgical removal cannot be performed or is incomplete. Partly because of their lower frequency, sarcomas have not been studied as intensively as carcinomas and haematopoietic malignancies, and the molecular mechanisms that underlie their pathogenesis are only beginning to be understood. Even more enigmatic is the identity of the primary cells from which these tumours originate. Over the past 25 years, however, several non-random chromosomal translocations have been found to be associated with defined sarcomas. Each of these translocations generates a fusion gene believed to be directly related to the pathogenesis of the sarcoma in which it is expressed. The corresponding fusion proteins provide a unique tool not only to study the process of sarcoma development, but also to identify cells that are permissive for their putative oncogenic properties. This is the first of two reviews that cover the mechanisms whereby specific fusion/mutant gene products participate in sarcoma development and the cellular context that may provide the necessary permissiveness for their expression and oncogenicity. Part 1 of the review focuses on sarcomas that express fusion genes containing TET gene family products, including EWSR1, TLS/FUS, and TAFII68. Part 2 (J Pathol 2007; DOI: 10.1002/path.2008) summarizes our current understanding of the genetic and cellular origins of sarcomas expressing fusion genes exclusive of TET family members; it also covers soft tissue malignancies harbouring specific mutations in RTK-encoding genes, the prototype of which are gastrointestinal stromal tumours (GIST).
Collapse
Affiliation(s)
- N Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
79
|
Honoki K, Stojanovski E, McEvoy M, Fujii H, Tsujiuchi T, Kido A, Takakura Y, Attia J. Prognostic significance of p16 INK4a alteration for Ewing sarcoma: a meta-analysis. Cancer 2007; 110:1351-60. [PMID: 17661343 DOI: 10.1002/cncr.22908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Despite findings from individual studies regarding prognostic factors for Ewing sarcoma, no conclusive results have been produced, partly because of small sample sizes. The objective of the current study was to evaluate whether the presence of p16(INK4a) alteration is associated with a poorer prognosis in patients with Ewing sarcomas. METHODS A review was conducted of publications that assessed associations between p16(INK4a) status and 2-year survival among patients with Ewing sarcoma. The association between metastatic disease at initial diagnosis and 2-year survival was evaluated by synthesizing data in the form of risk ratios. RESULTS Of 11 studies that were identified in the initial search strategy, 6 studies, representing 188 patients, met the inclusion criteria and, consequently, were pooled for quantitative analyses. The estimated pooled risk ratio of p16(INK4a) aberration was 2.17 (95% confidence interval [95% CI], 1.55-3.03; P < .001), whereas the estimated pooled risk ratio of metastasis at diagnosis among the 164 eligible patients was 2.60 (95% CI, 1.71-3.97; P < .001). There was no statistically significant difference in the pooled estimated risk ratios of p16(INK4a) aberration for a poor prognosis between patients with and without metastasis at diagnosis (1.86 and 2.21, respectively; P > .59). CONCLUSIONS The presence of p16(INK4a) alteration was a statistically significant predictor of prognosis for patients with Ewing sarcoma. Along with other prognostic factors, such as metastasis, the p16(INK4a) alteration may be a potential candidate for improving the risk-stratifying strategy for patients with these tumors.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Nara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11:421-9. [PMID: 17482132 DOI: 10.1016/j.ccr.2007.02.027] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 12/04/2006] [Accepted: 02/28/2007] [Indexed: 12/12/2022]
Abstract
The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.
Collapse
Affiliation(s)
- Franck Tirode
- Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
81
|
Carrillo J, García-Aragoncillo E, Azorín D, Agra N, Sastre A, González-Mediero I, García-Miguel P, Pestaña A, Gallego S, Segura D, Alonso J. Cholecystokinin Down-Regulation by RNA Interference Impairs Ewing Tumor Growth. Clin Cancer Res 2007; 13:2429-40. [PMID: 17438102 DOI: 10.1158/1078-0432.ccr-06-1762] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumors of the Ewing family are characterized by chromosomal translocations that yield chimeric transcription factors, such as EWS/FLI1, which regulate the expression of specific genes that contribute to the malignant phenotype. In the present study, we show that cholecystokinin (CCK) is a new target of the EWS/FLI1 oncoprotein and assess its functional role in Ewing tumor pathogenesis. EXPERIMENTAL DESIGN Relevant EWS/FLI1 targets were identified using a combination of cell systems with inducible EWS/FLI1 expression, Ewing tumors and cell lines, microarrays, and RNA interference with doxycycline-inducible small hairpin RNA (shRNA) vectors. A doxycycline-inducible CCK-shRNA vector was stably transfected in A673 and SK-PN-DW Ewing cell lines to assess the role of CCK in cell proliferation and tumor growth. RESULTS Microarray analysis revealed that CCK was up-regulated by EWS/FLI1 in HeLa cells. CCK was overexpressed in Ewing tumors as compared with other pediatric malignancies such as rhabdomyosarcoma and neuroblastoma, with levels close to those detected in normal tissues expressing the highest levels of CCK. Furthermore, EWS/FLI1 knockdown in A673 and SK-PN-DW Ewing cells using two different doxycycline-inducible EWS/FLI1-specific shRNA vectors down-regulated CCK mRNA expression and diminished the levels of secreted CCK, showing that CCK is a EWS/FLI1 specific target gene in Ewing cells. A doxycycline-inducible CCK-specific shRNA vector successfully down-regulated CCK expression, reduced the levels of secreted CCK in Ewing cell lines, and inhibited cell growth and proliferation in vitro and in vivo. Finally, we show that Ewing cell lines and tumors express CCK receptors and that the growth inhibition produced by CCK silencing can be rescued by culturing the cells with medium containing CCK. CONCLUSIONS Our data support the hypothesis that CCK acts as an autocrine growth factor stimulating the proliferation of Ewing cells and suggest that therapies targeting CCK could be promising in the treatment of Ewing tumors.
Collapse
Affiliation(s)
- Jaime Carrillo
- Laboratorio de Patología Molecular de Tumores Sólidos Infantiles, Departamento de Biología Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas A. Sols (CSIC-UAM), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V. Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma. Clin Cancer Res 2007; 12:6781-90. [PMID: 17121899 DOI: 10.1158/1078-0432.ccr-06-0609] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To show the efficacy of targeting EWS/FLI-1 expression with a combination of specific antisense oligonucleotides and rapamycin for the control of Ewing's sarcoma (EWS) cell proliferation in vitro and the treatment of mouse tumor xenografts in vivo. EXPERIMENTAL DESIGN EWS cells were simultaneously exposed to EWS/FLI-1-specific antisense oligonucleotides and rapamycin for various time periods. After treatment, the following end points were monitored and evaluated: expression levels of the EWS/FLI-1 protein, cell proliferation, cell cycle distribution, apoptotic cell death, caspase activation, and tumor growth in EWS xenografts implanted in nude mice. RESULTS Simultaneous exposure of EWS cells in culture to an EWS/FLI-1-targeted suppression therapy using specific antisense oligonucleotides and rapamycin resulted in the activation of a caspase-dependent apoptotic process that involved the restoration of the transforming growth factor-beta-induced proapoptotic pathway. In vivo, individual administration of either antisense oligonucleotides or rapamycin significantly delayed tumor development, and the combined treatment with antisense oligonucleotides and rapamycin caused a considerably stronger inhibition of tumor growth. CONCLUSIONS Concurrent administration of EWS/FLI-1 antisense oligonucleotides and rapamycin efficiently induced the apoptotic death of EWS cells in culture through a process involving transforming growth factor-beta. In vivo experiments conclusively showed that the combined treatment with antisense oligonucleotides and rapamycin caused a significant inhibition of tumor growth in mice. These results provide proof of principle for further exploration of the potential of this combined therapeutic modality as a novel strategy for the treatment of tumors of the Ewing's sarcoma family.
Collapse
Affiliation(s)
- Silvia Mateo-Lozano
- Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, V.T. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057-1482, USA
| | | | | | | | | | | |
Collapse
|
83
|
Riggi N, Stamenkovic I. The Biology of Ewing sarcoma. Cancer Lett 2007; 254:1-10. [PMID: 17250957 DOI: 10.1016/j.canlet.2006.12.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 12/19/2022]
Abstract
Sarcomas account for less than 10% of all human malignancies that are believed to originate from as yet poorly defined mesenchymal progenitor cells. They constitute some of the most aggressive adult and childhood cancers in that they have a high metastatic proclivity and are typically refractory to conventional chemo- and radiation therapy. Ewing's sarcoma is a member of Ewing's family tumors (ESFT) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The resulting EWS-FLI-1 fusion protein is believed to behave as an aberrant transcriptional activator that contributes to ESFT development by altering the expression of its target genes in a permissive cellular environment. Although ESFTs are among the best studied sarcomas, the mechanisms involved in EWS-FLI-1-induced transformation require further elucidation and the primary cells from which ESFTs originate need to be identified. This review will highlight some of the most recent discoveries in the field of Ewing sarcoma biology and origins.
Collapse
Affiliation(s)
- Nicolò Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Switzerland
| | | |
Collapse
|
84
|
Ma Y, Cress WD. Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity. Oncogene 2006; 26:3532-40. [PMID: 17173074 PMCID: PMC2128050 DOI: 10.1038/sj.onc.1210143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In spite of the fact that cyclin-dependent kinase (cdk) inhibiting drugs are potent transcriptional repressors, we discover that p57 (Kip2, CDKN1C) transcription is significantly upregulated by three small molecule cdk inhibitors, including BMS-387032. Treatment of MDA-MB-231 breast cancer cells with BMS-387032 led to a stabilization of the E2F1 protein that was accompanied by significant increases in the p57 mRNA and protein. This increase did not occur in an E2F1-deficient cell line. An E2F1-estrogen receptor fusion protein activated the endogenous p57 promoter in response to hydroxytamoxifen treatment in the presence of cycloheximide. Luciferase constructs driven by the p57 promoter verified that upregulation of p57 mRNA by BMS-387032 is transcriptional and dependent on E2F-binding sites in the promoter. Expression of exogenous p57 significantly decreased the fraction of cells in S phase. Furthermore, p57-deficient MDA-MB-231 cell lines were significantly more sensitive to BMS-387032-induced apoptosis than controls. The results presented in this manuscript demonstrate that small molecule cdk inhibitors transcriptionally activate p57 dependent upon E2F1 and that this activation in turn serves to limit E2F1's death-inducing activity.
Collapse
Affiliation(s)
- Y Ma
- Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, College of Medicine, Tampa, FL 33612-9497, USA
| | | |
Collapse
|
85
|
Aryee DNT, Kreppel M, Bachmaier R, Uren A, Muehlbacher K, Wagner S, Breiteneder H, Ban J, Toretsky JA, Kovar H. Single-chain antibodies to the EWS NH(2) terminus structurally discriminate between intact and chimeric EWS in Ewing's sarcoma and interfere with the transcriptional activity of EWS in vivo. Cancer Res 2006; 66:9862-9. [PMID: 17047047 DOI: 10.1158/0008-5472.can-05-4042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chimeric protein EWS-FLI1, arising from chromosomal translocation in Ewing's sarcoma family tumors (ESFT), acts as an aberrant tumorigenic transcription factor. The transforming activity of EWS-FLI1 minimally requires an ETS DNA binding domain and the EWS NH(2) terminus. Proteins interacting with the EWS portion differ between germ-line and chimeric EWS despite their sharing identical sequences in this domain. We explored the use of the phage display technology to isolate anti-EWS-FLI1 specific single-chain antibody fragments (scFvs). Using recombinant EWS-FLI1 as bait, 16 independent specific antibody clones were isolated from combinatorial phage display libraries, of which six were characterized in detail. Despite differing in their complementarity-determining region sequences, all six scFvs bound to the same epitope spanning residues 51 to 75 within the shared minimal transforming EWS domain. Whereas all six scFvs bound efficiently to cellular EWS, reactivity with ESFT-expressed EWS-FLI1 was weak and restricted to denatured protein. One scFv, scFv-I85, when expressed as an intrabody, efficiently suppressed EWS-dependent coactivation of hepatocyte nuclear factor 4- and OCT4-mediated transcription in vivo but no effect on known EWS-FLI1 target genes was observed. These data suggest that a prominent EWS epitope exposed on recombinant EWS-FLI1 structurally differs between germ-line and chimeric EWS in mammalian cells and that this region is functionally involved in the transcriptional activity of EWS. Thus, we have generated a tool that will prove useful to specifically differentiate between normal and rearranged EWS in functional studies.
Collapse
|
86
|
Kinsey M, Smith R, Lessnick SL. NR0B1 Is Required for the Oncogenic Phenotype Mediated by EWS/FLI in Ewing's Sarcoma. Mol Cancer Res 2006; 4:851-9. [PMID: 17114343 DOI: 10.1158/1541-7786.mcr-06-0090] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of solid tumors, such as alveolar rhabdomyosarcoma, synovial sarcoma, and myxoid liposarcoma, are associated with recurrent translocation events that encode fusion proteins. Ewing's sarcoma is a pediatric tumor that serves as a prototype for this tumor class. Ewing's sarcomas usually harbor the (11;22)(q24;q12) translocation. The t(11;22) encodes the EWS/FLI fusion oncoprotein. EWS/FLI functions as an aberrant transcription factor, but the key target genes that are involved in oncogenesis are largely unknown. Although some target genes have been defined, many of these have been identified in heterologous model systems with uncertain relevance to the human disease. To understand the function of EWS/FLI and its targets in a more clinically relevant system, we used retroviral-mediated RNAi to "knock-down" the fusion protein in patient-derived Ewing's sarcoma cell lines. By combining transcriptional profiling data from three of these lines, we identified a conserved transcriptional response to EWS/FLI. The gene that was most reproducibly up-regulated by EWS/FLI was NR0B1. NR0B1 is a developmentally important orphan nuclear receptor with no previously defined role in oncogenesis. We validated NR0B1 as an EWS/FLI-dysregulated gene and confirmed its expression in primary human tumor samples. Functional studies revealed that ongoing NR0B1 expression is required for the transformed phenotype of Ewing's sarcoma. These studies define a new role for NR0B1 in oncogenic transformation and emphasize the utility of analyzing the function of EWS/FLI in Ewing's sarcoma cells.
Collapse
Affiliation(s)
- Michelle Kinsey
- The Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
87
|
Kikuchi R, Murakami M, Sobue S, Iwasaki T, Hagiwara K, Takagi A, Kojima T, Asano H, Suzuki M, Banno Y, Nozawa Y, Murate T. Ewing's sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of 5' promoter. Oncogene 2006; 26:1802-10. [PMID: 16964281 DOI: 10.1038/sj.onc.1209973] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It was reported that short interfering RNA (siRNA) of EWS/Fli-1 downregulated phospholipase D (PLD)2 in Ewing's sarcoma (EWS) cell line, suggesting that PLD2 is the target of aberrant transcription factor, EWS/Fli-1. Here, we further investigated the regulation of PLD2 gene expression by EWS/Fli-1 and Fli-1 in another EWS cell line, and also in EWS/Fli-1- or Fli-1-transfected cell line. EWS/Fli-1- or Fli-1-overexpressed cells showed higher PLD2 but not PLD1 protein expression and enhanced cell proliferation as compared to mock transfectant. The treatment of these cells with 1-butanol or siRNA of PLD2 inhibited cell growth, suggesting the pivotal role of PLD in cell growth promotion. PLD2 but not PLD1 mRNA level was also increased in EWS/Fli-1 or Fli-1-transfectants. After determining the transcription initiation points, we cloned the 5' promoter of both PLD1 and PLD2 and analysed promoter activities. Results showed that EWS/Fli-1 and Fli-1 increase PLD2 gene expression by binding to an erythroblast transformation-specific domain (-126 to -120 bp from the transcription initiation site) of PLD2 promoter, which is the minimal and most powerful region. Electrophoresis mobility shift assay using truncated proteins showed that both DNA-binding domain and trans-activating domain were necessary for the enhanced gene expression of PLD2.
Collapse
Affiliation(s)
- R Kikuchi
- Nagoya University Graduate School of Medicine, Nagoya University School of Health Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Saab R, Bills JL, Miceli AP, Anderson CM, Khoury JD, Fry DW, Navid F, Houghton PJ, Skapek SX. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther 2006; 5:1299-308. [PMID: 16731763 DOI: 10.1158/1535-7163.mct-05-0383] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myoblast cell cycle exit and differentiation are mediated in part by down-regulation of cyclin D1 and associated cyclin-dependent kinase (Cdk) activity. Because rhabdomyosarcoma may represent a malignant tumor composed of myoblast-like cells failing to exit the cell cycle and differentiate, we considered whether excess Cdk activity might contribute to this biology. Cyclin D-dependent Cdk4 and Cdk6 were expressed in most of a panel of six human rhabdomyosarcoma-derived cell lines. Cdk4 was expressed in 73% of alveolar and embryonal rhabdomyosarcoma tumors evaluated using a human tissue microarray. When challenged to differentiate by mitogen deprivation in vitro, mouse C2C12 myoblasts arrested in G(1) phase of the cell cycle, whereas four in the panel of rhabdomyosarcoma cell lines failed to do so. C2C12 myoblasts maintained in mitogen-rich media and exposed to a Cdk4/Cdk6 inhibitor PD 0332991 accumulated in G(1) cell cycle phase. Similar treatment of rhabdomyosarcoma cell lines caused G(1) arrest and prevented cell accumulation in vitro, and it delayed growth of rhabdomyosarcoma xenografts in vivo. Consistent with a role for Cdk4/Cdk6 activity as a regulator of myogenic differentiation, we observed that PD 0332991 exposure promoted morphologic changes and enhanced the expression of muscle-specific proteins in cultured myoblasts and in the Rh30 cell line. Our findings support the concept that pharmacologic inhibition of Cdk4/Cdk6 may represent a useful therapeutic strategy to control cell proliferation and possibly promote myogenic differentiation in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Raya Saab
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Ewing's sarcoma and related tumors (ESFT) are characterized by rearrangements of EWS with ets family genes. While detection of these gene fusions greatly facilitated diagnosis, it has not provided any clues about the tissue of origin. Immunological and gene expression profiling studies favour a neuroectodermal histogenesis. These investigations did not appreciate the impact of EWS-ets proteins on the tumor phenotype. Introduction of EWS-ets into different cellular models resulted in diverse outcomes ranging from the induction of cell cycle arrest or apoptosis to transformation and tumorigenicity, and from blocked differentiation to trans-differentiation. Thus, the molecular signature of EWS-ets proteins depends on the cell type. The hen or egg problem in ESFT, therefore, is whether ESFT reflect the phenotype of the tumor stem cell that is blocked in differentiation by the activity of the EWS-ets gene fusion or if the oncogene imposes an incomplete differentiation program on a pluripotent precursor cell. This article addresses the problem by considering the tissue distribution of FLI1 and ERG expression and by reviewing evidence for combinatorial control of EWS-ets activity.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria.
| |
Collapse
|
90
|
Uren A, Toretsky JA. Ewing's sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol 2006; 1:521-8. [PMID: 16556028 DOI: 10.2217/14796694.1.4.521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ewing's sarcoma family of tumors (ESFT) affect patients between the ages of 3 and 40 years, with most cases occurring in the second decade of life. ESFTs are characterized by a translocation that occurs in 95% of tumors. This translocation joins the Ewing's sarcoma gene (EWS) located on chromosome 22 to an ets family gene; either friend leukemia insertion (FLI)1 located on chromosome 11, t(11;22), or ets-related gene (ERG) located on chromosome 21, t(21;22). The EWS-FLI1 fusion transcript encodes a 68 kDa protein with two primary domains. The EWS domain is a potent transcriptional activator, while the FLI1 domain contains a highly conserved ets DNA binding domain. ESFT presents a clinical challenge, especially in patients with metastatic disease in which dose-intensifying chemotherapy with bone-marrow transplantation does not improve survival. EWS-FLI1 is only present in ESFT cells and does not exist in any normal cell of the body. Experiments using ESFT cell lines or animal xenograft models have proven that EWS-FLI1 is required for tumor survival. Therefore, ESFT contains a unique protein generated by a tumor-specific translocation that has great potential as a molecular target for therapy. However, therapeutic applications directed towards eliminating or inactivating EWS-FLI1 have not reached the clinic. EWS-FLI1 has been a very difficult molecule to directly analyze in vitro due to poor solubility. Recent advances in generating recombinant EWS-FLI1 and novel data on the cellular functions of EWS-FLI1 should enhance progress towards understanding and application.
Collapse
Affiliation(s)
- Aykut Uren
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, 3970 Reservoir Road North West, New Research Building, Room W316, Washington DC, WA 20057, USA.
| | | |
Collapse
|
91
|
Kleine-Kohlbrecher D, Adhikary S, Eilers M. Mechanisms of transcriptional repression by Myc. Curr Top Microbiol Immunol 2006; 302:51-62. [PMID: 16620025 DOI: 10.1007/3-540-32952-8_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myc proteins are nuclear proteins that exert their biological functions at least in part through the transcriptional regulation of large sets of target genes. Recent microarray analyses show that several percent of all genes may be directly regulated by Myc. A large body of data shows that Myc proteins both positively and negatively affect transcription. The basic mechanism underlying Myc's activation of transcription is well understood, but the mechanisms through which Myc negatively regulates or represses transcription are far less understood. In this chapter, we will review our current knowledge about this less-well-understood topic.
Collapse
Affiliation(s)
- D Kleine-Kohlbrecher
- Institute for Molecular Biology and Tumor Research, University of Marburg, 35033 Marburg, Germany
| | | | | |
Collapse
|
92
|
Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, Lessnick SL. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 2006; 9:405-16. [PMID: 16697960 DOI: 10.1016/j.ccr.2006.04.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/07/2006] [Accepted: 04/06/2006] [Indexed: 02/06/2023]
Abstract
Our understanding of Ewing's sarcoma development mediated by the EWS/FLI fusion protein has been limited by a lack of knowledge regarding the tumor cell of origin. To circumvent this, we analyzed the function of EWS/FLI in Ewing's sarcoma itself. By combining retroviral-mediated RNA interference with reexpression studies, we show that ongoing EWS/FLI expression is required for the tumorigenic phenotype of Ewing's sarcoma. We used this system to define the full complement of EWS/FLI-regulated genes in Ewing's sarcoma. Functional analysis revealed that NKX2.2 is an EWS/FLI-regulated gene that is necessary for oncogenic transformation in this tumor. Thus, we developed a highly validated transcriptional profile for the EWS/FLI fusion protein and identified a critical target gene in Ewing's sarcoma development.
Collapse
Affiliation(s)
- Richard Smith
- The Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
McAllister NR, Lessnick SL. The potential for molecular therapeutic targets in Ewing's sarcoma. Curr Treat Options Oncol 2006; 6:461-71. [PMID: 16242051 DOI: 10.1007/s11864-005-0025-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ewing's sarcoma is an uncompromising tumor of children and young adults. Before the introduction of chemotherapy for Ewing's sarcoma, nearly all patients succumbed to their disease, even with highly aggressive approaches to local control. The realization that most patients have micrometastatic disease at presentation, and the identification of active chemotherapeutic agents for this tumor, have resulted in significant improvements in patient survival. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Current therapy remains imperfect. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side effects of therapy, including infertility, limb dysfunction, and an increased risk for second malignancies. More effective and less toxic therapies are needed. This report presents an overview of dysregulated molecular pathways in Ewing's sarcoma and highlights the possibility that they may serve as therapeutic targets for the disease. Although a great deal of additional investigation is required before most of these approaches can be assessed in the clinic, we think that these potential new targets offer a great deal of hope for patients with Ewing's sarcoma.
Collapse
Affiliation(s)
- Nancy R McAllister
- Huntsman Cancer Institute, Room 4242, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
94
|
Kontny U. Regulation of apoptosis and proliferation in Ewing's sarcoma--opportunities for targeted therapy. Hematol Oncol 2006; 24:14-21. [PMID: 16400699 DOI: 10.1002/hon.766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ewing's sarcoma family of tumors are malignant tumors of bone and soft tissue which occur predominantely in children and adolescents. Whereas cure rates for patients with localized tumors are around 70%, survival rates for patients with metastases or relapse are poor in spite of intensive chemo- and radiation therapy, demonstrating a clear need for new, more effective therapies. Insights into the biology of the tumors of the Ewing's sarcoma family with identification of the EWS/ETS gene rearrangement as the key event in malignant transformation and its influence on the regulation of various pathways involved in proliferation, differentiation and apoptosis has led to the identification of potential targets for the development of new molecular therapeutics. This review will focus on the regulation of major pathways of proliferation and apoptosis in tumors of the Ewing's sarcoma family and point out how modulation of these pathways might be of potential use for future therapy.
Collapse
Affiliation(s)
- Udo Kontny
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Germany.
| |
Collapse
|
95
|
Riggi N, Cironi L, Provero P, Suvà ML, Kaloulis K, Garcia-Echeverria C, Hoffmann F, Trumpp A, Stamenkovic I. Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 2006; 65:11459-68. [PMID: 16357154 DOI: 10.1158/0008-5472.can-05-1696] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ewing's sarcoma is a member of Ewing's family tumors (EFTs) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The EWS-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to EFT development. However, EWS-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are permissive for its putative oncogenic properties have not been discovered, hampering basic understanding of EFT biology. Here, we show that EWS-FLI-1 alone can transform primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of EFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWS-FLI-1 target genes. These observations provide the first identification of candidate primary cells from which EFTs originate and suggest that EWS-FLI-1 expression may constitute the initiating event in EFT pathogenesis.
Collapse
Affiliation(s)
- Nicolò Riggi
- Experimental Pathology Division, Institute of Pathology, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Vaccarello G, Figliola R, Cramerotti S, Novelli F, Maione R. p57Kip2 is Induced by MyoD Through a p73-dependent Pathway. J Mol Biol 2006; 356:578-88. [PMID: 16405903 DOI: 10.1016/j.jmb.2005.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 12/31/2022]
Abstract
The cyclin-dependent-kinase inhibitors p21 and p57 are highly expressed in skeletal muscle where they redundantly control cell cycle arrest during differentiation. We have previously shown that p57 is a target of the myogenic factor MyoD in cells lacking p21. Here we show that MyoD induces p57 at the transcriptional level through a mechanism different from that involved in p21 regulation, since it is E-box-independent and requires new synthesized protein(s). We have identified p73 family members as the factors that mediate the activation of p57 through a 165bp promoter region. The levels of p73 alpha, beta and delta isoforms increase during muscle differentiation both in MyoD-expressing fibroblasts and in spontaneously differentiating C2 myoblasts. Moreover, the expression of a p73 dominant negative mutant interferes with the induction of p57. Finally, each of the isoforms up-regulated by MyoD, even when over-expressed alone, is capable of inducing p57 in p21-lacking fibroblasts. In contrast, the same p73 isoforms, either induced by MyoD or exogenously over-expressed, are unable to activate the expression of p57 in p21-expressing fibroblasts. Our finding that a transfected p57 promoter-reporter construct, unlike the endogenous gene, is responsive to both MyoD and p73 even in these cells, suggests that a cis-acting mechanism, probably involving a repressive chromatin structure, prevents the induction of p57 in p21-expressing fibroblasts.
Collapse
Affiliation(s)
- Giovanna Vaccarello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | |
Collapse
|
97
|
Koo JY, Sohn I, Kim S, Lee JW. Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics 2006; 22:950-8. [PMID: 16452113 DOI: 10.1093/bioinformatics/btl029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The problem of class prediction has received a tremendous amount of attention in the literature recently. In the context of DNA microarrays, where the task is to classify and predict the diagnostic category of a sample on the basis of its gene expression profile, a problem of particular importance is the diagnosis of cancer type based on microarray data. One method of classification which has been very successful in cancer diagnosis is the support vector machine (SVM). The latter has been shown (through simulations) to be superior in comparison with other methods, such as classical discriminant analysis, however, SVM suffers from the drawback that the solution is implicit and therefore is difficult to interpret. In order to remedy this difficulty, an analysis of variance decomposition using structured kernels is proposed and is referred to as the structured polychotomous machine. This technique utilizes Newton-Raphson to find estimates of coefficients followed by the Rao and Wald tests, respectively, for addition and deletion of import vectors. RESULTS The proposed method is applied to microarray data and simulation data. The major breakthrough of our method is efficiency in that only a minimal number of genes that accurately predict the classes are selected. It has been verified that the selected genes serve as legitimate markers for cancer classification from a biological point of view. AVAILABILITY All source codes used are available on request from the authors.
Collapse
Affiliation(s)
- Ja-Yong Koo
- Department of Statistics, Korea University, Seoul 136-701, Korea.
| | | | | | | |
Collapse
|
98
|
Tirado OM, Mateo-Lozano S, Notario V. Roscovitine is an effective inducer of apoptosis of Ewing's sarcoma family tumor cells in vitro and in vivo. Cancer Res 2005; 65:9320-7. [PMID: 16230394 DOI: 10.1158/0008-5472.can-05-1276] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ewing's sarcoma family of tumors (ESFT) comprises several well-characterized malignant neoplasms with particularly aggressive behavior. Despite recent progress in the use of multimodal therapeutic approaches and aggressive local control measures, a substantial proportion of patients die because of disease progression. Furthermore, this outcome has not changed significantly over the last 15 to 20 years. Consequently, new, more effective therapeutic options are sorely needed for the treatment of ESFT. Because ESFT cells overexpress several cyclin-dependent kinases (CDK), we explored the efficacy against ESFT of roscovitine, a CDK inhibitor shown to be surprisingly safe for humans in clinical trials of their anticancer activity. Results showed that ESFT cell lines are uniformly sensitive to roscovitine. In addition to exerting comparatively minor cell cycle effects, roscovitine treatment concomitantly caused the up-regulation of the expression of the proapoptotic protein BAX and the down-regulation of both survivin and XIAP, thus resulting in caspase-dependent apoptosis. Furthermore, in vivo experiments showed that s.c. growth of ESFT xenografts was also significantly slowed by i.p. injection of roscovitine. These results strongly suggest that roscovitine may be an effective therapeutic agent against ESFT and recommend its evaluation against ESFT in clinical trials and its inclusion in future treatment protocols.
Collapse
Affiliation(s)
- Oscar M Tirado
- Laboratory of Experimental Carcinogenesis, Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057-1482, USA
| | | | | |
Collapse
|
99
|
Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria RL. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors. Cancer Res 2005; 65:8698-705. [PMID: 16204038 DOI: 10.1158/0008-5472.can-05-1704] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma is the second most common malignant pediatric bone tumor. Over 80% of Ewing sarcoma contain the oncogene EWS/FLI-1, which encodes the EWS/FLI-1 oncoprotein, a hybrid transcription factor comprised of NH2-terminal sequences from the RNA-binding protein EWS and the DNA-binding and COOH-terminal regions of the Ets transcription factor FLI-1. Although numerous genes are dysregulated by EWS/FLI-1, advances in Ewing sarcoma cancer biology have been hindered by the lack of an animal model because of EWS/FLI-1-mediated cytotoxicity. In this study, we have developed conditions for the isolation and propagation of murine primary bone-derived cells (mPBDC) that stably express EWS/FLI-1. Early-passage EWS/FLI-1 mPBDCs were immortalized in culture but inefficient at tumor induction, whereas later-passage cells formed sarcomatous tumors in immunocompetent syngeneic mice. Murine EWS/FLI-1 tumors contained morphologically primitive cells that lacked definitive lineage markers. Molecular characterization of murine EWS/FLI-1 tumors revealed that some but not all had acquired a novel, clonal in-frame p53 mutation associated with a constitutive loss of p21 expression. Despite indications that secondary events facilitated EWS/FLI-1 mPBDC tumorigenesis, cells remained highly dependent on EWS/FLI-1 for efficient transformation in clonogenic assays. This Ewing sarcoma animal model will be a useful tool for dissecting the molecular pathogenesis of Ewing sarcoma and provides rationale for the broader use of organ-specific progenitor cell populations for the study of human sarcoma.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Cycle/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/biosynthesis
- Proto-Oncogene Protein c-fli-1/genetics
- RNA-Binding Protein EWS/biosynthesis
- RNA-Binding Protein EWS/genetics
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
Collapse
Affiliation(s)
- Yeny Castillero-Trejo
- Hamon Center for Therapeutic Oncology Research, Department of Pathology, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
Ewing tumors, which comprise Ewing's sarcoma and peripheral primitive neuroectodermal tumors, are highly aggressive and mostly affect children and adolescents. Their molecular signature is a chromosomal translocation leading to the generation of EWS-ETS (or very rarely FUS-ETS) fusion proteins that are capable of transforming cells. These oncoproteins act as aberrant transcription factors due to the fusion of an ETS DNA binding domain to a highly potent EWS (or FUS) transactivation domain. Accordingly, many EWS-ETS target genes have been identified whose dysregulation could contribute to the development of tumor formation. Furthermore, EWS-ETS oncoproteins may impact on RNA splicing or affect other proteins through disturbing their ability to form functional complexes. The molecular knowledge gained so far from studying EWS-ETS oncoproteins has not only broadened our understanding of Ewing tumors but also improved the diagnosis of these highly undifferentiated tumors. In addition, several potential prognostic markers have been uncovered and novel therapies are suggested that may improve the still dismal survival rate of Ewing tumor patients.
Collapse
Affiliation(s)
- Ralf Janknecht
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|