51
|
Varzi D, Coupaud SAF, Purcell M, Allan DB, Gregory JS, Barr RJ. Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients. Bone 2015; 81:495-501. [PMID: 26341577 DOI: 10.1016/j.bone.2015.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/18/2015] [Accepted: 08/30/2015] [Indexed: 01/13/2023]
Abstract
After spinal cord injury (SCI), bone loss in the paralysed limbs progresses at variable rates. Decreases in bone mineral density (BMD) in the first year range from 1% (slow) to 40% (rapid). In chronic SCI, fragility fractures commonly occur around the knee, with significant associated morbidity. Osteoporosis treatments await full evaluation in SCI, but should be initiated early and targeted towards patients exhibiting rapid bone loss. The potential to predict rapid bone loss from a single bone scan within weeks of a SCI was investigated using statistical shape modelling (SSM) of bone morphology, hypothesis: baseline bone shape predicts bone loss at 12-months post-injury at fracture-prone sites. In this retrospective cohort study 25 SCI patients (median age, 33 years) were scanned at the distal femur and proximal tibia using peripheral Quantitative Computed Tomography at <5 weeks (baseline), 4, 8 and 12 months post-injury. An SSM was made for each bone. Links between the baseline shape-modes and 12-month total and trabecular BMD loss were analysed using multiple linear regression. One mode from each SSM significantly predicted bone loss (age-adjusted P<0.05 R(2)=0.37-0.61) at baseline. An elongated intercondylar femoral notch (femur mode 4, +1 SD from the mean) was associated with 8.2% additional loss of femoral trabecular BMD at 12-months. A more concave posterior tibial fossa (tibia mode 3, +1 SD) was associated with 9.4% additional 12-month tibial trabecular BMD loss. Baseline bone shape determined from a single bone scan is a valid imaging biomarker for the prediction of 12-month bone loss in SCI patients.
Collapse
Affiliation(s)
- Delaram Varzi
- Musculoskeletal Research Programme, University of Aberdeen, Aberdeen, UK
| | - Sylvie A F Coupaud
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK
| | - David B Allan
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK
| | - Jennifer S Gregory
- Musculoskeletal Research Programme, University of Aberdeen, Aberdeen, UK
| | - Rebecca J Barr
- Musculoskeletal Research Programme, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
52
|
Karapolat I, Karapolat HU, Kirazli Y, Capaci K, Akkoc Y, Kumanlioglu K. Longitudinal study of bone loss in chronic spinal cord injury patients. J Phys Ther Sci 2015; 27:1429-33. [PMID: 26157234 PMCID: PMC4483412 DOI: 10.1589/jpts.27.1429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/17/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers.
Collapse
Affiliation(s)
- Inanc Karapolat
- Department of Nuclear Medicine, Medical Faculty, Sifa University, Turkey
| | | | - Yesim Kirazli
- Department of Physical Medicine and Rehabilitation, Medical Faculty, Ege University, Turkey
| | - Kazim Capaci
- Department of Physical Medicine and Rehabilitation, Medical Faculty, Ege University, Turkey
| | - Yesim Akkoc
- Department of Physical Medicine and Rehabilitation, Medical Faculty, Ege University, Turkey
| | - Kamil Kumanlioglu
- Department of Nuclear Medicine, Medical Faculty, Ege University, Turkey
| |
Collapse
|
53
|
Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury. Bone 2015; 74:69-75. [PMID: 25596521 DOI: 10.1016/j.bone.2015.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Disuse osteoporosis occurs in response to long-term immobilization. Spinal cord injury (SCI) leads to a form of disuse osteoporosis that only affects the paralyzed limbs. High rates of bone resorption after injury are evident from decreases in bone mineral content (BMC), which in the past have been attributed in the main to loss of trabecular bone in the epiphyses and cortical thinning in the shaft through endocortical resorption. METHODS Patients with motor-complete SCI recruited from the Queen Elizabeth National Spinal Injuries Unit (Glasgow, UK) were scanned within 5weeks of injury (baseline) using peripheral Quantitative Computed Tomography (pQCT). Unilateral scans of the tibia, femur and radius provided separate estimates of trabecular and cortical bone parameters in the epiphyses and diaphyses, respectively. Using repeat pQCT scans at 4, 8 and 12months post-injury, changes in BMC, bone mineral density (BMD) and cross-sectional area (CSA) of the bone were quantified. RESULTS Twenty-six subjects (5 female, 21 male) with SCI (12 paraplegic, 14 tetraplegic), ranging from 16 to 76years old, were enrolled onto the study. Repeated-measures analyses showed a significant effect of time since injury on key bone parameters at the epiphyses of the tibia and femur (BMC, total BMD, trabecular BMD) and their diaphyses (BMC, cortical BMD, cortical CSA). There was no significant effect of gender or age on key outcome measures, but there was a tendency for the female subjects to experience greater decreases in cortical BMD. The decreases in cortical BMD in the tibia and femur were found to be statistically significant in both men and women. CONCLUSIONS By carrying out repeat pQCT scans at four-monthly intervals, this study provides a uniquely detailed description of the cortical bone changes that occur alongside trabecular bone changes in the first year of complete SCI. Significant decreases in BMD were recorded in both the cortical and trabecular bone compartments of the tibia and femur throughout the first year of injury. This study provides evidence for the need for targeted early intervention to preserve bone mass within this patient group.
Collapse
Affiliation(s)
- Sylvie Coupaud
- Department of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow G51 4TF, United Kingdom.
| | - Alan N McLean
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| | - Matthew H Fraser
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| | - David B Allan
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
54
|
Lombardi G, Musco S, Kessler TM, Marzi VL, Lanciotti M, Del Popolo G. Management of sexual dysfunction due to central nervous system disorders: a systematic review. BJU Int 2015; 115 Suppl 6:47-56. [DOI: 10.1111/bju.13055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Giuseppe Lombardi
- Neuro-Urology Department; Careggi University Hospital; Florence Italy
| | - Stefania Musco
- Neuro-Urology Department; Careggi University Hospital; Florence Italy
| | - Thomas M. Kessler
- Neuro-Urology; Spinal Cord Injury Center and Research; Balgrist University Hospital; University of Zürich; Zürich Switzerland
| | | | | | - Giulio Del Popolo
- Neuro-Urology Department; Careggi University Hospital; Florence Italy
| |
Collapse
|
55
|
Kostovski E, Hjeltnes N, Eriksen EF, Kolset SO, Iversen PO. Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury. Calcif Tissue Int 2015; 96:145-54. [PMID: 25539858 DOI: 10.1007/s00223-014-9947-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
Abstract
Spinal cord injury (SCI) leads to severe bone loss, but the associated mechanisms are poorly described in incomplete SCI individuals. The purpose of the study is to compare alterations in bone mineral density (BMD) and serum biomarkers of bone turnover in recent motor-incomplete to -complete SCI men, as well as to describe their physical activity and spasticity. We studied 31 men with acute SCI. Whole-body DXA scans, serum biomarkers and self-reported activity and spasticity were examined 1 and/or 3 and 12 months after the injury. We observed a decrease in proximal femur BMD (p < 0.02) in both the groups. Serum phosphate and carboxy-terminal-collagen crosslinks were significantly lower in motor-incomplete versus complete SCI men, whereas albumin-corrected Ca(2+) (p = 0.02) were lower only 3 months after injury. When data from all 31 SCI participants were pooled, we observed increased serum matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of MMP-2 (TIMP-2) (p < 0.02) whereas TIMP-1 decreased (p = 0.03). BMD correlated positively with self-reported activity (r = 0.59, p = 0.04) and negatively with spasticity (r = 0.74, p = 0.02) 12 months after injury. As a summary, men with motor-incomplete SCI developed significant proximal femur bone loss 12 months after injury and exhibited increased bone resorption throughout the first year after the injury. Compared with complete SCI men, incomplete SCI men show attenuated bone resorption. Our pooled data show increased turnover of extracellular matrix after injury and that increased exercise before and after injury correlated with reduced bone loss.
Collapse
Affiliation(s)
- E Kostovski
- Department of Science, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway,
| | | | | | | | | |
Collapse
|
56
|
Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop 2015; 6:24-33. [PMID: 25621208 PMCID: PMC4303787 DOI: 10.5312/wjo.v6.i1.24] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life. The goals of rehabilitation and other treatment approaches in SCI are to improve functional level, decrease secondary morbidity and enhance health-related quality of life. Acute and long-term secondary medical complications are common in patients with SCI. However, chronic complications especially further negatively impact on patients’ functional independence and quality of life. Therefore, prevention, early diagnosis and treatment of chronic secondary complications in patients with SCI is critical for limiting these complications, improving survival, community participation and health-related quality of life. The management of secondary chronic complications of SCI is also important for SCI specialists, families and caregivers as well as patients. In this paper, we review data about common secondary long-term complications after SCI, including respiratory complications, cardiovascular complications, urinary and bowel complications, spasticity, pain syndromes, pressure ulcers, osteoporosis and bone fractures. The purpose of this review is to provide an overview of risk factors, signs, symptoms, prevention and treatment approaches for secondary long-term complications in patients with SCI.
Collapse
|
57
|
Sports Medicine Considerations for the Paralympic Athlete. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2015. [DOI: 10.1007/s40141-014-0074-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
58
|
|
59
|
Sabour H, Norouzi Javidan A, Latifi S, Larijani B, Shidfar F, Vafa MR, Heshmat R, Emami Razavi H. Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J 2014; 14:1132-8. [PMID: 24139865 DOI: 10.1016/j.spinee.2013.07.475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bone loss after spinal cord injury (SCI) occurs because of pathologic changes in osteoblastic and osteoclastic activities due to mechanical unloading. Some biochemical changes in bone metabolism after SCI are described before that were related to bone mineral loss. PURPOSE Our purpose was to determine bone markers' changes and related effective factors in patients with chronic traumatic SCI. STUDY DESIGN This investigation was designed as an observational cross-sectional study. PATIENT SAMPLE All patients with chronic SCI who were referred to Brain and Spinal Injury Research Center and did not meet our exclusion criteria entered the study. OUTCOME MEASURES Self-reporting measures including patient's demographic features and date of accident were obtained using a questionnaire and physiologic measures including spinal magnetic resonance imaging to determine the level of injury accompanied with physical examination along with dual-energy X-ray absorptiometry were performed. Blood samples were analyzed in the laboratory. METHODS Dual-energy X-ray was used to determine bone mineral density in femoral and spinal vertebrae bone sites. Serum level of C-telopeptide cross-linked Type 1 collagen (CTX), parathyroid hormone, calcitonin, osteocalcin, and bone alkaline phosphatase (BALP) were measured. RESULTS We detected a negative association between CTX level and bone mineral density in femoral and spinal bone sites that confirms that CTX is a bone resorption marker. C-telopeptide cross-linked Type 1 collagen and BALP levels did not show any significant correlation with postduration injury. Patients with spinal injury at lumbar level had the highest calcitonin level (p<.04). C-telopeptide cross-linked Type 1 collagen was positively related with osteocalcin and BALP (p<.0001, r=0.51), and osteocalcin was positively related with BALP (p<.0001, r=0.44). Osteocalcin was related negatively only to femoral intertrochanteric zone bone mineral density. CONCLUSIONS Some bone biomarkers undergo noticeable changes after SCI. C-telopeptide cross-linked Type 1 collagen was positively correlated with BALP and osteocalcin that shows the coincidental occurrence of osteoblastic and osteoclastic activities. Our data also support this fact that although bone reduction after 2 years is slower than acute phase after SCI, bone resorption rate is higher than bone formation. These bone markers also revealed different site of action as osteocalcin level only affected femoral intertrochanteric bone mineral density. Generally, it seems that the coincidental consideration of these factors that influence bone mineral density can lead to a better understanding of bone changes after SCI.
Collapse
Affiliation(s)
- Hadis Sabour
- Brain and Spinal Injury (BASIR) Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Keshavarz Avenu, Tehran, Iran
| | - Abbas Norouzi Javidan
- Brain and Spinal Injury (BASIR) Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Keshavarz Avenu, Tehran, Iran.
| | - Sahar Latifi
- Brain and Spinal Injury (BASIR) Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Keshavarz Avenu, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute (EMRI), Endocrinology Department, Tehran University of Medical Sciences, North Kargar St, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, Iran University of Medical Sciences, Hemat Highway, Tehran, Iran
| | - Mohammad Reza Vafa
- Department of Nutrition, Iran University of Medical Sciences, Hemat Highway, Tehran, Iran
| | - Ramin Heshmat
- Endocrinology and Metabolism Research Institute (EMRI), Endocrinology Department, Tehran University of Medical Sciences, North Kargar St, Tehran, Iran
| | - Hassan Emami Razavi
- Brain and Spinal Injury (BASIR) Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Keshavarz Avenu, Tehran, Iran
| |
Collapse
|
60
|
Mayson TA, Harris SR. Functional electrical stimulation cycling in youth with spinal cord injury: A review of intervention studies. J Spinal Cord Med 2014; 37:266-77. [PMID: 24621033 PMCID: PMC4064576 DOI: 10.1179/2045772313y.0000000183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CONTEXT Preliminary research suggests that functional electrical stimulation cycling (FESC) might be a promising intervention for youth with spinal cord injury (SCI). OBJECTIVE To review the evidence on FESC intervention in youth with SCI. METHODS Systematic literature searches were conducted during December 2012. Two reviewers independently selected titles, abstracts, and full-text articles. Of 40 titles retrieved, six intervention studies met inclusion criteria and were assessed using American Academy for Cerebral Palsy and Developmental Medicine Levels of Evidence and Conduct Questions for Group Design. RESULTS The study results were tabulated based on levels of evidence, with outcomes categorized according to the International Classification of Functioning, Disability, and Health framework. Evidence from the six included studies suggests that FESC is safe for youth with SCI, with no increase in knee/hip injury or hip displacement. Results from one level II randomized controlled trial suggest that a thrice weekly, 6-month FESC program can positively influence VO2 levels when compared with passive cycling, as well as quadriceps strength when compared with electrical stimulation and passive cycling. CONCLUSIONS FESC demonstrates limited yet encouraging results as a safe modality to mitigate effects of inactivity in youth with SCI. More rigorous research involving a greater number of participants is needed before clinicians can be confident of its effectiveness.
Collapse
Affiliation(s)
- Tanja A. Mayson
- Correspondence to: Tanja A. Mayson, Therapy Department, Sunny Hill Health Centre for Children, 3644 Slocan St. Vancouver, BC, Canada, V5M 3E8.
| | - Susan R. Harris
- Department of Physical Therapy, University of British Columbia, Friedman Building, Vancouver, BC, Canada
| |
Collapse
|
61
|
Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JLR, Florensa-Vila J. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial. J Spinal Cord Med 2014; 37:299-309. [PMID: 24090427 PMCID: PMC4064579 DOI: 10.1179/2045772313y.0000000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To study the effect of 14 weeks of electromyostimulation (EMS) training (47 minutes/day, 5 days/week) on both muscle and bone loss prevention in persons with recent, complete spinal cord injury (SCI). DESIGN Prospective, experimental, controlled, single-blind randomized trial with external blind evaluation by third parties. METHODS Eight men with recent SCI (8 weeks from injury; ASIA Impairment Scale (AIS) "A") were randomized into the intervention or the control groups. Cross-sectional area of the quadriceps femoris (QF) muscle was quantified using magnetic resonance imaging. Bone mineral density changes were assessed with a dual-energy X-ray absorptiometry. Several bone biomarkers (i.e. total testosterone, cortisol, growth hormone, insulin-growth factor I, osteocalcin, serum type I collagen C-telopeptide), lipid, and lipoprotein profiles were quantified. A standard oral glucose tolerance test was performed before and after the 14-week training. All analyses were conducted at the beginning and after the intervention. RESULTS The intervention group showed a significant increase in QF muscle size when compared with the control group. Bone losses were similar in both groups. Basal levels of bone biomarkers did not change over time. Changes in lipid and lipoprotein were similar in both groups. Glucose and insulin peaks moved forward after the training in the intervention group. CONCLUSIONS This study indicates that skeletal muscle of patients with complete SCI retains the ability to grow in response to a longitudinal EMS training, while bone does not respond to similar external stimulus. Increases in muscle mass might have induced improvements in whole body insulin-induced glucose uptake.
Collapse
Affiliation(s)
- Alfredo Arija-Blázquez
- GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain,Correspondence to: Alfredo Arija-Blázquez, GENUD Toledo Research Group, University of Castilla-La Mancha, Campus Tecnológico Fábrica de Armas, Avda. Carlos III, s/n, 45071, Toledo, Spain.
| | | | | | | | | | - José L. R. Martin
- Centro de Excelencia de Investigación en Salud y Ciencias de la Vida, Escuela de Doctorado e Investigación, Universidad Europea de Madrid, Spain
| | | |
Collapse
|
62
|
Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis. BMC Musculoskelet Disord 2014; 15:122. [PMID: 24716486 PMCID: PMC3984635 DOI: 10.1186/1471-2474-15-122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/11/2014] [Indexed: 11/26/2022] Open
Abstract
Background Connexin 43 (Cx43) is the predominant gap junction protein in bone. Mice with a bone-specific deletion of Cx43 (cKO) have an osteopenic cortical phenotype. In a recent study, we demonstrated that cKO mice are resistant to bone loss induced by hindlimb suspension (HLS), an animal model of skeletal unloading. This protective effect occurred primarily as a result of lower osteoclast-mediated bone resorption. Interestingly, we also documented a significant increase in cortical osteocyte apoptosis and reduced sclerostin production. In the present study, we investigated whether osteocytic osteolysis – bone resorption by osteocytes within lacunae – is induced by HLS and the potential effect of Cx43 deficiency on this process during unloading. Methods 6-month-old male Cx43 cKO or wild-type (WT) mice were subjected to three weeks of HLS (Suspended) or normal loading conditions (Control) (n = 5/group). Lacunar morphology and tartrate-resistant acid phosphatase (TRACP) staining were assessed on sections of femur cortical bone. Experimental groups were compared via two-way ANOVA. Results Empty lacunae were 26% larger in cKO-Control vs. WT-Control (p < 0.05), while there was no difference in the size of empty lacunae between Control and Suspended within WT or cKO (p > 0.05). Similarly, there was a trend (p = 0.06) for 11% larger lacunae containing viable osteocytes for cKO-Control vs. WT-Control, with no apparent effect of loading condition. There was no difference in the proportion of TRACP + cells between WT-Control and cKO-Control (p > 0.05); however, WT-Suspended mice had 246% more TRACP + osteocytes compared WT-Control mice (p < 0.05). There was no difference in TRACP staining between cKO-Control and cKO-Suspended (p > 0.05). Conclusions Prior to undergoing apoptosis, osteocytes in cKO mice may be actively resorbing their respective lacunae via the process of osteocytic osteolysis. Interestingly, the proportion of TRACP + osteocytes increased dramatically following unloading of WT mice, an effect that was not observed in cKO mice subjected to HLS. The results of the present study provide initial evidence that osteocytic osteolysis is occurring in cortical bone in response to mechanical unloading. Furthermore, Cx43 deficiency appears to protect against osteocytic osteolysis in a manner similar to the inhibition of unloading-induced osteoclast activation that we have documented previously.
Collapse
Affiliation(s)
| | | | | | - Henry J Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
63
|
Abstract
Bariatric surgery is an effective and increasingly common treatment for severe obesity and its many comorbidities. The side-effects of bariatric surgery can include detrimental effects on bone and mineral metabolism. Bone disease in patients who have had bariatric surgery is affected by preoperative abnormalities in bone and mineral metabolism related to severe obesity. Changes that arise after bariatric surgery are specific to procedure type: the most pronounced abnormalities in calciotropic hormones and bone loss are noted after procedures that result in the most malabsorption. The most consistent site for bone loss after all bariatric procedures is at the hip. There are limitations of dual-energy x-ray absorptiometry technology in this population, including artefact introduced by adipose tissue itself. Bone loss after bariatric surgery is probably multifactorial. Proposed mechanisms include skeletal unloading, abnormalities in calciotropic hormones, and changes in gut hormones. Few data for fracture risk in the bariatric population are available, and this is a crucial area for additional research. Treatment should be geared toward correction of nutritional deficiencies and study of bone mineral density in high-risk patients. We explore the skeletal response to bariatric surgery, potential mechanisms for changes, and strategies for management.
Collapse
Affiliation(s)
- Emily M Stein
- Columbia University College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| | - Shonni J Silverberg
- Columbia University College of Physicians and Surgeons, Columbia University, New York 10032, USA
| |
Collapse
|
64
|
Montenegro C, Soto C, Rada G. Antiresorptive agents for the prevention of fractures after spinal cord injury. Hippokratia 2013. [DOI: 10.1002/14651858.cd010892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Constanza Montenegro
- Hospital Clínico Universidad de Chile; Department of Physical and Rehabilitation Medicine; Santos Dumont 999 Santiago Región Metropolitana Chile 8380456
| | - Claudio Soto
- Hospital Clínico Mutual de Seguridad; Department of Physical and Rehabilitation Medicine; Alameda 4848 Santiago Región metropolitana Chile 9190015
| | - Gabriel Rada
- Faculty of Medicine, Pontificia Universidad Católica de Chile; Department of Internal Medicine, Evidence Based Health Care Program; Lira 44, Decanato Primer piso Santiago Chile
| |
Collapse
|
65
|
Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients- a systematic review and meta-analysis. PLoS One 2013; 8:e81124. [PMID: 24278386 PMCID: PMC3838359 DOI: 10.1371/journal.pone.0081124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various pharmacologic and non-pharmacologic approaches have been applied to reduce sublesional bone loss after spinal cord injury (SCI), and the results are inconsistent across the studies. The objective of this meta-analysis was to investigate whether the two most-studied interventions, bisphosphonate analogues and functional electrical stimulation (FES), could effectively decrease bone mineral density (BMD) attenuation and/or restore lost BMD in the SCI population. METHODS Randomized controlled trials, quasi-experimental studies, and prospective follow-up studies employing bisphosphonates or FES to treat post-SCI osteoporosis were identified in PubMed and Scopus. The primary outcome was the percentage of BMD change from baseline measured by dual-energy X-ray absorptiometry (DEXA) or computed tomography (CT). Data were extracted from four points: the 3rd, 6th, 12th, and 18th month after intervention. RESULTS A total of 19 studies were included in the analysis and involved 364 patients and 14 healthy individuals. Acute SCI participants treated with bisphosphonate therapy demonstrated a trend toward less bone loss than participants who received placebos or usual care. A significant difference in BMD decline was noted between both groups at the 3rd and 12th month post-medication. The subgroup analysis failed to show the superiority of intravenous bisphosphonate over oral administration. Regarding FES training, chronic SCI patients had 5.96% (95% CI, 2.08% to 9.84%), 7.21% (95%CI, 1.79% to 12.62%), and 9.56% (95% CI, 2.86% to 16.26%) increases in BMD at the 3rd, 6th, and 12th months post-treatment, respectively. The studies employing FES ≥ 5 days per week were likely to have better effectiveness than studies using FES ≤ 3 days per week. CONCLUSIONS Our meta-analysis indicated bisphosphonate administration early following SCI effectively attenuated sublesional bone loss. FES intervention for chronic SCI patients could significantly increase sublesional BMD near the site of maximal mechanical loading.
Collapse
Affiliation(s)
- Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, BeiHu Branch and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Hung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Shu Lai
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Liong Chien
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (KLC); (DSH)
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, BeiHu Branch and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (KLC); (DSH)
| |
Collapse
|
66
|
Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone 2013; 57:76-83. [PMID: 23891909 PMCID: PMC4480865 DOI: 10.1016/j.bone.2013.07.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Abstract
Connexin 43 (Cx43) is a gap junction protein that plays an integral role in the skeletal response to mechanical loading and unloading. In a previous study, we demonstrated preservation of trabecular bone mass and cortical bone formation rate in mice with an osteoblast/osteocyte-selective deficiency of Cx43 (cKO) following mechanical unloading via hindlimb suspension (HLS). In the present study, we sought to define the potential mechanisms underlying this response. Following three weeks of HLS, mRNA levels of Sost were significantly greater in wild-type (WT)-Suspended mice vs. WT-Control, while there was no difference between cKO control and cKO-Suspended. Unloading-induced decreases in P1NP, a serum marker of bone formation, were also attenuated in cKO-Suspended. The proportion of sclerostin-positive osteocytes was significantly lower in cKO-Control vs. WT-Control (-72%, p<0.05), a difference accounted for by the presence of numerous empty lacunae in the cortical bone of cKO vs. WT. Abundant TUNEL staining was present throughout the cortical bone of the tibia and femur, suggesting an apoptotic process. There was no difference in empty lacunae in the trabecular bone of the tibia or femur. Trabecular and cortical osteoclast indices were lower in cKO-Suspended vs. WT-Suspended; however, mRNA levels of the gene encoding RANKL increased similarly in both genotypes. Connexin 43 deficient mice experience attenuated sclerostin-mediated suppression of cortical bone formation and lower cortical osteoclast activity during unloading. Preservation of trabecular bone mass and attenuated osteoclast activity during unloading, despite an apparent lack of effect on osteocyte viability at this site, suggests that an additional mechanism independent of osteocyte apoptosis may also be important. These findings indicate that Cx43 is able to modulate both arms of bone remodeling during unloading.
Collapse
|
67
|
Gordon KE, Wald MJ, Schnitzer TJ. Effect of Parathyroid Hormone Combined With Gait Training on Bone Density and Bone Architecture in People With Chronic Spinal Cord Injury. PM R 2013; 5:663-71. [DOI: 10.1016/j.pmrj.2013.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 03/14/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
|
68
|
Abstract
Transverse myelitis (TM) includes a pathobiologically heterogeneous syndrome characterized by acute or subacute spinal cord dysfunction resulting in paresis, a sensory level, and autonomic (bladder, bowel, and sexual) impairment below the level of the lesion. Etiologies for TM can be broadly classified as parainfectious, paraneoplastic, drug/toxin-induced, systemic autoimmune disorders, and acquired demyelinating diseases. We discuss the clinical evaluation, workup, and acute and long-term management of patients with TM. Additionally, we briefly discuss various disease entities that may cause TM and their salient distinguishing features, as well as disorders that may mimic TM.
Collapse
Affiliation(s)
- Shin C. Beh
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd, Dallas, TX 75390, USA
| | - Benjamin M. Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd, Dallas, TX 75390, USA
| | - Teresa Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd, Dallas, TX 75390, USA
| | - Elliot M. Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd, Dallas, TX 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
69
|
Affiliation(s)
- Heinrich Binder
- Department of Neurology, Otto Wagner Hospital, Vienna, Austria.
| |
Collapse
|
70
|
Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 2012; 27:2359-72. [PMID: 22714552 PMCID: PMC3683470 DOI: 10.1002/jbmr.1687] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as a countermeasure for age-related and unloading-induced bone loss.
Collapse
Affiliation(s)
- Shane A Lloyd
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
71
|
Whole-Body Vibration During Passive Standing in Individuals With Spinal Cord Injury: Effects of Plate Choice, Frequency, Amplitude, and Subject's Posture on Vibration Propagation. PM R 2012; 4:963-75. [DOI: 10.1016/j.pmrj.2012.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/16/2012] [Accepted: 08/14/2012] [Indexed: 11/22/2022]
|
72
|
Schnitzer TJ, Wysocki N, Barkema D, Griffith J, Lent V, Romba M, Welbel R, Bhuva S, Manyam B, Linn S. Calcaneal Quantitative Ultrasound Compared With Hip and Femoral Neck Dual-Energy X-Ray Absorptiometry in People With A Spinal Cord Injury. PM R 2012; 4:748-55. [DOI: 10.1016/j.pmrj.2012.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 10/28/2022]
|
73
|
Abstract
The use of bariatric surgery for the treatment of morbid obesity has increased annually for the last decade. Although many studies have demonstrated the efficacy and durability of bariatric surgery for weight loss, there are limited data regarding long-term side effects of these procedures. Recently, there has been an increased focus on the impact of bariatric surgery on bone metabolism. Bariatric surgery utilizes one or more of three mechanisms of action resulting in sustained weight loss. These include restriction (gastric banding, vertical banded gastroplasty and sleeve gastrectomy), malabsorption surgery with or without associated restriction (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion and jejunoileal bypass) and changes in gut-derived hormones that control energy metabolism also referred to as neuro-hormonal control of energy metabolism (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion, jejunoileal bypass, surgical procedures as above and gastric sleeve). Weight reduction has been associated with increased bone resorption but the mechanisms behind this have not yet been fully elucidated. Each of the mechanisms of action of bariatric surgery (restriction, malabsorption, neuro-hormonal control of energy metabolism) may uniquely affect bone resorption. In this paper we will review the current state of knowledge regarding the relationship between bariatric surgery and bone metabolism with emphasis on possible mechanisms of action such as malnutrition, hormonal interactions and mechanical unloading of the skeleton. Further, we suggest a future research agenda.
Collapse
|
74
|
Ooi HL, Briody J, McQuade M, Munns CF. Zoledronic acid improves bone mineral density in pediatric spinal cord injury. J Bone Miner Res 2012; 27:1536-40. [PMID: 22437628 DOI: 10.1002/jbmr.1598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is associated with rapid and sustained bone loss and increase risk of fracture. Disuse is the primary cause for bone loss, although neural and hormonal changes may also contribute via different mechanisms. Bisphosphonates are used widely to treat osteoporosis in adults and are used increasingly for primary and secondary osteoporosis in children. Current data are insufficient to recommend routine use of bisphosphonates for fracture prevention in adult patients post-SCI and there are no available data in pediatric SCI. We report a 12-year-old boy with non-traumatic SCI who was treated with six monthly zoledronic acid (0.05 mg/kg/dose) for 18 months. The patient (AA) was diagnosed with transverse myelitis at 8.1 years of age, resulting in ventilator-dependent incomplete C3 tetraplegia. Following a fragility fracture to the surgical neck of the right humerus at 9.5 years of age, he was started on zoledronic acid. Bone turnover decreased and bone densitometry data (dual-energy X-ray absorptiometry [DXA] and peripheral quantitative computed tomography [pQCT]) showed improvement in metaphyseal and diaphyseal bone mineral content (BMC), volumetric bone mineral density (vBMD), and size, after 18 months of treatment. In the growing skeleton post-SCI, zoledronic acid potentially increases vertebral and long-bone strength by preserving trabecular bone (increased BMC and vBMD) and increasing cortical vBMD and cross-sectional area (CSA).
Collapse
Affiliation(s)
- Hooi Leng Ooi
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia.
| | | | | | | |
Collapse
|
75
|
Newman M, Barker K. The effect of supported standing in adults with upper motor neurone disorders: a systematic review. Clin Rehabil 2012; 26:1059-77. [DOI: 10.1177/0269215512443373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meredith Newman
- Physiotherapy Research Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Karen Barker
- Physiotherapy Research Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
76
|
Coupaud S, McLean AN, Lloyd S, Allan DB. Predicting patient-specific rates of bone loss at fracture-prone sites after spinal cord injury. Disabil Rehabil 2012; 34:2242-50. [PMID: 22553944 DOI: 10.3109/09638288.2012.681831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE People with spinal cord injury (SCI) experience bone loss and have an elevated rate of fracture in the paralysed limbs. The literature suggests an exponential time course of bone loss after SCI, but true rates may vary between patients. We propose systematic evaluation of bone status in the early stages of SCI to identify fast bone losers. METHOD A case series of six patients with complete SCI were scanned using peripheral quantitative computed tomography within 5 weeks and at 4, 8 and 12 months post-injury. Bone mineral density (BMD) and bone mineral content (BMC) were measured at fracture-prone sites in the tibia and femur. Patient-specific-predictions (PSP) of expected rates of bone loss were produced by individualising published model equations according to each patient's measured values at baseline. Wilcoxon Signed-Rank tests were used to identify changes between time-points; chi-squared tests for differences between measured and PSP values. RESULTS In the lower limbs, mean values decreased significantly between baseline and 8 months post-injury, by 19-31% for trabecular BMD, 21-32% for total BMD, and 9-29% for BMC. Most subjects showed no significant differences between PSP and measured values, but individuals with significantly faster rates of bone loss than predicted should be investigated further. CONCLUSIONS There was considerable intersubject variability in rates of bone loss after SCI. Patients showing the fastest bone loss could benefit from continued follow-up and possibly treatment.
Collapse
Affiliation(s)
- S Coupaud
- Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
77
|
Johnston TE, Modlesky CM, Betz RR, Lauer RT. Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil 2012; 92:1937-43. [PMID: 22133240 DOI: 10.1016/j.apmr.2011.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/04/2011] [Accepted: 06/27/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the effect of cycling, electrical stimulation, or both, on thigh muscle volume and stimulated muscle strength in children with spinal cord injury (SCI). DESIGN Randomized controlled trial. SETTING Children's hospital specializing in pediatric SCI. PARTICIPANTS Children (N=30; ages, 5-13y) with chronic SCI. INTERVENTIONS Children were randomly assigned to 1 of 3 interventions: functional electrical stimulation cycling (FESC), passive cycling (PC), and noncycling, electrically stimulated exercise (ES). Each group exercised for 1 hour, 3 times per week for 6 months at home. MAIN OUTCOME MEASURES Preintervention and postintervention, children underwent magnetic resonance imaging to assess muscle volume, and electrically stimulated isometric muscle strength testing with the use of a computerized dynamometer. Data were analyzed via analyses of covariance (ANCOVA) with baseline measures as covariates. Within-group changes were assessed via paired t tests. RESULTS All 30 children completed the training. Muscle volume data were complete for 24 children (8 FESC, 8 PC, 8 ES) and stimulated strength data for 27 children (9 per group). Per ANCOVA, there were differences between groups (P<.05) for quadriceps muscle volume and stimulated strength, with the ES group having greater changes in volume and the FESC group having greater changes in strength. Within-group analyses showed increased quadriceps volume and strength for the FESC group and increased quadriceps volume for the ES group. CONCLUSIONS Children receiving either electrically stimulated exercise experienced changes in muscle size, stimulated strength, or both. These changes may decrease their risk of cardiovascular disease, insulin resistance, glucose intolerance, and type 2 diabetes. CLINICAL TRIALS REGISTRATION NUMBER NCT00245726.
Collapse
Affiliation(s)
- Therese E Johnston
- Department of Physical Therapy, University of the Sciences, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
78
|
Karimi MT. The influence of walking with an orthosis on bone mineral density by determination of the absolute values of the loads applied on the limb. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:55-61. [PMID: 22215308 DOI: 10.1007/s13246-011-0121-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Spinal cord injury is damage to the spinal cord that results in loss of mobility and sensation below the level of injury. Most patients use various types of orthoses to stand and walk. It has been claimed that walking and standing with orthosis reduces bone osteoporosis, improves joint range of motion and decreases muscle spasm. Unfortunately, there are discrepancies regarding the clinical effects of walking and standing on bone mineral density. The aim of this research was to find the absolute values of the loads transmitted by body and orthosis in walking with use of an orthosis. 5 normal subjects were recruited to stand and walk with a new design of reciprocal gait orthosis. The loads transmitted through the orthosis and anatomy was measured by use of strain gauge and motion analysis systems. It has been shown that the loads applied on the anatomy were significantly more than that transmitted through the orthosis. Moreover, the patterns of the forces and moments of the orthosis and body completely differed from each other. As the most part of the loads applied on the complex transmitted by anatomy in walking with an orthosis, walking with orthosis can influence bone mineral density.
Collapse
|
79
|
Juknis N, Cooper JM, Volshteyn O. The changing landscape of spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:149-166. [PMID: 23098711 DOI: 10.1016/b978-0-444-52137-8.00009-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the past quarter century, spinal cord injury medicine has welcomed the proliferation of new medications and technologies that improve the survival and quality of life for people with spinal cord injury, but also endured the failure of strategies we hoped would salvage the cord in the acute phase. Surgical decompression and spinal stabilization should be pursued whenever indicated and feasible; however, there is no compelling evidence that early decompression facilitates neurological improvement. Methylprednisolone, the subject of over two decades of trials, has proven to be of marginal benefit in improving functional outcome. Recent advances in the management of the respiratory, cardiovascular, autonomic, endocrine, skeletal and integumentary systems have not only changed morbidity and survival of spinal cord injury patients but also improved quality of life. Progress has been made in the early diagnosis and effective treatment of cardiac arrhythmias, neurogenic shock, autonomic dysreflexia and orthostatic hypotension. Aggressive respiratory care for high cervical level of injury patients should include an option for phrenic nerve pacing as it is a viable rehabilitative strategy for appropriately selected patients. Pressure ulcers remain a significant psychological, financial, and functional burden for many people with SCI and for healthcare providers. This area will continue to require further work on early prevention and education. Despite extensive scientific and clinical data on neurogenic osteoporosis, there is no consensus regarding the best pharmacotherapeutic agents, dosing regimens, or rehabilitative strategies for prevention and treatment of bone loss. This chapter will focus on the advances.
Collapse
Affiliation(s)
- Neringa Juknis
- Department of Neurology, Washington University, St. Louis, MO, USA.
| | | | | |
Collapse
|
80
|
Ditunno JF, Cardenas DD, Formal C, Dalal K. Advances in the rehabilitation management of acute spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:181-95. [PMID: 23098713 DOI: 10.1016/b978-0-444-52137-8.00011-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aggressive assessment and management of the secondary complications in the hours and days following spinal cord injury (SCI) leads to restoration of function in patients through intervention by a team of rehabilitation professionals. The recent certification of SCI physicians, newly validated assessments of impairment and function measures, and international databases agreed upon by SCI experts should lead to documentation of improved rehabilitation care. This chapter highlights recent advances in assessment and treatment based on evidence-based classification of literature reviews and expert opinion in the acute phase of SCI. A number of these reviews are the product of the Consortium for Spinal Cord Medicine, which offers clinical practice guidelines for healthcare professionals. Recognition of and early intervention for problems such as bradycardia, orthostatic hypotension, deep vein thrombosis/pulmonary embolism, and early ventilatory failure will be addressed although other chapters may discuss some issues in greater detail. Early assessment and intervention for neurogenic bladder and bowel function has proven effective in the prevention of renal failure and uncontrolled incontinence. Attention to overuse and disuse with training and advanced technology such as functional electrical stimulation have reduced pain and disability associated with upper extremity deterioration and improved physical fitness. Topics such as chronic pain, spasticity, sexual dysfunction, and pressure sores will be covered in more detail in additional chapters. However, the comprehensive and integrated rehabilitation by specialized SCI teams of physicians, nurses, therapists, social workers, and psychologists immediately following SCI has become the standard of care throughout the world.
Collapse
Affiliation(s)
- John F Ditunno
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
81
|
Maïmoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism 2011; 60:1655-63. [PMID: 21632079 DOI: 10.1016/j.metabol.2011.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 01/27/2023]
Abstract
Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département d'Hormonologie, Hôpital Lapeyronie, CHU Montpellier and UMI, 34295 Montpellier, France.
| | | | | |
Collapse
|
82
|
Hommel E, Ghazi A, White H. Minimal trauma fractures: lifting the specter of misconduct by identifying risk factors and planning for prevention. J Am Med Dir Assoc 2011; 13:180-6. [PMID: 21683662 DOI: 10.1016/j.jamda.2011.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 12/13/2022]
Abstract
Minimal trauma fractures are an unfortunate, yet not uncommon, event for frail elderly individuals in long term care facilities. These fractures result in significant morbidity including pain and loss of function along with significantly increased mortality. Further concern exists for the medico-legal issues raised after a minimal trauma fracture is discovered. The controversy at hand is whether such fractures are primarily the result of inadequate, careless, or abusive care practices. We build a case to the contrary. Although the data regarding this condition are limited, there exists a reasonable evidence base to identify an at-risk patient population. We present a representative case and subsequent literature review of minimal trauma fractures to illustrate the condition, including risk factors, mode of presentation, and patient outcomes. No direct research has been conducted on the pathophysiology of these fractures. Extrapolating from other similar conditions and likely associated comorbid illnesses, we explore possible physiologic explanations for their occurrence. Again, no direct investigation into prevention or treatment of minimal trauma fractures has been published. Instead, we consider a variety of pharmacologic and nonpharmacologic interventions that may modify the risk for minimal trauma fractures considering the previously identified risk factors and probable pathophysiologic changes leading to fracture development. We propose that reducing minimal trauma fractures in the frail elderly nursing home population will require careful staff education, close attention to identify at-risk patients, and implementation of select interventions aimed at preventing such fractures.
Collapse
Affiliation(s)
- Erin Hommel
- Department of Internal Medicine, Division of Geriatrics, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
83
|
Lauer RT, Smith BT, Mulcahey MJ, Betz RR, Johnston TE. Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord 2011; 49:917-23. [PMID: 21423253 DOI: 10.1038/sc.2011.19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomized clinical trial. OBJECTIVES To determine the effect of cycling and/or electrical stimulation on hip and knee bone mineral density (BMD) in children with spinal cord injury (SCI). SETTING Children's hospital specializing in pediatric SCI. METHODS A total of 30 children, aged 5-13 years, with chronic SCI were randomized to one of three interventions: functional electrical stimulation cycling (FESC), passive cycling (PC), and non-cycling, electrically stimulated exercise (ES). Each group exercised for 1 h, three times per week for 6 months at home. The hip, distal femur and proximal tibia BMD were examined via dual-energy X-ray absorptiometry (DXA) pre- and post-intervention. RESULTS In all, 28 children completed data collection. The FESC group exhibited increases in hip, distal femur and proximal tibia BMD of 32.4, 6.62 and 10.3%, respectively. The PC group exhibited increases at the hip (29.2%), but no change at the distal femur (1.5%) or proximal tibia (-1.0%). The ES group had no change at the hip (-0.24%) and distal femur (3.3%), but a loss at the proximal tibia (-7.06%). There were no differences between groups or within groups over time. Significant negative correlations were found between baseline BMD and the amount of BMD change. CONCLUSION Although not achieving statistical significance, hip BMD changes observed were greater than the reported 0.9-10% gains after exercise for children with and without disability. Thus, cycling with and without electrical stimulation may be beneficial for skeletal health in pediatric SCI, but further research is needed with a larger sample size.
Collapse
Affiliation(s)
- R T Lauer
- Department of Physical Therapy, Temple University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
84
|
Aono Y, Hirai Y. A culture system for the live analysis of successive developmental processes and the morphological control of mammalian vertebral cartilage. Cytotechnology 2011; 63:269-77. [PMID: 21279736 DOI: 10.1007/s10616-011-9338-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/11/2011] [Indexed: 11/25/2022] Open
Abstract
The mesoderm-derived segmental somite differentiates into dermomyotome and sclerotome, the latter of which undergoes vertebrogenesis to spinal cartilage and ultimately to vertebral bones. However, analysis and manipulation of the developing mammalian vertebrae in the same embryo has been infeasible because of their placental-dependent embryogenesis. Here, we report a novel culture system of the mouse embryonic tailbud, by which the developmental processes of mammalian vertebral cartilage are traceable and manipulatable in the same sample. The anaplastic segmental somites/sclerotomes in the tailbud of 13 gestational day (g.d.) embryo that are structurally continuous to the vertebral column underwent progressive vertebrogenesis when (1) the ectoderm-derived nascent epidermis was microsurgically removed prior to cultivation, and (2) the sample was incubated at the air-medium interface. After cultivation for 5 days, the size and shape of the instructed vertebral cartilage showed features comparable to well-differentiated body vertebra along with the expression of the cartilage marker collagen type II, suggesting that aggressive differentiation of the sclerotomal cell lineage was achieved. In the presence of recombinant bone morphogenic protein (BMP) and Noggin, or adenoviral particles for extracellular epimorphin, dramatic alteration of the vertebral morphology ensued in the explants. Thus, this model system provides an approach to study the detailed molecular mechanisms of mammalian vertebrogenesis and enables pretreatment strategies of precartilagious fragments for improving the efficacy of subsequent transplantation.
Collapse
Affiliation(s)
- Yuichi Aono
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | | |
Collapse
|
85
|
Jiang SD, Yan J, Jiang LS, Dai LY. Down-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in osteoblasts from rats with chronic spinal cord injury. Joint Bone Spine 2011; 78:488-92. [PMID: 21273111 DOI: 10.1016/j.jbspin.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate the anabolic response of osteoblasts to chronic spinal cord injury and to identify potential signaling pathways that are associated with the osteogenic response after spinal cord injury by using in-house microarray analyses in osteoblasts. METHODS Ten young male Sprague-Dawley rats were randomized into spinal cord injury (SCI) and SHAM groups. The tibiae were assessed for DXA and bone histomorphometry, and osteoblasts from femora were used for microarray analysis. RESULTS SCI rats showed lower BMD and deteriorated microstructure in the proximal tibiae as compared with SHAM rats. The Wnt, BMP/TGF, estrogen receptor (ER), and IGF-I pathways were down-regulated in osteoblasts from spinal cord-injured rats. CONCLUSION Down-regulation of the Wnt, BMP/TGF, ER, and growth hormone/IGF-I pathways is associated with decreased bone formation after spinal cord injury.
Collapse
Affiliation(s)
- Sheng-Dan Jiang
- Department of Orthopaedic Surgery, Xinhua Hospital, 1665 Kongjiang Road, Shanghai 200092, Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
86
|
Osteoporosis in Persons With Spinal Cord Injury: The Need for a Targeted Therapeutic Education. Arch Phys Med Rehabil 2011; 92:59-67. [DOI: 10.1016/j.apmr.2010.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022]
|
87
|
Phaner V, Charmetant C, Condemine A, Fayolle-Minon I, Lafage-Proust MH, Calmels P. [Osteoporosis in spinal cord injury. Screening and treatment. Results of a survey of physical medicine and rehabilitation physician practices in France. Proposals for action to be taken towards the screening and the treatment]. Ann Phys Rehabil Med 2010; 53:615-20. [PMID: 21123130 DOI: 10.1016/j.rehab.2010.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The management of osteoporosis in spinal cord injury that is a recurring issue in daily practice, but unfortunately, no standard protocol is provided by the literature review, either for screening or for a strategy of prevention and even for therapy. We assessed the practices of the physicians in physical medicine and rehabilitation from all over France, with the ultimate aim to propose a consensus for preventive and curative cares of that osteoporosis. METHODS A questionnaire was sent to practitioners engaged with spinal cord injury (SCI) patients residing in the center and patients in medical monitoring. The questionnaire consisted mainly of closed questions. RESULTS Twenty-six questionnaires are analyzed. The screening for osteoporosis is made routinely by only 19.2% of the practitioners and after a fracture in only 80.2% of the cases. The diagnosis of osteoporosis is based on bone densitometry (DEXA) (96%). Standing still remains a means of prevention for 88% of physicians in the acute phase and for 77% in the chronic phase. Ninety-two percent of practitioners treat at the stage of established osteoporosis. CONCLUSION There is generally no standardized management of osteoporosis in practice for SCI patients. The searching for osteoporosis is usually performed after a fracture. All the literature data and results of the questionnaire led us to propose a protocol consisting in a systematic monitoring of the bone mineral density for the screening of osteoporosis, but also a procedure for early diagnosis and for preventive treatment of osteoporosis in the acute phase.
Collapse
Affiliation(s)
- V Phaner
- Université de Saint-Etienne, hôpital Bellevue, CHU de Saint-Étienne, France.
| | | | | | | | | | | |
Collapse
|
88
|
Immobilization and bone structure in humans. Arch Biochem Biophys 2010; 503:146-52. [DOI: 10.1016/j.abb.2010.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 12/11/2022]
|
89
|
Diagnosis and treatment of osteoporosis in spinal cord injury patients: A literature review. Ann Phys Rehabil Med 2010; 53:655-68. [PMID: 21094110 DOI: 10.1016/j.rehab.2010.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/20/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To present an up-to-date literature review of osteoporosis in spinal cord injury (SCI) patients, in view of the seriousness of this complication (with a high risk of fractures) and the complexity of its diagnosis, evaluation and treatment. METHODS A Medline search with the following keywords: immobilization osteoporosis, spinal cord injury, bone loss, dual energy X-ray absorptiometry (DEXA), bisphosphonate. RESULTS Our analysis of the literature noted a bone metabolism imbalance in SCI patients, with accelerated early bone resorption (particularly during the first 6 months post-injury). Although dual energy X-ray absorptiometry constitutes the "gold standard" diagnostic method, the decrease in bone mineral density only becomes significant 12 months after the injury. Bisphosphonate therapy has proven efficacy. Despite the frequent use of various physical therapies, these methods have not been found to be effective. CONCLUSION Although our literature review did not identify any guidelines on the strategy for diagnosing and treating osteoporosis in SCI patients, several findings provide guidance on procedures for early diagnosis and preventive treatment.
Collapse
|
90
|
Management of Osteoporosis After Spinal Cord Injury: What Can Be Done? PM R 2010; 2:566-72. [DOI: 10.1016/j.pmrj.2010.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 11/23/2022]
|
91
|
Abstract
Fractures resulting from osteoporosis are a major cause of morbidity and mortality in the developed world. People with multiple sclerosis experience reduced mobility and are susceptible to falls. Glucocorticoid use and reduced mobility are known risk factors for osteoporosis. This paper is a review of osteoporosis in people with multiple sclerosis, looking at its prevalence, risk factors and possible mechanisms. We also review management guidelines for osteoporosis in the general population and use these to propose guidelines for osteoporosis management amongst multiple sclerosis patients. A number of studies have examined the incidence of reduced bone mineral density amongst people with multiple sclerosis; the majority provide convincing evidence that bone mineral density is significantly reduced in multiple sclerosis patients. The most significant risk factors appear to arise from the chronic disease process of multiple sclerosis and not from glucocorticoid use. There are currently no guidelines or consensus as how best to treat osteoporosis amongst multiple sclerosis patients despite their being at an increased risk. We propose an algorithm for the screening and treatment of osteoporosis in people with multiple sclerosis.
Collapse
|
92
|
Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord 2010; 49:4-16. [PMID: 20498665 DOI: 10.1038/sc.2010.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Similarities between the clinical presentation of individuals living with spinal cord injury (SCI) and astronauts are remarkable, and may be of great interest to clinicians and scientists alike. OBJECTIVES The primary purpose of this review is to outline the manner in which cardiovascular, musculoskeletal, renal, immune and sensory motor systems are affected by microgravity and SCI. METHODS A comprehensive review of the literature was conducted (using PubMed) to evaluate the hallmark symptoms seen after spaceflight and SCI. This literature was then examined critically to determine symptoms common to both populations. RESULTS Both SCI and prolonged microgravity exposure are associated with marked deteriorations in various physiological functions. Atrophy in muscle and bone, cardiovascular disturbances, and alterations in renal, immune and sensory motor systems are conditions commonly observed not only in individuals with SCI, but also in those who experience prolonged gravity unloading. CONCLUSION The preponderance of data indicates that similar physiological changes occur in both SCI and prolonged space flight. These findings have important implications for future research in SCI and prolonged space flight.
Collapse
|
93
|
Sublesional spinal vertebral bone mineral density correlates with neurological level and body mass index in individuals with chronic complete spinal cord injuries. Spine (Phila Pa 1976) 2010; 35:958-62. [PMID: 20228706 DOI: 10.1097/brs.0b013e3181bc9dc9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study. OBJECTIVE Our aim was to find out the factors influencing the bone mineral density (BMD) change of sublesional spinal vertebrae in spinal cord injury (SCI) individuals. SUMMARY OF BACKGROUND DATA In individuals with SCI, the BMD of sublesional extremities dramatically decreases to fracture threshold because of unloading. In contrast, the BMD of sublesional spinal vertebrae is reported to be preserved. The etiology of the discrepancy is unknown. METHODS This study was performed in a university tertiary referral medical center. A total of 62 men with traumatic and neurologically complete SCI attending a special SCI clinic attached to the medical center from 2000 to 2003. Participants were prescreened using lumbosacral roentgenography to rule out heterotopic ossification and early-onset spinal degeneration. The BMD was then evaluated with dual energy radiograph absorptiometry at the thoracic spine and lumbar spine, using anteroposterior and lateral scout images. RESULTS The mean age was 27.3 +/- 8.3 years and mean injury duration was 11.7 +/- 6.8 years. Lumbar spine BMD did not increase or decrease significantly after SCI. Lumbar spine BMD correlated significantly with body mass index. Thoracic and lumbar spine BMDs were significantly higher if the injury level was below T6. There were no correlations with postinjury duration, age of the subject, or level of physical activity. CONCLUSION In men with chronic complete SCI, the long-term sublesional spinal vertebrae BMDs are significantly lower if injury levels are at T6 or above, suggesting the role of neurologic control on bone metabolism.
Collapse
|
94
|
Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiol 2009; 38:989-95. [PMID: 19277646 DOI: 10.1007/s00256-009-0674-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). MATERIALS AND METHODS Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral quantitative computed tomography at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (UK). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA) and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. RESULTS BMDtrab decreased exponentially with time since injury at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. CONCLUSION At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively.
Collapse
Affiliation(s)
- Sylvie Coupaud
- Centre for Rehabilitation Engineering, Department of Mechanical Engineering, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
95
|
Nelson ES, Lewandowski B, Licata A, Myers JG. Development and validation of a predictive bone fracture risk model for astronauts. Ann Biomed Eng 2009; 37:2337-59. [PMID: 19707874 DOI: 10.1007/s10439-009-9779-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/04/2009] [Indexed: 01/04/2023]
Abstract
There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture.
Collapse
Affiliation(s)
- Emily S Nelson
- Bioscience and Technology Branch, NASA Glenn Research Center, Cleveland, OH 44135, USA.
| | | | | | | |
Collapse
|
96
|
Kalpakjian C, Quint E. Menopause Research in Women with Spinal Cord Injury: Challenges and Opportunities. Top Spinal Cord Inj Rehabil 2009. [DOI: 10.1310/sci1501-75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
97
|
Biering-Sørensen F, Hansen B, Lee BSB. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord 2009; 47:508-18. [PMID: 19172152 DOI: 10.1038/sc.2008.177] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Review the literature on non-pharmacological prevention and treatment of osteoporosis after spinal cord injury (SCI). METHODS PubMed, EMBASE and the Cochrane Controlled Trials Register were searched. All identified papers were read by title, abstract and full-length article when relevant. Hand search of the articles' sources identified additional papers. For included studies, the level of evidence was determined. RESULTS No studies conclusively showed an effective intervention. However, there are few randomized controlled trials (RCTs), and those that exist assess interventions and outcome measures that could be improved. Five studies on weight-bearing early post-injury are conflicting, but standing or walking may help retain bone mineral. In the chronic phase, there was no effect of weight bearing (12 studies). One study found that an early commencement of sports after SCI improved bone mineral, and the longer the period of athletic career, the higher the (leg) bone mineral. Early after SCI, there may be some effects of electrical stimulation (ES) (five studies). Chronic-phase ES studies vary (14 studies, including mixed periods after injury), but improvement is seen with longer period of training, or higher frequency or stimulus intensity. Improvements correspond to trabecular bone in the distal femur or proximal tibia. Impact vibration and pulsed electromagnetic fields may have some positive effects, whereas pulsed ultrasound does not. Six studies on the influence of spasticity show inconsistent results. CONCLUSIONS Bone mineral should be measured around the knee; the length and intensity of the treatment should be sufficiently long and high, respectively, and should commence early after SCI. If bone mineral is to remain, the stimulation has to be possibly continued for long term. In addition, RCTs are necessary.
Collapse
|
98
|
Squire M, Brazin A, Keng Y, Judex S. Baseline bone morphometry and cellular activity modulate the degree of bone loss in the appendicular skeleton during disuse. Bone 2008; 42:341-9. [PMID: 17997144 DOI: 10.1016/j.bone.2007.09.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/06/2007] [Accepted: 09/23/2007] [Indexed: 11/17/2022]
Abstract
Bone is sensitive to the removal of mechanical loading and the severity of unloading-induced bone loss may be influenced by an individual's genotype, gender, and the specific anatomical region. Whether these factors influence bone's mechanosensitivity directly or indirectly through differences in phenotypic baseline bone morphology and cellular activity is unknown. Here, we examined whether indices of baseline bone morphology and cellular activity are associated with the gender- and site-specific susceptibility of bone to unloading. Adult mice (4 months old, BALB/cByJ x C3H/HeJ) were assigned to one of six groups: male and female baseline controls (n=20 each), age-matched controls (n=10 each), or disuse (n=11 males, n=12 females). All baseline controls were sacrificed (0 day) to establish baseline bone morphology with micro-computed tomography (n=10 each gender) or baseline cellular activities using histomorphometry and tartrate-resistant acid phosphatase staining (n=10 each gender). Age-matched control and disuse mice were sacrificed (21 days) to determine disuse-induced bone loss by micro-computed tomography. Following 21 days of unloading, trabecular bone loss in the distal femur and proximal tibia was, on average, 3-fold greater in the metaphyses than in the epiphyses and 2-fold greater in females than in males. Disuse-induced changes in cortical bone were 2-fold smaller than trabecular bone losses and were more apparent in females (5 of 6 regions) than in males (1 of 6 regions). Bone loss was inversely related to baseline bone volume fraction (R(2)=0.51 for females and 0.43 for males) and directly related to baseline bone surface to volume ratio (R(2)=0.69 for females and 0.60 for males). Additionally, trabecular bone loss was correlated with baseline mineral apposition rates and osteoclast surface to bone surface ratios (R(2)=0.86 and 0.46, respectively, genders combined). These data demonstrate that baseline bone morphology and cellular activity modulate bone loss and that, independent of gender, anatomical regions with low bone quantity, high surface-to-volume ratios, and high levels of osteoblastic and osteoclastic activity are particularly susceptible to disuse.
Collapse
Affiliation(s)
- Maria Squire
- Department of Biology, Loyola Hall, The University of Scranton, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
99
|
Logan WC, Sloane R, Lyles KW, Goldstein B, Hoenig HM. Incidence of Fractures in a Cohort of Veterans With Chronic Multiple Sclerosis or Traumatic Spinal Cord Injury. Arch Phys Med Rehabil 2008; 89:237-43. [DOI: 10.1016/j.apmr.2007.08.144] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/13/2007] [Accepted: 08/13/2007] [Indexed: 11/30/2022]
|
100
|
Goktepe AS, Tugcu I, Yilmaz B, Alaca R, Gunduz S. Does standing protect bone density in patients with chronic spinal cord injury? J Spinal Cord Med 2008; 31:197-201. [PMID: 18581668 PMCID: PMC2565474 DOI: 10.1080/10790268.2008.11760712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE To compare the t-scores of proximal femur and lumbar spine of patients with spinal cord injury (SCI) with different levels of weight bearing. METHODS Cross-sectional study comparing 3 groups of patients with SCI: patients with daily standing times of more than 1 hour, patients with daily standing times of less than 1 hour, and nonstanding patients. Seventy-one patients with chronic SCI were recruited. They were assigned to 1 of 3 groups according to their reported daily standing time. The bone density of lumbar and proximal femoral regions was measured with dual-energy x-ray absorptiometry. RESULTS The 3 groups were similar in terms of demographics and clinical variables. No significant difference was found among the mean t-scores of lumbar and proximal femoral regions of the groups. However, the patients in the group that stood more than 1 hour daily had a slight tendency to have higher t-scores than those in the control group. CONCLUSIONS There was no significant difference among the 3 groups. However, standing might be partially helpful in protecting the bone density in SCI by opposing the effects of immobilization.
Collapse
Affiliation(s)
- Ahmet Salim Goktepe
- Department of Physical Medicine and Rehabilitation, Gulhane Military Medical Academy, TSK Rehabilitasyon Merkezi Bilkent, Ankara, Turkey.
| | | | | | | | | |
Collapse
|