51
|
Cheng SX, Tu Y, Zhang S. FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression. PLoS One 2013; 8:e72376. [PMID: 23991102 PMCID: PMC3753245 DOI: 10.1371/journal.pone.0072376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Forkhead box M1 (FoxM1) is a member of the forkhead transcription factor family and is overexpression in malignant gliomas. However, the molecular mechanisms by which FoxM1lead to glioma carcinogenesis and progression are still not well known. In the present study, we show that Anxa1 was overexpression in gliomas and predicted the poor outcome. Furthermore, Anxa1 closely related to the FoxM1 expression and was a direct transcriptional target of FoxM1. Overexpression of FoxM1 up-regulated Anxa1 expression, whereas suppression of FoxM1 expression down-regulated Anxa1 expression in glioma cells. Finally, FoxM1 enhanced the proliferation, migration, and angiogenesis in Anxa1-dependent manner both in vitro and in vivo. Our findings provide both clinical and mechanistic evidences that FoxM1 contributes to glioma development by directly up-regulating Anxa1 expression.
Collapse
Affiliation(s)
- Shi-Xiang Cheng
- Institute of Traumatic Brain Injury and Nervous Diseases of Chinese People’s Armed Police Forces, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics College of CPAPF, Tianjin, China
| | - Yue Tu
- Institute of Traumatic Brain Injury and Nervous Diseases of Chinese People’s Armed Police Forces, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics College of CPAPF, Tianjin, China
- * E-mail: (YT); (SZ)
| | - Sai Zhang
- Institute of Traumatic Brain Injury and Nervous Diseases of Chinese People’s Armed Police Forces, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics College of CPAPF, Tianjin, China
- * E-mail: (YT); (SZ)
| |
Collapse
|
52
|
Wang G, Hu N, Yang HH, Wang L, Su H, Wang C, Clifford R, Dawsey EM, Li JM, Ding T, Han XY, Giffen C, Goldstein AM, Taylor PR, Lee MP. Comparison of global gene expression of gastric cardia and noncardia cancers from a high-risk population in china. PLoS One 2013; 8:e63826. [PMID: 23717493 PMCID: PMC3661768 DOI: 10.1371/journal.pone.0063826] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022] Open
Abstract
Objective To profile RNA expression in gastric cancer by anatomic subsites as an initial step in identifying molecular subtypes and providing targets for early detection and therapy. Methods We performed transcriptome analysis using the Affymetrix GeneChip U133A in gastric cardia adenocarcinomas (n = 62) and gastric noncardia adenocarcinomas (n = 72) and their matched normal tissues from patients in Shanxi Province, and validated selected dysregulated genes with additional RNA studies. Expression of dysregulated genes was also related to survival of cases. Results Principal Component Analysis showed that samples clustered by tumor vs. normal, anatomic location, and histopathologic features. Paired t-tests of tumor/normal tissues identified 511 genes whose expression was dysregulated (P<4.7E-07 and at least two-fold difference in magnitude) in cardia or noncardia gastric cancers, including nearly one-half (n = 239, 47%) dysregulated in both cardia and noncardia, one-fourth dysregulated in cardia only (n = 128, 25%), and about one-fourth in noncardia only (n = 144, 28%). Additional RNA studies confirmed profiling results. Expression was associated with case survival for 20 genes in cardia and 36 genes in noncardia gastric cancers. Conclusions The dysregulated genes identified here represent a comprehensive starting point for future efforts to understand etiologic heterogeneity, develop diagnostic biomarkers for early detection, and test molecularly-targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Gangshi Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Nan Hu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Office of the Director, Center for Cancer Research, NCI, Bethesda, Maryland, United States of America
| | - Lemin Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Hua Su
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Chaoyu Wang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Robert Clifford
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Erica M. Dawsey
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Jian-Min Li
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Xiao-You Han
- Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China
| | - Carol Giffen
- Information Management Services, Inc., Silver Spring, Maryland, United States of America
| | - Alisa M. Goldstein
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
| | - Philip R. Taylor
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland, United States of America
- * E-mail: (PRT); (MPL)
| | - Maxwell P. Lee
- Office of the Director, Center for Cancer Research, NCI, Bethesda, Maryland, United States of America
- * E-mail: (PRT); (MPL)
| |
Collapse
|
53
|
Lin SC, Chen WY, Lin KY, Chen SH, Chang CC, Lin SE, Fang CL. Clinicopathological correlation and prognostic significance of protein kinase cα overexpression in human gastric carcinoma. PLoS One 2013; 8:e56675. [PMID: 23468872 PMCID: PMC3582558 DOI: 10.1371/journal.pone.0056675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed. METHODS Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma. RESULTS PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41%) of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073), histologic type (P<0.0001), tumor differentiation (P = 0.0110), depth of invasion (P = 0.0003), angiolymphatic invasion (P = 0.0373), pathologic stage (P = 0.0047), and distant metastasis (P = 0.0048). We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587). However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415). CONCLUSIONS PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is statistically correlated with age, histologic type, tumor differentiation, depth of invasion, angiolymphatic invasion, pathologic stage, and distant metastasis. The PKCα protein overexpression in patients with gastric carcinoma is a significant independent prognostic factor in multivariate Cox regression analysis.
Collapse
Affiliation(s)
- Shee-Chan Lin
- Division of Gastroenterology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sheng-Hsuan Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Chao Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sey-En Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
54
|
Konno-Shimizu M, Yamamichi N, Inada KI, Kageyama-Yahara N, Shiogama K, Takahashi Y, Asada-Hirayama I, Yamamichi-Nishina M, Nakayama C, Ono S, Kodashima S, Fujishiro M, Tsutsumi Y, Ichinose M, Koike K. Cathepsin E is a marker of gastric differentiation and signet-ring cell carcinoma of stomach: a novel suggestion on gastric tumorigenesis. PLoS One 2013; 8:e56766. [PMID: 23451082 PMCID: PMC3579941 DOI: 10.1371/journal.pone.0056766] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer (GC) presents various histological features, though the mechanism underlying its diversity is seldom elucidated. It is mainly classified into well differentiated tubular adenocarcinoma (tub1), moderately differentiated tubular adenocarcinoma (tub2), poorly differentiated adenocarcinoma (por), signet-ring cell carcinoma (sig), mucinous adenocarcinoma (muc), and papillary adenocarcinoma (pap). By screening, we found cathepsin E (CTSE) expresses universally in sig-type, occasionally in por-type, and rarely in tub1/tub2-type GC cell lines. In surgically-resected specimens, CTSE was immunostained in 50/51 sig-type (98.0%), 3/10 tub1-type (30.0%), 7/18 tub2-type (38.9%), 15/26 por-type (57.7%), 4/10 pap-type (40.0%), and 0/3 muc-type (0.0%) GC. In endoscopically-resected specimens, 6/7 sig-type (85.7%), 7/52 tub1-type (13.7%), 5/12 tub2-type (41.7%), 2/7 pap-type (28.6%) GC and 0/6 adenoma (0.0%) expressed CTSE. For non-malignant tissues, CTSE is universally expressed in normal fundic, pyloric, and cardiac glands of stomach, but hardly in other digestive organs. In the precancerous intestinal metaplasia of stomach, CTSE is mostly observed in mixed gastric-and-intestinal type and deficient in solely-intestinal type. CTSE expression is positively correlated with gastric marker MUC5AC (p<0.0001) and negatively correlated with intestinal marker MUC2 (p = 0.0019). For sig-type GC, in both tumors and background mucosa, expression of MUC5AC and CTSE is high whereas that of MUC2 is low, indicating that sig-type GC reflects the features of background mucosa. For gastric adenoma and tub1/tub2-type GC, more undifferentiated tumors tend to show higher expression of CTSE with MUC5AC and lower expression of MUC2 in tumors, but they tend to present lower expression of CTSE, MUC5AC and MUC2 in background mucosa. These suggest that more malignant gastric adenocarcinoma with stronger gastric and weaker intestinal properties tend to arise from background mucosa with decreased both gastric and intestinal features. In conclusion, CTSE is a marker of both gastric differentiation and signet-ring cell carcinoma, which should shed light on the mechanism of gastric tumorigenesis.
Collapse
Affiliation(s)
- Maki Konno-Shimizu
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Ken-ichi Inada
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shiogama
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itsuko Asada-Hirayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsue Yamamichi-Nishina
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiemi Nakayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ono
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kodashima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Tsutsumi
- 1st Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Masao Ichinose
- Second Department of Internal Medicine, Wakayama Medical College, Wakayama, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
55
|
Ureshino H, Murakami Y, Watari K, Izumi H, Kawahara A, Kage M, Arao T, Nishio K, Yanagihara K, Kinoshita H, Kuwano M, Ono M. N-myc downstream regulated gene 1 (NDRG1) promotes metastasis of human scirrhous gastric cancer cells through epithelial mesenchymal transition. PLoS One 2012; 7:e41312. [PMID: 22844455 PMCID: PMC3402489 DOI: 10.1371/journal.pone.0041312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 06/22/2012] [Indexed: 12/12/2022] Open
Abstract
Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1) is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1) than their parental low metastatic counterpart (HSC-58). The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54) from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.
Collapse
Affiliation(s)
- Hiroki Ureshino
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
- Department of Surgery, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroto Izumi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Tokuzo Arao
- Department of Genome Biology, School of Medicine, Kinki University, Osakasayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, School of Medicine, Kinki University, Osakasayama, Osaka, Japan
| | | | - Hisafumi Kinoshita
- Department of Surgery, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Michihiko Kuwano
- Laboratory of Molecular Cancer Biology, Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
56
|
Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Huang HY, Hua KT, Kuo ML. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer 2012; 118:5757-67. [PMID: 22736399 DOI: 10.1002/cncr.27565] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/23/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Annexin A1 (AnxA1) has been well-known as a glucocorticoid-regulated anti-inflammatory protein, and it is implicated in tumorigenesis in a tumor type-specific pattern. However, the role of AnxA1 in gastric cancer (GC) is indeterminate, and the underlying mechanism is not clear. The purpose of this study was to evaluate the prognostic significance and associated mechanism of AnxA1 in GC. METHODS Immunohistochemical staining was employed to analyze 118 GC patients. Both AnxA1 gain-of-function and loss-of-function approaches were performed in GC cells. Western blotting and reverse-transcription polymerase chain reaction were used for assessment of the AnxA1 regulation mechanism in GC cells. An intraperitoneal inoculation model in severe combined immunodeficient mice was used for an in vivo assay. RESULTS High AnxA1 expression was significantly associated with peritoneal metastasis (P = .009) and serosal invasion (P = .044). Cox multivariate analysis showed that high AnxA1 expression was an independent risk factor for poor overall survival in GC patients (P = .037). AnxA1 expression positively correlated with invasiveness of human GC cells both in vitro and in vivo. AnxA1 could regulate the GC cell invasion through the formyl peptide receptor (FPR)/extracellular signal-regulated kinase/integrin beta-1-binding protein pathway, and all 3 FPRs (FPR1 through FPR3) were involved in the regulation process. CONCLUSIONS High AnxA1 expression was associated with more serosal invasion, more peritoneal metastasis, and poorer overall survival in GC patients. The current study demonstrated a novel mechanism involving FPRs, extracellular signal-regulated kinases 1 and 2, and integrin beta-1-binding protein 1 by which AnxA1 regulated GC cell invasion.
Collapse
Affiliation(s)
- Tsu-Yao Cheng
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Cheng L, Wang P, Yang S, Yang Y, Zhang Q, Zhang W, Xiao H, Gao H, Zhang Q. Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Med Genomics 2012; 5:14. [PMID: 22559327 PMCID: PMC3441862 DOI: 10.1186/1755-8794-5-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues. Methods We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray. Results Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations. Conclusions Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Gastric cancer is the most common cancer in Korea, with an age-standardized rate of 61.2 in males and 23.9 in females (in 2007), one of the highest in the world. Using a large gastric tissue depository and the extensive clinical experience gained from gastric cancer surgery, we work as a 'translational researcher' to apply basic research tools and results to the clinical field. We are also interested in providing answers to the questions in the operating room using the methods of basic research. I would like to introduce our research activities in this review paper.
Collapse
Affiliation(s)
- Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine and Gastric Cancer Center, Seoul National University Cancer Hospital, Korea.
| |
Collapse
|
59
|
THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol 2011; 24:1390-403. [PMID: 21701537 DOI: 10.1038/modpathol.2011.99] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric adenocarcinomas can be divided into two major histological types, the diffuse and intestinal type (Laurén classification). Since they diverge in many clinical and molecular characteristics, it is widely accepted that they represent distinct disease entities that may benefit from different therapeutic approaches. Gene expression profiling studies have identified numerous genes that are differentially expressed between them. However, none of these studies covered the whole transcriptome and the published gene lists reveal little overlap, raising the need for further, more comprehensive analyses. Here, we present the first transcriptome-wide expression profiling study comparing the two types (diffuse n=19, intestinal n=24), which identified >1000 genes that are differentially expressed. Among them, thrombospondin 4 (THBS4) showed the strongest correlation to histological type, with vast overexpression in the diffuse type. Quantitative real-time PCR validated this strong overexpression and revealed that intestinal tumors generally lack THBS4 expression. Immunohistochemistry demonstrated THBS4 overexpression on the protein level (n=10) and localized THBS4 to the stromal aspect. Its expression was primarily observed within the extracellular matrix surrounding the tumor cells, with the highest intensities found in regions of high tumor cell density and invasion. Intestinal tumors and matched non-neoplastic gastric epithelium and stroma did not feature any relevant THBS4 expression in a preliminary selection of analyzed cases (n=5). Immunohistochemical colocalization and in vitro studies revealed that THBS4 is expressed and secreted by cancer-associated fibroblasts. Furthermore, we show that THBS4 transcription in fibroblasts is stimulated by tumor cells. This study is the first to identify THBS4 as a powerful marker for diffuse-type gastric adenocarcinomas and to provide an initial characterization of its expression in the course of this disease.
Collapse
|
60
|
Tan IB, Ivanova T, Lim KH, Ong CW, Deng N, Lee J, Tan SH, Wu J, Lee MH, Ooi CH, Rha SY, Wong WK, Boussioutas A, Yeoh KG, So J, Yong WP, Tsuburaya A, Grabsch H, Toh HC, Rozen S, Cheong JH, Noh SH, Wan WK, Ajani JA, Lee JS, Tellez MS, Tan P. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 2011; 141:476-85, 485.e1-11. [PMID: 21684283 PMCID: PMC3152688 DOI: 10.1053/j.gastro.2011.04.042] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 03/20/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs. METHODS We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed. RESULTS Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy. CONCLUSIONS Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Collapse
Affiliation(s)
- Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Holmes K, Egan B, Swan N, O'Morain C. Genetic Mechanisms and Aberrant Gene Expression during the Development of Gastric Intestinal Metaplasia and Adenocarcinoma. Curr Genomics 2011; 8:379-97. [PMID: 19412438 PMCID: PMC2671722 DOI: 10.2174/138920207783406460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 02/07/2023] Open
Abstract
Gastric adenocarcinoma occurs via a sequence of molecular events known as the Correa’s Cascade which often progresses over many years. Gastritis, typically caused by infection with the bacterium H. pylori, is the first step of the cascade that results in gastric cancer; however, not all cases of gastritis progress along this carcinogenic route. Despite recent antibiotic intervention of H. pylori infections, gastric adenocarcinoma remains the second most common cause of cancer deaths worldwide. Intestinal metaplasia is the next step along the carcinogenic sequence after gastritis and is considered to be a precursor lesion for gastric cancer; however, not all patients with intestinal metaplasia develop adenocarcinoma and little is known about the molecular and genetic events that trigger the progression of intestinal metaplasia into adenocarcinoma. This review aims to highlight the progress to date in the genetic events involved in intestinal-type gastric adenocarcinoma and its precursor lesion, intestinal metaplasia. The use of technologies such as whole genome microarray analysis, immunohistochemical analysis and DNA methylation analysis has allowed an insight into some of the events which occur in intestinal metaplasia and may be involved in carcinogenesis. There is still much that is yet to be discovered surrounding the development of this lesion and how, in many cases, it develops into a state of malignancy.
Collapse
Affiliation(s)
- K Holmes
- Department of Clinical Medicine, Trinity College Dublin, The Adelaide and Meath Hospital, Tallaght, Dublin 24, Ireland
| | | | | | | |
Collapse
|
62
|
Hudler P, Repše S, Juvan R, Komel R. A genomic approach to investigate expression profiles in Slovenian patients with gastric cancer. Oncol Lett 2011; 2:1003-1014. [PMID: 22866164 DOI: 10.3892/ol.2011.362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/02/2011] [Indexed: 12/12/2022] Open
Abstract
Despite its decreasing frequency in developed countries, gastric cancer remains a significant health burden. The aim of the present study was to construct cDNA libraries and analyze differentially expressed genes related to this disease. Gene expression profiles were generated with suppressive subtraction hybridization (SSH). We constructed eight SSH libraries, four representing up-regulated genes and four representing down-regulated genes in tumor tissues. Our approach revealed that several genes are abnormally expressed in gastric cancer. We also identified global deregulation of several pathways involved in the maintenance of normal gastric homeostasis. The results of this study support the view that, as a result of complex pathogenesis, diversity of genomic aberrations and multiplicity of carcinogenic causes, gastric cancer cannot be reduced to a single molecule. Our results may contribute new insight into molecular aspects of the disease and may prove advantageous for future development of therapeutic targets and diagnostic molecular markers.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
63
|
Kim HK, Kim J, Korolevich S, Choi IJ, Kim CH, Munroe DJ, Green JE. Distinctions in gastric cancer gene expression signatures derived from laser capture microdissection versus histologic macrodissection. BMC Med Genomics 2011; 4:48. [PMID: 21635755 PMCID: PMC3141377 DOI: 10.1186/1755-8794-4-48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/02/2011] [Indexed: 02/08/2023] Open
Abstract
Background Gastric cancer samples obtained by histologic macrodissection contain a relatively high stromal content that may significantly influence gene expression profiles. Differences between the gene expression signature derived from macrodissected gastric cancer samples and the signature obtained from isolated gastric cancer epithelial cells from the same biopsies using laser-capture microdissection (LCM) were evaluated for their potential experimental biases. Methods RNA was isolated from frozen tissue samples of gastric cancer biopsies from 20 patients using both histologic macrodissection and LCM techniques. RNA from LCM was subject to an additional round of T7 RNA amplification. Expression profiling was performed using Affymetrix HG-U133A arrays. Genes identified in the expression signatures from each tissue processing method were compared to the set of genes contained within chromosomal regions found to harbor copy number aberrations in the tumor samples by array CGH and to proteins previously identified as being overexpressed in gastric cancer. Results Genes shown to have increased copy number in gastric cancer were also found to be overexpressed in samples obtained by macrodissection (LS P value < 10-5), but not in array data generated using microdissection. A set of 58 previously identified genes overexpressed in gastric cancer was also enriched in the gene signature identified by macrodissection (LS P < 10-5), but not in the signature identified by microdissection (LS P = 0.013). In contrast, 66 genes previously reported to be underexpressed in gastric cancer were enriched in the gene signature identified by microdissection (LS P < 10-5), but not in the signature identified by macrodissection (LS P = 0.89). Conclusions The tumor sampling technique biases the microarray results. LCM may be a more sensitive collection and processing method for the identification of potential tumor suppressor gene candidates in gastric cancer using expression profiling.
Collapse
|
64
|
Abstract
The human HSPC280 protein belongs to a new family of low molecular weight proteins, which is only present in eukaryotes, and is absent in fungi. The solution structure of HSPC280 was determined using multidimensional NMR spectroscopy. The overall structure consists of three α-helices and four antiparallel β-strands and has a winged helix-like fold. However, HEPC280 is not a typical DNA-binding winged helix protein in that it lacks DNA-binding activity. Unlike most winged-helix proteins, HSPC280 has an unusually long 13-residue (P62-V74) wing 1 loop connecting the β3 and β4 strands of the protein. Molecules of HSPC280 have a positively charged surface on one side and a negatively charged surface on the other side of the protein structure. Comparisons with the C-terminal 80-residue domain of proteins in the Abra family reveal a conserved hydrophobic groove in the HSPC280 family, which may allow HSPC280 to interact with other proteins.
Collapse
Affiliation(s)
- Jinzhong Lin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
65
|
Marimuthu A, Jacob HK, Jakharia A, Subbannayya Y, Keerthikumar S, Kashyap MK, Goel R, Balakrishnan L, Dwivedi S, Pathare S, Dikshit JB, Maharudraiah J, Singh S, Sameer Kumar GS, Vijayakumar M, Veerendra Kumar KV, Premalatha CS, Tata P, Hariharan R, Roa JC, Prasad T, Chaerkady R, Kumar RV, Pandey A. Gene Expression Profiling of Gastric Cancer. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2011; 4:74-82. [PMID: 27030788 PMCID: PMC4809432 DOI: pmid/27030788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent's whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma.
Collapse
Affiliation(s)
- Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576104; India
| | - Harrys K.C. Jacob
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576104; India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
| | - Aniruddha Jakharia
- Department of Zoology, Gauhati University, Guwahati 781014, Assam, India
- Imgenex India, Bhubaneswar 751024, Orissa, India
| | - Yashwanth Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, Karnataka, India
| | | | - Manoj Kumar Kashyap
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, Karnataka, India
| | - Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, Karnataka, India
| | - Lavanya Balakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, Karnataka, India
| | - Sutopa Dwivedi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam 690525, Kerala, India
| | | | | | - Jagadeesha Maharudraiah
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- RajaRajeswari Medical college, Bangalore, 560074, India
| | - Sujay Singh
- Imgenex India, Bhubaneswar 751024, Orissa, India
- Imgenex Corporation, San Diego 92121, California, USA
| | - Ghantasala S Sameer Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, Karnataka, India
| | - M. Vijayakumar
- Departments of Surgical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka; India
| | | | | | - Pramila Tata
- Strand Life Sciences, Bangalore 560024, Karnataka, India
| | | | - Juan Carlos Roa
- Department of Pathology, Universidad de La Frontera, Temuco, Chile
| | - T.S.K Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576104; India
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576104; India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
| | - Rekha Vijay Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka; India
- Corresponding authors: Akhilesh Pandey MD, PhD, McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, MD 21205, Tel: 410-502-6662; Fax: 410-502-7544; , Rekha V. Kumar, MD, Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka 560029; India. Tel: 091-080-6560708; Fax: 091-080-6560723;
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
- Corresponding authors: Akhilesh Pandey MD, PhD, McKusick-Nathans Institute of Genetic Medicine, 733 N. Broadway, BRB 527, Johns Hopkins University, Baltimore, MD 21205, Tel: 410-502-6662; Fax: 410-502-7544; , Rekha V. Kumar, MD, Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka 560029; India. Tel: 091-080-6560708; Fax: 091-080-6560723;
| |
Collapse
|
66
|
Kim H, Eun JW, Lee H, Nam SW, Rhee H, Koh KH, Kim H. Gene expression changes in patient-matched gastric normal mucosa, adenomas, and carcinomas. Exp Mol Pathol 2010; 90:201-9. [PMID: 21185829 DOI: 10.1016/j.yexmp.2010.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/14/2010] [Indexed: 01/20/2023]
Abstract
A subset of gastric carcinomas shows histologic evidence of a multistep process, progressing from gastric adenoma to gastric carcinoma. We examined gene expression changes during the gastric adenoma-carcinoma sequence in 26 snap-frozen samples (normal mucosa, adenoma, and carcinoma samples from eight patients and two additional carcinomas) by oligonucleotide microarray. Unsupervised hierarchical clustering analysis demonstrated differential gene expression between gastric normal mucosa, adenomas and carcinomas. We identified 319 and 422 genes differentially regulated in adenoma and carcinoma, respectively, relative to normal mucosa, using a combination of Welch's t-test and fold-change analysis. Applying a combination of robust multi-category support vector machines to the data, reveal that 39 and 21 genes were gradually up- and down-regulated, respectively, in succession in normal mucosa, adenoma, and carcinoma samples. We validated gene expression levels of four genes: hydroxyprostaglandin dehydrogenase 15 (HPGD), follistatin-like 1, trefoil factor 1 (TTF1) and trefoil factor 2 (TFF2) by RT-PCR and found direct correlation with microarray results. The expressions of the TFF2 and HPGD genes were further evaluated by immunohistochemistry in 103 adenomas and 70 carcinomas; expression of both proteins was decreased in these tissues. The progressive alteration in gene expression in the transition from normal mucosa to carcinoma suggests that these changes may play critical roles in gastric carcinogenesis.
Collapse
Affiliation(s)
- Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, 120-752, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
67
|
Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 2010; 47:784-91. [PMID: 21112772 DOI: 10.1016/j.ejca.2010.10.025] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prognosis of patients with gastric cancer (GC) is generally poor due to the lack of non-invasive tools for GC detection. The purpose of present study was to identify a serum microRNA (miRNA) expression profile that can serve as a novel diagnostic biomarker for GC detection and to assess its clinical applications in monitoring disease progression. METHODS Serum samples were taken from 164 GC patients and 127 age- and gender-matched tumour-free controls. An initial screening of miRNA expression by Solexa sequencing was performed using serum samples pooled from 20 patients and 20 controls, respectively. Differential expression was validated using hydrolysis probe-based stem-loop quantitative reverse transcription polymerase chain reaction (qRT-PCR) in individuals samples, the samples were arranged in two phases. RESULTS The Solexa sequencing results demonstrated that 19 serum miRNAs were markedly upregulated in the GC patients compared to the controls. The qRT-PCR analysis further identified a profile of five serum miRNAs (miR-1, miR-20a, miR-27a, miR-34 and miR-423-5p) as a biomarker for GC detection. The analysis results showed that the expression level of five serum miRNAs was correlated to tumour stage. The areas under the receiver operating characteristic (ROC) curve of this five-serum miRNA signature were 0.879 (95% confidence interval (CI) 0.822-0.936) and 0.831 (95% CI 0.767-0.898) for the two sets of serum samples, respectively, markedly higher than those of the biomarkers carcinoembryonic antigen (CEA) (0.503) and carbohydrate antigen 19-9 (CA19-9) (0.600). CONCLUSIONS We identified five-miRNA signature for GC diagnosis by genome-wide serum miRNA expression profiling. Expression levels of this serum miRNA-based biomarker also indicate tumour progression stages.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 210008, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Inoue M, Senju S, Hirata S, Ikuta Y, Hayashida Y, Irie A, Harao M, Imai K, Tomita Y, Tsunoda T, Furukawa Y, Ito T, Nakamura Y, Baba H, Nishimura Y. Identification of SPARC as a candidate target antigen for immunotherapy of various cancers. Int J Cancer 2010; 127:1393-403. [PMID: 20063317 DOI: 10.1002/ijc.25160] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To establish efficient anticancer immunotherary, it is important to identify tumor-associated antigens (TAAs) directing the immune system to attack cancer. A genome-wide cDNA microarray analysis identified that secreted protein acidic and rich in cysteine (SPARC) gene is overexpressed in the gastric, pancreatic and colorectal cancer tissues but not in their noncancerous counterparts. This study attempted to identify HLA-A24 (A*2402)-restricted and SPARC-derived CTL epitopes. We previously identified H-2K(d)-restricted and SPARC-derived CTL epitope peptides in BALB/c mice, of which H-2K(d)-binding peptide motif is comparable with that of HLA-A24 binding peptides. By using these peptides, we tried to induce HLA-A24 (A*2402)-restricted and SPARC-reactive human CTLs and demonstrated an antitumor immune response. The SPARC-A24-1(143-151) (DYIGPCKYI) and SPARC-A24-4(225-234) (MYIFPVHWQF) peptides-reactive CTLs were successfully induced from peripheral blood mononuclear cells by in vitro stimulation with these two peptides in HLA-A24 (A*2402) positive healthy donors and cancer patients, and these CTLs exhibited cytotoxicity specific to cancer cells expressing both SPARC and HLA-A24 (A*2402). Furthermore, the adoptive transfer of the SPARC-specific CTLs could inhibit the tumor growth in nonobese diabetic/severe combined immunodeficient mice bearing human cancer cells expressing both HLA-A24 (A*2402) and SPARC. These findings suggest that SPARC is a potentially useful target candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Mitsuhiro Inoue
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Tomioka N, Morita K, Kobayashi N, Tada M, Itoh T, Saitoh S, Kondo M, Takahashi N, Kataoka A, Nakanishi K, Takahashi M, Kamiyama T, Ozaki M, Hirano T, Todo S. Array comparative genomic hybridization analysis revealed four genomic prognostic biomarkers for primary gastric cancers. ACTA ACUST UNITED AC 2010; 201:6-14. [PMID: 20633762 DOI: 10.1016/j.cancergencyto.2010.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 03/29/2010] [Accepted: 04/21/2010] [Indexed: 12/14/2022]
Abstract
Unlike the case with some other solid tumors, whole genome array screening has not revealed prognostic genetic aberrations in primary gastric cancer. Comparative genomic hybridization (CGH) using bacterial artificial chromosome (BAC) arrays for 56 primary gastric cancers resulted in identification of four prognostic loci in this study: 6q21 (harboring FOXO3A; previously FKHRL1), 9q32 (UGCG), 17q21.1 approximately q21.2 (CASC3), and 17q21.32 (HOXB3 through HOXB9). If any one of these four loci was deleted, the prognosis of the patient was significantly worse (P = 0.0019). This was true even for advanced tumors (stage IIIA, IIB, or IV, n = 39) (P = 0.0113), whereas only 1 of the 17 patients with less advanced tumors (stage IA, IB, or II; n = 17) died of disease after surgery. Multivariate analysis according to the status of four BACs or pathological stage based on the Japanese Classification of Gastric Carcinoma (stages IA, IB, and II vs. stages IIIA, IIIB, and IV) demonstrated that the BAC clone status was also an independent prognostic factor (P = 0.006). These findings may help predict which patients with malignant potential need more intensive therapy, or may point to new therapeutic approaches especially for advanced tumors. The parameter here termed the integrated genomic prognostic biomarker may therefore be of clinical utility as a prognostic biomarker.
Collapse
Affiliation(s)
- Nobumoto Tomioka
- Department of General Surgery, Hokkaido University Graduate School of Medicine, N-15 W-7 Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhen H, Yang S, Wu H, Wang S, Lv J, Ma L, Zhang X. LyGDI is a Promising Biomarker for Ovarian Cancer. Int J Gynecol Cancer 2010; 20:316-22. [DOI: 10.1111/igc.0b013e3181d0b02d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
71
|
Junnila S, Kokkola A, Mizuguchi T, Hirata K, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O. Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer. Genes Chromosomes Cancer 2010; 49:28-39. [PMID: 19780053 DOI: 10.1002/gcc.20715] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To elucidate gene expression signatures associated with gastric carcinogenesis, we performed a genome-wide expression analysis of 46 Finnish and 20 Japanese gastric tissues. Comparative analysis between Finnish and Japanese datasets identified 58 common genes that were differentially expressed between cancerous and non-neoplastic gastric tissues. Twenty-six of these genes were up-regulated in cancer and 32 down-regulated. Of these genes, 64% were also differentially expressed in another unrelated publicly available dataset. The expression levels of four of the up-regulated genes, CXCL1, SPARC, SPP1 and SULF, were further analyzed in 82 gastric tissues using quantitative real-time RT-PCR. This analysis validated the results from the microarray analysis as the expression of these four genes was significantly higher in the cancerous tissue compared with the normal tissue (fold change 3.4-8.9). Over-expression of CXCL1 also positively correlated with improved survival. To conclude, irrespective of the microarray platform or patient population, a common gastric cancer gene expression signature of 58 genes, including CXCL1, SPARC, SPP1, and SULF, was identified. These genes represent potential biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Siina Junnila
- Institute of Biomedicine/Medical Biochemistry and Developmental Biology, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
72
|
Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2009; 14:1233-42. [PMID: 20022810 DOI: 10.1016/s1470-2045(13)70464-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Analyses of microRNA expression profiles have shown that many microRNAs are expressed aberrantly and correlate with tumorigenesis, progression, and prognosis of various haematological and solid tumours. We aimed to assess the relation between microRNA expression and progression and prognosis of gastric cancer. METHODS 353 gastric samples from two independent subsets of patients from Japan were analysed by microRNA microarray. MicroRNA expression patterns were compared between non-tumour mucosa and cancer samples, graded by diffuse and intestinal histological types and by progression-related factors (eg, depth of invasion, metastasis, and stage). Disease outcome was calculated by multivariable regression analysis to establish whether microRNAs are independent prognostic factors. FINDINGS In 160 paired samples of non-tumour mucosa and cancer, 22 microRNAs were upregulated and 13 were downregulated in gastric cancer; 292 (83%) samples were distinguished correctly by this signature. The two histological subtypes of gastric cancer showed different microRNA signatures: eight microRNAs were upregulated in diffuse-type and four in intestinal-type cancer. In the progression-related signature, miR-125b, miR-199a, and miR-100 were the most important microRNAs involved. Low expression of let-7g (hazard ratio 2.6 [95% CI 1.3-4.9]) and miR-433 (2.1 [1.1-3.9]) and high expression of miR-214 (2.4 [1.2-4.5]) were associated with unfavourable outcome in overall survival independent of clinical covariates, including depth of invasion, lymph-node metastasis, and stage. INTERPRETATION MicroRNAs are expressed differentially in gastric cancers, and histological subtypes are characterised by specific microRNA signatures. Unique microRNAs are associated with progression and prognosis of gastric cancer. FUNDING National Cancer Institute.
Collapse
Affiliation(s)
- Tetsuya Ueda
- Department of Molecular Virology, Immunology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2009; 11:136-46. [PMID: 20022810 DOI: 10.1016/s1470-2045(09)70343-2] [Citation(s) in RCA: 674] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Analyses of microRNA expression profiles have shown that many microRNAs are expressed aberrantly and correlate with tumorigenesis, progression, and prognosis of various haematological and solid tumours. We aimed to assess the relation between microRNA expression and progression and prognosis of gastric cancer. METHODS 353 gastric samples from two independent subsets of patients from Japan were analysed by microRNA microarray. MicroRNA expression patterns were compared between non-tumour mucosa and cancer samples, graded by diffuse and intestinal histological types and by progression-related factors (eg, depth of invasion, metastasis, and stage). Disease outcome was calculated by multivariable regression analysis to establish whether microRNAs are independent prognostic factors. FINDINGS In 160 paired samples of non-tumour mucosa and cancer, 22 microRNAs were upregulated and 13 were downregulated in gastric cancer; 292 (83%) samples were distinguished correctly by this signature. The two histological subtypes of gastric cancer showed different microRNA signatures: eight microRNAs were upregulated in diffuse-type and four in intestinal-type cancer. In the progression-related signature, miR-125b, miR-199a, and miR-100 were the most important microRNAs involved. Low expression of let-7g (hazard ratio 2.6 [95% CI 1.3-4.9]) and miR-433 (2.1 [1.1-3.9]) and high expression of miR-214 (2.4 [1.2-4.5]) were associated with unfavourable outcome in overall survival independent of clinical covariates, including depth of invasion, lymph-node metastasis, and stage. INTERPRETATION MicroRNAs are expressed differentially in gastric cancers, and histological subtypes are characterised by specific microRNA signatures. Unique microRNAs are associated with progression and prognosis of gastric cancer. FUNDING National Cancer Institute.
Collapse
Affiliation(s)
- Tetsuya Ueda
- Department of Molecular Virology, Immunology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Itadani H, Oshima H, Oshima M, Kotani H. Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics 2009; 10:615. [PMID: 20015407 PMCID: PMC2805698 DOI: 10.1186/1471-2164-10-615] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Background Gastric cancers are generally classified into better differentiated intestinal-type tumor and poorly differentiated diffuse-type one according to Lauren's histological categorization. Although induction of prostaglandin E2 pathway promotes gastric tumors in mice in cooperation with deregulated Wnt or BMP signalings, it has remained unresolved whether the gastric tumor mouse models recapitulate either of human gastric cancer type. This study assessed the similarity in expression profiling between gastric tumors of transgenic mice and various tissues of human cancers to find best-fit human tumors for the transgenic mice models. Results Global expression profiling initially found gastric tumors from COX-2/mPGES-1 (C2mE)-related transgenic mice (K19-C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE) resembled gastric cancers among the several tissues of human cancers including colon, breast, lung and gastric tumors. Next, classification of the C2mE-related transgenic mice by a gene signature to distinguish human intestinal- and diffuse-type tumors showed C2mE-related transgenic mice were more similar to intestinal-type compared with diffuse one. We finally revealed that induction of Wnt pathway cooperating with the prostaglandin E2 pathway in mice (K19-Wnt1/C2mE mice) further reproduce features of human gastric intestinal-type tumors. Conclusion We demonstrated that C2mE-related transgenic mice show significant similarity to intestinal-type gastric cancer when analyzed by global expression profiling. These results suggest that the C2mE-related transgenic mice, especially K19-Wnt1/C2mE mice, serve as a best-fit model to study molecular mechanism underlying the tumorigenesis of human gastric intestinal-type cancers.
Collapse
Affiliation(s)
- Hiraku Itadani
- Oncology Research Department, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Japan.
| | | | | | | |
Collapse
|
75
|
Nakamura Y, Migita T, Hosoda F, Okada N, Gotoh M, Arai Y, Fukushima M, Ohki M, Miyata S, Takeuchi K, Imoto I, Katai H, Yamaguchi T, Inazawa J, Hirohashi S, Ishikawa Y, Shibata T. Krüppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer 2009; 125:1859-67. [PMID: 19588488 DOI: 10.1002/ijc.24538] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gastric cancer is the second common malignant neoplasia in Japan, and its poorly differentiated form is a deadly disease. To identify novel candidate oncogenes contributing to its genesis, we examined copy-number alterations in 50 primary poorly differentiated gastric cancers using an array-based comparative genomic hybridization (array-CGH). Many genetic changes were identified, including a novel amplification of the 13q22 locus. Several genes are located in this locus, and selective knockdown of one for the Krüppel-like factor 12 (KLF12) induced significant growth-arrest in the HGC27 gastric cancer cell line. Microarray analysis also demonstrated that genes associated with cell proliferation were mostly changed by KLF12 knockdown. To explore the oncogenic function of KLF12, we introduced a full length of human KLF12 cDNA into NIH3T3 and AZ-521 cell lines and found that overexpression significantly enhanced their invasive potential. In clinical samples, KLF12 mRNA in cancer tissue was increased in 11 of 28 cases (39%) when compared with normal gastric epithelium. Clinicopathological analysis further demonstrated a significant correlation between KLF12mRNA levels and tumor size (p = 0.038). These data suggest that the KLF12 gene plays an important role in poorly differentiated gastric cancer progression and is a potential target of therapeutic measures.
Collapse
Affiliation(s)
- Yu Nakamura
- Cancer Genomics Project, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wu H, Rusiecki JA, Zhu K, Potter J, Devesa SS. Stomach carcinoma incidence patterns in the United States by histologic type and anatomic site. Cancer Epidemiol Biomarkers Prev 2009; 18:1945-52. [PMID: 19531677 DOI: 10.1158/1055-9965.epi-09-0250] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Using data from the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results program, we analyzed stomach carcinoma incidence patterns by both histologic type and anatomic site. METHODS We calculated age-adjusted (2000 U.S. standard) rates for 1978 to 2005, and for five time periods from 1978-1983 through 2001-2005 according to histologic type and anatomic site, separately and jointly. We also analyzed rates by race, gender, and age group. RESULTS During 1978 to 2005, more than 54,000 stomach carcinoma cases were diagnosed among residents of the nine Surveillance, Epidemiology, and End Results areas. Total stomach carcinoma rates declined by 34% from the 1978-1983 to the 2001-2005 time periods. By histologic type, intestinal rates decreased consistently, whereas those for diffuse rates increased through 2000 and declined in recent years. By anatomic site, cardia rates increased during earlier years and then decreased, whereas rates for all other sites declined. When considered jointly by histologic type and anatomic site, intestinal carcinoma rates decreased for all sites except the cardia; diffuse rates increased through 2000 and decreased in recent years for all sites except the overlapping/nonspecified sites. Both diffuse and intestinal rates were lowest among whites, intermediate among blacks, and highest among the other, primarily Asian, races, with only modest gender differences for the diffuse type. In contrast, cardia carcinoma rates were highest among whites and were notably higher among males, especially whites among whom the male/female rate ratio was five to one. CONCLUSIONS Stomach carcinoma incidence patterns differ by histologic type, anatomic site, race, gender, and age, suggesting that etiologic heterogeneity should be pursued in future research.
Collapse
Affiliation(s)
- Hongyu Wu
- United States Military Cancer Institute, Walter Reed Army Medical Center, Northwest, Washington, DC, USA
| | | | | | | | | |
Collapse
|
77
|
Wang SY, Shen XY, Wu CY, Pan F, Shen YY, Sheng HH, Chen XM, Gao HJ. Analysis of whole genomic expression profiles of Helicobacter pylori related chronic atrophic gastritis with IL-1B-31CC/-511TT genotypes. J Dig Dis 2009; 10:99-106. [PMID: 19426391 DOI: 10.1111/j.1751-2980.2009.00367.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Many studies have linked cytokine interleukin-1B gene polymorphisms to H. pylori-related gastric cancer development. The current study evaluated the characterization of whole genomic expression profiles of the premalignant condition: H. pylori-related chronic atrophic gastritis (CAG) with IL-1B-31CC/-511TT genotypes. METHODS IL-1B-31/-511 gene polymorphisms were determined by DNA sequences. RNA was extracted and expression profiles were performed using Agilent human whole genomic oligonucleotide microarrays (G4112F). The expression of three samples with H. pylori infection was compared to that of three samples without H. pylori infection from samples of six CAG patients, all with IL-1B-31CC/-511TT genotypes. Differentially expressed genes related to H. pylori-induced CAG with IL-1B-31CC/-511TT genotypes were screened and analyzed further by Gene Ontology (GO) and pathway. Validation of the microarray data was performed using qRT-PCR. RESULTS A total of 124 differentially expressed genes and 32 GO term annotations were identified between H. pylori positive and negative groups in the six CAG samples with IL-1B-31CC/-511TT genotypes. The signaling pathways identified were oxidative phosphorylation and epithelial cell signaling in H. pylori infection. Five overlapping genes were contained in identified GO terms and pathways: ATP6V0B, NDUFS5, NDUFV2, ATP6V1F and ATP6V1G1. Comparisons of qRT-PCR data and the previously reported data with the results of gene chips support the validity of our microarray data. CONCLUSION The H. pylori-related CAG with IL-1B-31CC/-511TT genotypes has shown to be the more malignant phenotype than H. pylori negative CAG with IL-1B-31CC/-511TT genotypes. Mitochondrial energy metabolism probably plays a crucial role as it is the molecular mechanism of host-bacterial interactions.
Collapse
Affiliation(s)
- Shao Ying Wang
- Institute of Digestive Disease, Tongji Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol Genomics 2009; 37:67-78. [PMID: 19208773 DOI: 10.1152/physiolgenomics.90408.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular composition and morphology of the stomach epithelium have been described in detail; however, the molecular mechanisms that regulate the differentiation of the various cell lineages as well as the function of mature gastric cells are far less clear. Recently, dissection of the molecular anatomy of the stomach has been boosted by the advent of functional genomics, which allows investigators to determine patterns of gene expression across virtually the entire cellular transcriptome. In this review, we discuss the impact of functional genomic studies on the understanding of gastric epithelial physiology. We show how functional genomic studies have uncovered genes that are useful as new cell lineage-specific markers of differentiation and provide new insights into cell physiology. For example, vascular endothelial growth factor B (Vegfb) has been identified as a parietal cell-specific marker that may allow parietal cells to regulate the mucosal vascular network. We also discuss how functional genomics has identified aberrantly expressed genes in disease states. Human epididymis 4 (HE4), for example, was recently identified as a metaplasia-induced gene product in mice based on microarray analysis. Finally, we will examine how analysis of higher-order patterns of gene expression can go beyond simply identifying individual genes to show how cells work as integrated systems. Specifically, we show how application of a Gene Ontology (GO) analysis of gene expression patterns from multiple tissues identifies the gastric parietal cell as an outlier, unlike other differentiated cell lineages in the stomach or elsewhere in the body.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
79
|
Yin Y, Zhao Y, Li AQ, Si JM. Collagen: A possible prediction mark for gastric cancer. Med Hypotheses 2009; 72:163-5. [DOI: 10.1016/j.mehy.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/05/2008] [Accepted: 09/10/2008] [Indexed: 11/27/2022]
|
80
|
Sepulveda AR, Aisner DL. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2009:365-393. [DOI: 10.1016/b978-0-12-374419-7.00019-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
81
|
Antonov AV, Dietmann S, Mewes HW. KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol 2008; 9:R179. [PMID: 19094223 PMCID: PMC2646283 DOI: 10.1186/gb-2008-9-12-r179] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/28/2008] [Accepted: 12/18/2008] [Indexed: 12/24/2022] Open
Abstract
KEGG spider is a web-based tool for interpretation of experimentally derived gene lists in order to gain understanding of metabolism variations at a genomic level. KEGG spider implements a 'pathway-free' framework that overcomes a major bottleneck of enrichment analyses: it provides global models uniting genes from different metabolic pathways. Analyzing a number of experimentally derived gene lists, we demonstrate that KEGG spider provides deeper insights into metabolism variations in comparison to existing methods.
Collapse
Affiliation(s)
- Alexey V Antonov
- GSF National Research Centre for Environment and Health, Institute for Bioinformatics, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | |
Collapse
|
82
|
Harao M, Hirata S, Irie A, Senju S, Nakatsura T, Komori H, Ikuta Y, Yokomine K, Imai K, Inoue M, Harada K, Mori T, Tsunoda T, Nakatsuru S, Daigo Y, Nomori H, Nakamura Y, Baba H, Nishimura Y. HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumor-reactive CTL. Int J Cancer 2008; 123:2616-25. [DOI: 10.1002/ijc.23823] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
83
|
Abstract
Complete surgical resection remains the primary curative treatment option for patients with early stage gastric adenocarcinoma appropriately staged with an adequate lymphadenectomy. Unfortunately, only 40% patients who undergo curative resection at the authors' institution will have early stage (i.e., stage IA or T2N0M0) disease; thus, the majority of patients will remain at high risk for recurrence after complete resection. At present, the authors advocate rigorous preoperative staging studies to identify patients with high-risk gastric cancer who are unlikely to benefit from single modality therapy, namely surgery alone, and assign them to undergo neoadjuvant chemotherapy before an attempt at curative resection. Patients who are determined to have high-risk disease postoperatively should be offered adjuvant therapy that will address the site of recurrence most likely to affect survival.
Collapse
Affiliation(s)
- Michael G House
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
84
|
Integrative approach for differentially overexpressed genes in gastric cancer by combining large-scale gene expression profiling and network analysis. Br J Cancer 2008; 99:1307-15. [PMID: 18827816 PMCID: PMC2570518 DOI: 10.1038/sj.bjc.6604682] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene expression profiling is a valuable tool for identifying differentially expressed genes in studies of disease subtype and patient outcome for various cancers. However, it remains difficult to assign biological significance to the vast number of genes. There is an increasing awareness of gene expression profile as an important part of the contextual molecular network at play in complex biological processes such as cancer initiation and progression. This study analysed the transcriptional profiles commonly activated at different stages of gastric cancers using an integrated approach combining gene expression profiling of 222 human tissues and gene regulatory dynamic mapping. We focused on an inferred core network with CDKN1A (p21WAF1/CIP1) as the hub, and extracted seven candidates for gastric carcinogenesis (MMP7, SPARC, SOD2, INHBA, IGFBP7, NEK6, LUM). They were classified into two groups based on the correlation between expression level and stage. The seven genes were commonly activated and their expression levels tended to increase as disease progressed. NEK6 and INHBA are particularly promising candidate genes overexpressed at the protein level, as confirmed by immunohistochemistry and western blotting. This integrated approach could help to identify candidate players in gastric carcinogenesis and progression. These genes are potential markers of gastric cancer regardless of stage.
Collapse
|
85
|
Myllykangas S, Junnila S, Kokkola A, Autio R, Scheinin I, Kiviluoto T, Karjalainen-Lindsberg ML, Hollmén J, Knuutila S, Puolakkainen P, Monni O. Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer 2008; 123:817-25. [PMID: 18506690 DOI: 10.1002/ijc.23574] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We performed an integrated array comparative genomic hybridization (aCGH) and expression microarray analysis of 8 normal gastric tissues and 38 primary tumors, including 25 intestinal and 13 diffuse gastric adenocarcinomas to identify genes whose expression is deregulated in association with copy number alteration. Our aim was also to identify molecular genetic alterations that are specific to particular clinicopathological characteristics of gastric cancer. Distinct molecular genetic profiles were identified for intestinal and diffuse gastric cancers and for tumors obtained from 2 different locations of the stomach. Interestingly, the ERBB2 amplification and gains at 20q13.12-q13.33 almost exclusively discriminated intestinal cancers from the diffuse type. In addition, the 17q12-q25 gain was characteristic to cancers located in corpus and the 20q13.12-q13.13 gain was more common in the antrum. Statistical analysis was performed using integrated copy number and expression data to identify genes showing differential expression associated with a copy number alteration. Genes with the highest statistical significance included ERBB2, MUC1, GRB7, PPP1R1B and PPARBP with concomitant changes in copy number and expression. Immunohistochemical analysis of ERBB2 and MUC1 on a tissue microarray containing 78 independent gastric tissues showed statistically significant differences (p < 0.05 and <0.001) in immunopositivity in the intestinal (31 and 70%) and diffuse subtypes (14 and 41%), respectively. In conclusion, our results demonstrate that intestinal and diffuse type gastric cancers as well as cancers located in different sites of the stomach have distinct molecular profiles which may have clinical value.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Otsuka Y, Ichikawa Y, Kunisaki C, Matsuda G, Akiyama H, Nomura M, Togo S, Hayashizaki Y, Shimada H. Correlating purity by microdissection with gene expression in gastric cancer tissue. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 67:367-79. [PMID: 17558891 DOI: 10.1080/00365510601046334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microdissection is a feasible tool for the purification of target cells from heterogeneous tissue components. However, the extent to which cells need to be purified by microdissection for use in gene expression analysis has not been determined. In the present study, we obtained diffuse-type gastric cancer tissues at varying purities, and evaluated the corresponding expression of a cancer-specific gene, KRT19, by quantitative real-time PCR. The relationship between the degree of purity and gene expression was confirmed by using 60-mer oligonucleotide microarray analysis. Cancer-specific gene expression was stable in tissues of 10-50% purity, but at 60% or greater purity the slope of the graph was much steeper, indicating a correlation between tissue purity and increased gene expression. Tissues of 70% purity for cancer cells, acquired by microdissection, were therefore deemed to be of sufficient quality to distinguish between gene expression profiles from microdissected and non-microdissected specimens.
Collapse
Affiliation(s)
- Y Otsuka
- Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene 2007; 27:1562-71. [PMID: 17873905 DOI: 10.1038/sj.onc.1210799] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p53 protein inhibits malignant transformation through direct and indirect regulation of transcription of many genes related to cell cycle, apoptosis and cellular senescence. A number of genes induced by p53 have been well characterized, but biological significance of genes whose expression was suppressed by p53 is still largely undisclosed. To clarify the roles of p53-suppressive genes in carcinogenesis, we analysed two data sets of whole-genome expression profiles, one for cells in which wild-type p53 was exogenously introduced and the other for a large number of clinical cancer tissues. Here, we identified CDC20 that was frequently upregulated in many types of malignancies and remarkably suppressed by ectopic introduction of p53. CDC20 expression was suppressed by genotoxic stresses in p53- and p21-dependent manners through CDE-CHR elements in the CDC20 promoter. Furthermore, small interference RNA (siRNA)-mediated silencing of p53 induced CDC20 expression in normal human dermal fibroblast cells. As we expected, treatment of cancer cells with siRNA against CDC20 induced G(2)/M arrest and suppressed cell growth. Our results indicate that p53 inhibits tumor cell growth through the indirect regulation of CDC20 and that CDC20 might be a good potential therapeutic target for a broad spectrum of human cancer.
Collapse
Affiliation(s)
- T Kidokoro
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Ling ZQ, Sugihara H, Tatsuta T, Mukaisho KI, Hattori T. Optimization of comparative expressed sequence hybridization for genome-wide expression profiling at chromosome level. ACTA ACUST UNITED AC 2007; 175:144-53. [PMID: 17556071 DOI: 10.1016/j.cancergencyto.2007.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 11/28/2022]
Abstract
Comparative expressed sequence hybridization (CESH) has recently been developed for global expression profiling at chromosome level. To improve its specificity and sensitivity, we examined the effects of cDNA amplification and labeling methods on CESH profiles, using a gastric cancer cell line, Kato III, and compared the CESH profiles to cDNA microarray and reverse transcriptase-polymerase chain reaction (RT-PCR) data. CESH results were scarcely affected by the amplification process, either at the RNA level with T7 polymerase or at the cDNA level with degenerate oligonucleotide-primed PCR (DOP-PCR). The labeling method, however, did remarkably affect the CESH results; false positive shifts of the test/reference ratio (T/R) were not detected in self-matched CESH with pre-cDNA labeling and random priming labeling of cDNA but were consistently seen with DOP-PCR labeling in 11 chromosomes. The use of cDNA deriving from mRNA either with pre-cDNA or random priming labeling gave results of higher detection sensitivity for regions of up- or downregulated expression and higher concordance with the microarray and RT-PCR data in the corresponding regions than with conventional CESH. This modification of CESH with random priming labeling was found feasible by its application to Kato III cells with and without 5-aza-2'-deoxycytidine treatment; the regions identified as epigenetically silenced included genes that were reportedly methylated in Kato III.
Collapse
Affiliation(s)
- Zhi-Qiang Ling
- First Department of Pathology, Shiga University of Medical Science, Otsu, 520-2192 Japan
| | | | | | | | | |
Collapse
|
89
|
Chen CD, Wang CS, Huang YH, Chien KY, Liang Y, Chen WJ, Lin KH. Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics 2007; 7:155-67. [PMID: 17154271 DOI: 10.1002/pmic.200600663] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastric cancer is the second most common cancer worldwide and the fifth leading cause of cancer-related death in Taiwan. Identification of biomarkers is essential to improve patient survival. Fifty aberrantly expressed proteins were identified using 2-DE combined with MALDI TOF MS and were grouped based on their function. The overexpression of proteins was confirmed using real-time quantitative RT-PCR, Western blot, and immunohistochemical analysis. The clinicopathological correlations and prognostic significance of these aberrantly expressed proteins were evaluated to determine the novel gastric cancer biomarkers. In this study, expression of chloride intracellular channel 1 (CLIC1) is significantly up-regulated in 67.9% of gastric patients and was selected for further study. The CLIC1 expression in tumor tissues was increased by 1.95-fold (range, 0.01-6.19-fold) compared with that expressed by adjacent noncancerous mucosa. Elevated CLIC1 expression was strongly correlated with lymph node metastasis, lymphatic invasion, perineural invasion, and pathological staging. Additionally, the 5-year survival rate for the low CLIC1 expression group (n = 28; <1.72-fold) was higher than that for the high CLIC1 expression group (n = 28; >or=1.72-fold) (log rank, p = 0.0300). Experimental results indicate that overexpression of CLIC1 is a potential prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Chi-De Chen
- Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
90
|
Vecchi M, Nuciforo P, Romagnoli S, Confalonieri S, Pellegrini C, Serio G, Quarto M, Capra M, Roviaro GC, Contessini Avesani E, Corsi C, Coggi G, Di Fiore PP, Bosari S. Gene expression analysis of early and advanced gastric cancers. Oncogene 2007; 26:4284-94. [PMID: 17297478 DOI: 10.1038/sj.onc.1210208] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric carcinoma is one of the major causes of cancer mortality worldwide. Early detection results in excellent prognosis for patients with early cancer (EGC), whereas the prognosis of advanced cancer (AGC) patients remains poor. It is not clear whether EGC and AGC are molecularly distinct, and whether they represent progressive stages of the same tumor or different entities ab initio. Gene expression profiles of EGC and AGC were determined by Affymetrix technology and quantitative polymerase chain reaction. Representative regulated genes were further analysed by in situ hybridization (ISH) on tissue microarrays. Expression analysis allowed the identification of a signature that differentiates AGC from EGC. In addition, comparison with normal gastric mucosa indicated that the majority of alterations associated with EGC are retained in AGC, and that further expression changes mark the transition from EGC to AGC. Finally, ISH analysis showed that representative genes, differentially expressed in the invasive areas of EGC and AGC, are not differentially expressed in the non-invasive areas of the same tumors. Our data are more directly compatible with a progression model of gastric carcinogenesis, whereby EGC and AGC may represent different molecular stages of the same tumor. Finally, the identification of an AGC-specific signature might help devising novel therapeutic strategies for advanced gastric cancer.
Collapse
Affiliation(s)
- M Vecchi
- IFOM Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Tsuboi S, Taketa K, Nouso K, Fujikawa T, Manabe K, Ohmori H, Higashi T, Shiratori Y. High level of expression of alpha-fetoprotein receptor in gastric cancers. Tumour Biol 2006; 27:283-8. [PMID: 17028464 DOI: 10.1159/000096071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/27/2005] [Indexed: 11/19/2022] Open
Abstract
The expression of the receptor for alpha-fetoprotein (AFP-R) was examined immunohistochemically in 47 cancer and 14 benign human gastric tissues. Rabbit polyclonal antibody against human AFP-R was used for immunohistochemical staining. Thirty-four of the 47 cancer tissues expressed AFP-R showing granular or reticular staining on the cancer cell surface, while only 2 of 61 control cases (14 benign gastric tissues and 47 nonmalignant tissues adjacent to cancer) showed faint and homogeneous staining in the cytoplasm of noncancerous cells. There was a significant difference in staining intensity between the cancerous and noncancerous groups. However, no statistically significant difference in staining intensity was found among the groups of well-differentiated, moderately differentiated and poorly differentiated adenocarcinomas. On the other hand, the staining intensity of signet ring cell carcinoma was significantly weaker than that of the three adenocarcinoma groups. The high level of AFP-R expression in gastric cancers may allow the use of AFP-R as a new clinically useful marker of gastric cancer in the tissue level.
Collapse
Affiliation(s)
- So Tsuboi
- Department of Hepatology, Shigei Medical Research Hospital, 2117 Yamada, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Bodey B, Bodey B, Siegel SE. Mechanisms and markers of carcinogenesis and neoplastic progression. Expert Opin Biol Ther 2006; 5:1317-32. [PMID: 16197337 DOI: 10.1517/14712598.5.10.1317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neoplastic transformation evolves over a period of time involving the progression of the cellular immunophenotype (IP) from normal to hyperplastic to dysplastic, and finally, to fully malignant IPs. Superimposed on these changes is the interaction of the initiated cell with its microenvironment, whereby the neoplastically transformed cells, through the regulation or dysregulation of cytoskeletal, integrin, protease and adhesion molecules, develop a novel manner of relation with their surrounding microenvironment. Studies of the neuroendocrine-immune network revealed that the hormonal and cytokine milieu plays an important role impacting the growth and dedifferentiation capabilities of neoplastic cells. This is further affected by the tumour cells themselves determining the constitution of this hormonal microenvironment, allowing the most aggressive and invasive of neoplastically transformed cell clones to promote their own growth and dissemination. The elucidation of the steps of the progression of cancer from premalignant to metastatic and invasive forms is of utmost importance in the differential diagnosis of neoplasms and in the establishment of more efficacious therapeutic regimens. These regimens will certainly begin to take on a more individualised form. The functional characterisation of various human malignancies as to the neoplastically transformed cells' IP, the bases of their interaction with tissue stromal elements, and the molecules involved in the humoral microenvironment of the particular stage of tumour will certainly allow for the better diagnosis, staging, prognostication and treatment of cancers in the future. This paper reviews carcinogenesis from nutritional, genetic and molecular, and humoral aspects, and discusses the importance of tumour markers in the diagnosis and therapeutic management of human cancer.
Collapse
Affiliation(s)
- Bela Bodey
- Department of Pathology, University of Southern California, Keck School of Medicine, Reseda, Los Angeles, CA 91335, USA.
| | | | | |
Collapse
|
93
|
Wu MS, Lin YS, Chang YT, Shun CT, Lin MT, Lin JT. Gene expression profiling of gastric cancer by microarray combined with laser capture microdissection. World J Gastroenterol 2006; 11:7405-12. [PMID: 16437709 PMCID: PMC4725172 DOI: 10.3748/wjg.v11.i47.7405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the gene expression profile of gastric cancer (GC) by combination of laser capture microdissection (LCM) and microarray and to correlate the profiling with histological subtypes. METHODS Using LCM, pure cancer cells were procured from 45 cancerous tissues. After procurement of about 5000 cells, total RNA was extracted and the quality of RNA was determined before further amplification and hybridization. One microgram of amplified RNA was converted to cDNA and hybridized to cDNA microarray. RESULTS Among 45 cases, only 21 were qualified for their RNAs. A total of 62 arrays were performed. These included 42 arrays for cancer (21 cases with dye-swab duplication) and 20 arrays for non-tumorous cells (10 cases with dye-swab duplication) with universal reference. Analyzed data showed 504 genes were differentially expressed and could distinguish cancerous and non-cancerous groups with more than 99% accuracy. Of the 504 genes, trefoil factors 1, 2, and 3 were in the list and their expression patterns were consistent with previous reports. Immunohistochemical staining of trefoil factor 1 was also consistent with the array data. Analyses of the tumor group with these 504 genes showed that there were 3 subgroups of GC that did not correspond to any current classification system, including Lauren's classification. CONCLUSION By using LCM, linear amplification of RNA, and cDNA microarray, we have identified a panel of genes that have the power to discriminate between GC and non-cancer groups. The new molecular classification and the identified novel genes in gastric carcinogenesis deserve further investigations to elucidate their clinicopathological significance.
Collapse
Affiliation(s)
- Ming-Shiang Wu
- Department of Internal Medicine and Primary Care Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | | | | | | | | | | |
Collapse
|
94
|
Naito Y, Mizushima K, Yoshikawa T. Global analysis of gene expression in gastric ischemia-reperfusion: a future therapeutic direction for mucosal protective drugs. Dig Dis Sci 2005; 50 Suppl 1:S45-55. [PMID: 16184421 DOI: 10.1007/s10620-005-2806-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/06/2005] [Indexed: 12/09/2022]
Abstract
Gastric ischemia-reperfusion is a relatively common condition leading to mucosal injury and may affect mucosal repair via modulating the gene expression of growth factors. Therefore, precise understanding of the molecular mechanism of ischemia or ischemia-reperfusion may lead to the discovery of new mucosal protective drugs. DNA microarray analysis followed by powerful data analysis has the potential to uncover previously undescribed genes involved in gastric injury and lead to an increased understanding of gastric mucosal cytoprotection. We introduced the laser-assisted microdissection to obtain cell-specific RNA from gastric mucosa in vivo and obtained sufficient amounts of cRNA for GeneChip analysis. This comprehensive approach enabled the simultaneous analysis of many genes, including transcriptional factors, as well as the generation of novel hypothesis on the mechanism of action of gastro-protective agents.
Collapse
Affiliation(s)
- Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | |
Collapse
|
95
|
|
96
|
Gologan A, Graham DY, Sepulveda AR. Molecular markers in Helicobacter pylori-associated gastric carcinogenesis. Clin Lab Med 2005; 25:197-222. [PMID: 15749238 DOI: 10.1016/j.cll.2004.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori infection is a known risk factor of gastric carcino-genesis. This article presents early molecular alterations associated with H. pylori chronic gastritis and advances in the molecular characterization of preneoplastic intestinal metaplasia (IM) and premalignant gastric mucosal lesions. H. pylori infection induces changes in gene expression, genomic instability and accumulation of gene mutations in the stomach epithelium. Mutations, including LOH and microsatellite instability, and gene hypermethylation are seen not only in gastric cancer, but are already detectable in IM and gastric dysplasia/adenoma. Recent reports using microarray expression analysis identified several gastric epithelial genes that are regulated by H. pylori. Among the many genes showing altered epithelial expression in response to H. pylori, some might be useful as markers to assess gastric cancer risk. Profiles of mutagenesis and gene expression in IM and dysplasia/adenoma have been characterized and represent potential markers of preneoplastic and premalignant lesions during gastric carcinogenesis.
Collapse
Affiliation(s)
- Adrian Gologan
- Department of Pathology, University of Pittsburgh Medical Center, PUH-A610, 200 Lothrop Street, Pittsburgh, PA 15213-2582, USA
| | | | | |
Collapse
|
97
|
Shimamura T, Ito H, Shibahara J, Watanabe A, Hippo Y, Taniguchi H, Chen Y, Kashima T, Ohtomo T, Tanioka F, Iwanari H, Kodama T, Kazui T, Sugimura H, Fukayama M, Aburatani H. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci 2005; 96:265-73. [PMID: 15904467 PMCID: PMC11160039 DOI: 10.1111/j.1349-7006.2005.00043.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucins are secreted or transmembrane glycoproteins that are expressed mainly in the digestive tract. This family of proteins has been the focus of much gastric cancer research as some transmembrane mucins are implicated in tumorigenesis and make attractive targets for cancer diagnosis and therapeutics. Mucins have also been utilized to classify gastric cancer by differentiating between gastric and intestinal phenotypes. Here we show that transmembrane mucin MUC13 is upregulated in gastric cancer. By quantitative real-time reverse transcription-polymerase chain reaction and immunoblot analysis, overexpression of MUC13 was verified in more than half of the samples examined. In immunohistochemical analysis, MUC13 staining was observed in 74 of 114 cases of gastric cancer (64.9%), predominantly in intestinal type (P < 0.001), and in 9 of 10 cases of intestinal metaplasia, precancerous lesions of intestinal-type gastric cancer, but not observed in normal gastric mucosa. Moreover, MUC13 staining patterns characteristic of histological type were identified: staining was on the apical side of tubular glands in intestinal type and on the cytoplasm in diffuse type. These results suggest that MUC13 is a good differentiation marker for gastrointestinal mucosa and that it may have a causal role that correlates with two distinct gastric tumorigenesis pathways.
Collapse
Affiliation(s)
- Takahiro Shimamura
- Genome Science Division, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Various genomic technologies have been applied to address crucial problems in cancer biology, because cancer develops through the accumulation of various genetic alterations. Of these, gene expression profiling analysis using microarray technology has been widely applied not only to classify cancers at molecular levels, but also to identify novel molecular targets for therapeutics and/or diagnostics. To gain molecular understanding of gastric carcinogenesis, progression, and diversity, we analyzed primary advanced gastric cancer and noncancerous gastric tissues by high-density oligonucleotide microarray. Genes differentially expressed between cancer and noncancerous tissues were identified. In cancer tissues, genes related to cell cycle, growth factor, cell motility, cell adhesion, and matrix remodeling were highly expressed, whereas those related to gastrointestinal-specific function and immune response were rather downregulated. These results provide not only a new molecular basis for understanding biological properties of gastric cancer but also useful resources for future development of therapeutic and diagnostic biomarkers for gastric cancer. Several microarray studies have been published since and have been compared for validation in meta-analysis. As integration of transcriptome information with other biological data is crucial to interpret gene expression data, we have applied oligonucleotide microarray technology to assess allelic gene dosage at 10000 polymorphic loci, namely with an average interval of 200kb. Using a newly developed algorithm, genome imbalance map, loss of heterozygosity (LOH) status can be determined simultaneously. Besides several loci with genomic amplification, we also identified a homozygously deleted chromosomal region in 7q, where frequent chromosomal instability was observed. Finally, we are currently developing novel biomarkers for gastroenterological cancers. Glypican 3 is detected at high levels in serum of hepatocellular carcinoma patients and could be a potential target for antibody therapy.
Collapse
Affiliation(s)
- Hiroyuki Aburatani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
99
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|