51
|
Gurung I, Berry JL, Hall A, Pelicic V. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology. Nucleic Acids Res 2017; 45:e40. [PMID: 27903891 PMCID: PMC5389465 DOI: 10.1093/nar/gkw1177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/14/2016] [Indexed: 11/14/2022] Open
Abstract
Streptococcus sanguinis, a naturally competent opportunistic human pathogen, is a Gram-positive workhorse for genomics. It has recently emerged as a model for the study of type IV pili (Tfp)—exceptionally widespread and important prokaryotic filaments. To enhance genetic manipulation of Streptococcus sanguinis, we have developed a cloning-independent methodology, which uses a counterselectable marker and allows sophisticated markerless gene editing in situ. We illustrate the utility of this methodology by answering several questions regarding Tfp biology by (i) deleting single or mutiple genes, (ii) altering specific bases in genes of interest, and (iii) engineering genes to encode proteins with appended affinity tags. We show that (i) the last six genes in the pil locus harbouring all the genes dedicated to Tfp biology play no role in piliation or Tfp-mediated motility, (ii) two highly conserved Asp residues are crucial for enzymatic activity of the prepilin peptidase PilD and (iii) that pilin subunits with a C-terminally appended hexa-histidine (6His) tag are still assembled into functional Tfp. The methodology for genetic manipulation we describe here should be broadly applicable.
Collapse
Affiliation(s)
- Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Alexander M. J. Hall
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- To whom correspondence should be addressed. Tel: +44 20 7594 2080;
| |
Collapse
|
52
|
Abstract
Even though the oral microbiome is one of the most complex sites on the body it is an excellent model for narrow‐spectrum antimicrobial therapy. Current research indicates that disruption of the microbiome leads to a dysbiotic environment allowing for the overgrowth of pathogenic species and the onset of oral diseases. The gram‐negative colonizer, Porphyromonas gingivalis has long been considered a key player in the initiation of periodontitis and Streptococcus mutans has been linked to dental caries. With antibiotic research still on the decline, new strategies are greatly needed to combat infectious diseases. By targeting key pathogens, it may be possible to treat oral infections while allowing for the recolonization of the beneficial, healthy flora. In this review, we examine unique strategies to specifically target periodontal pathogens and address what is needed for the success of these approaches in the microbiome era.
Collapse
Affiliation(s)
- V N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - P Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
53
|
An Essential Regulatory System Originating from Polygenic Transcriptional Rewiring of PhoP-PhoQ of Xanthomonas campestris. Genetics 2017; 206:2207-2223. [PMID: 28550013 DOI: 10.1534/genetics.117.200204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
How essential, regulatory genes originate and evolve is intriguing because mutations of these genes not only lead to lethality in organisms, but also have pleiotropic effects since they control the expression of multiple downstream genes. Therefore, the evolution of essential, regulatory genes is not only determined by genetic variations of their own sequences, but also by the biological function of downstream genes and molecular mechanisms of regulation. To understand the origin of essential, regulatory genes, experimental dissection of the complete regulatory cascade is needed. Here, we provide genetic evidences to reveal that PhoP-PhoQ is an essential two-component signal transduction system in the gram-negative bacterium Xanthomonas campestris, but that its orthologs in other bacteria belonging to Proteobacteria are nonessential. Mutational, biochemical, and chromatin immunoprecipitation together with high-throughput sequencing analyses revealed that phoP and phoQ of X. campestris and its close relative Pseudomonas aeruginosa are replaceable, and that the consensus binding motifs of the transcription factor PhoP are also highly conserved. PhoP Xcc in X. campestris regulates the transcription of a number of essential, structural genes by directly binding to cis-regulatory elements (CREs); however, these CREs are lacking in the orthologous essential, structural genes in P. aeruginosa, and thus the regulatory relationships between PhoP Pae and these downstream essential genes are disassociated. Our findings suggested that the recruitment of regulatory proteins by critical structural genes via transcription factor-CRE rewiring is a driving force in the origin and functional divergence of essential, regulatory genes.
Collapse
|
54
|
Streptococcus mitis and S. oralis Lack a Requirement for CdsA, the Enzyme Required for Synthesis of Major Membrane Phospholipids in Bacteria. Antimicrob Agents Chemother 2017; 61:AAC.02552-16. [PMID: 28223392 PMCID: PMC5404519 DOI: 10.1128/aac.02552-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/04/2017] [Indexed: 11/20/2022] Open
Abstract
Synthesis and integrity of the cytoplasmic membrane are fundamental to cellular life. Experimental evolution studies have hinted at unique physiology in the Gram-positive bacteria Streptococcus mitis and S. oralis These organisms commonly cause bacteremia and infectious endocarditis (IE) but are rarely investigated in mechanistic studies of physiology and evolution. Unlike in other Gram-positive pathogens, high-level (MIC ≥ 256 μg/ml) daptomycin resistance rapidly emerges in S. mitis and S. oralis after a single drug exposure. In this study, we found that inactivating mutations in cdsA are associated with high-level daptomycin resistance in S. mitis and S. oralis IE isolates. This is surprising given that cdsA is an essential gene for life in commonly studied model organisms. CdsA is the enzyme responsible for the synthesis of CDP-diacylglycerol, a key intermediate for the biosynthesis of all major phospholipids in prokaryotes and most anionic phospholipids in eukaryotes. Lipidomic analysis by liquid chromatography-mass spectrometry (LC-MS) showed that daptomycin-resistant strains have an accumulation of phosphatidic acid and completely lack phosphatidylglycerol and cardiolipin, two major anionic phospholipids in wild-type strains, confirming the loss of function of CdsA in the daptomycin-resistant strains. To our knowledge, these daptomycin-resistant streptococci represent the first model organisms whose viability is CdsA independent. The distinct membrane compositions resulting from the inactivation of cdsA not only provide novel insights into the mechanisms of daptomycin resistance but also offer unique opportunities to study the physiological functions of major anionic phospholipids in bacteria.
Collapse
|
55
|
Liu X, Wang BJ, Xu L, Tang HL, Xu GQ. Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species. PLoS One 2017; 12:e0174638. [PMID: 28358836 PMCID: PMC5373589 DOI: 10.1371/journal.pone.0174638] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/12/2017] [Indexed: 01/02/2023] Open
Abstract
Genes that are indispensable for survival are essential genes. Many features have been proposed for computational prediction of essential genes. In this paper, the least absolute shrinkage and selection operator method was used to screen key sequence-based features related to gene essentiality. To assess the effects, the selected features were used to predict the essential genes from 31 bacterial species based on a support vector machine classifier. For all 31 bacterial objects (21 Gram-negative objects and ten Gram-positive objects), the features in the three datasets were reduced from 57, 59, and 58, to 40, 37, and 38, respectively, without loss of prediction accuracy. Results showed that some features were redundant for gene essentiality, so could be eliminated from future analyses. The selected features contained more complex (or key) biological information for gene essentiality, and could be of use in related research projects, such as gene prediction, synthetic biology, and drug design.
Collapse
Affiliation(s)
- Xiao Liu
- College of Communication Engineering, Chongqing University, Chongqing, China
- Key Laboratory of Chongqing for Bio-perception and Intelligent Information Processing, Chongqing, China
- * E-mail:
| | - Bao-Jin Wang
- College of Communication Engineering, Chongqing University, Chongqing, China
| | - Luo Xu
- College of Communication Engineering, Chongqing University, Chongqing, China
| | | | - Guo-Qing Xu
- College of Communication Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
56
|
El-Rami F, Nelson K, Xu P. Proteomic Approach for Extracting Cytoplasmic Proteins from Streptococcus sanguinis using Mass Spectrometry. ACTA ACUST UNITED AC 2017; 7:50-57. [PMID: 29152022 PMCID: PMC5693382 DOI: 10.5539/jmbr.v7n1p50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streptococcus sanguinis is a commensal and early colonizer of oral cavity as well as an opportunistic pathogen of infectious endocarditis. Extracting the soluble proteome of this bacterium provides deep insights about the physiological dynamic changes under different growth and stress conditions, thus defining "proteomic signatures" as targets for therapeutic intervention. In this protocol, we describe an experimentally verified approach to extract maximal cytoplasmic proteins from Streptococcus sanguinis SK36 strain. A combination of procedures was adopted that broke the thick cell wall barrier and minimized denaturation of the intracellular proteome, using optimized buffers and a sonication step. Extracted proteome was quantitated using Pierce BCA Protein Quantitation assay and protein bands were macroscopically assessed by Coomassie Blue staining. Finally, a high resolution detection of the extracted proteins was conducted through Synapt G2Si mass spectrometer, followed by label-free relative quantification via Progenesis QI. In conclusion, this pipeline for proteomic extraction and analysis of soluble proteins provides a fundamental tool in deciphering the biological complexity of Streptococcus sanguinis.
Collapse
Affiliation(s)
- Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristina Nelson
- Chemical and Proteomic Mass Spectrometry Core Facility, Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
57
|
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Syst 2017; 4:291-305.e7. [PMID: 28189581 DOI: 10.1016/j.cels.2016.12.013] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/19/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.
Collapse
Affiliation(s)
- Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth Tong
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Harvey Kimsey
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ilan Wapinski
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Galardini
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Angelo Cabal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna-Barbara Hachmann
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
58
|
Liu J, Stone VN, Ge X, Tang M, Elrami F, Xu P. TetR Family Regulator brpT Modulates Biofilm Formation in Streptococcus sanguinis. PLoS One 2017; 12:e0169301. [PMID: 28046010 PMCID: PMC5207742 DOI: 10.1371/journal.pone.0169301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Biofilms are a key component in bacterial communities providing protection and contributing to infectious diseases. However, mechanisms involved in S. sanguinis biofilm formation have not been clearly elucidated. Here, we report the identification of a novel S. sanguinis TetR repressor, brpT (Biofilm Regulatory Protein TetR), involved in biofilm formation. Deletion of brpT resulted in a significant increase in biofilm formation. Interestingly, the mutant accumulated more water soluble and water insoluble glucans in its biofilm compared to the wild-type and the complemented mutant. The brpT mutation led to an altered biofilm morphology and structure exhibiting a rougher appearance, uneven distribution with more filaments bound to the chains. RNA-sequencing revealed that gtfP, the only glucosyltransferase present in S. sanguinis, was significantly up-regulated. In agreement with these findings, we independently observed that deletion of gtfP in S. sanguinis led to reduced biofilm and low levels of water soluble and insoluble glucans. These results suggest that brpT is involved in the regulation of the gtfP-mediated exopolysaccharide synthesis and controls S. sanguinis biofilm formation. The deletion of brpT may have a potential therapeutic application in regulating S. sanguinis colonization in the oral cavity and the prevention of dental caries.
Collapse
Affiliation(s)
- Jinlin Liu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Victoria N. Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Madison Tang
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi Elrami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
59
|
The genome of serotype VI Streptococcus agalactiae serotype VI and comparative analysis. Gene 2017; 597:59-65. [DOI: 10.1016/j.gene.2016.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 01/21/2023]
|
60
|
Choi JW, Kwon TY, Hong SH, Lee HJ. Isolation and Characterization of a microRNA-size Secretable Small RNA in Streptococcus sanguinis. Cell Biochem Biophys 2016; 76:293-301. [PMID: 27796789 DOI: 10.1007/s12013-016-0770-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/19/2016] [Indexed: 01/05/2023]
Abstract
MicroRNAs in eukaryotic cells are thought to control highly complex signal transduction and other biological processes by regulating coding transcripts, accounting for their important role in cellular events in eukaryotes. Recently, a novel class of bacterial RNAs similar in size [18-22 nucleotides (nt)] to microRNAs has been reported. Herein, we describe microRNAs, small RNAs from the oral pathogen Streptococcus sanguinis. The bacteria are normally present in the oral cavities and cause endocarditis by contaminating bloodstreams. Small RNAs were analyzed by deep sequencing. Selected highly expressed small RNAs were further validated by real-time polymerase chain reaction and northern blot analyses. We found that skim milk supplement changed the expression of small RNAs S.S-1964 in tandem with the nearby SSA_0513 gene involved in vitamin B12 conversion. We furthermore observed small RNAs secreted via bacterial membrane vesicles. Although their precise function remains unclear, secretable small RNAs may represent an entirely new area of study in bacterial genetics.
Collapse
Affiliation(s)
- Ji-Woong Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
61
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
62
|
Jones JA, Price E, Miller D, Hevener KE. A simplified protocol for high-yield expression and purification of bacterial topoisomerase I. Protein Expr Purif 2016; 124:32-40. [PMID: 27117979 DOI: 10.1016/j.pep.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/15/2022]
Abstract
Type IA topoisomerases represent promising antibacterial drug targets. Data exists suggesting that the two bacterial type IA topoisomerase enzymes-topoisomerase I and topoisomerase III-share an overlapping biological role. Furthermore, topoisomerase I has been shown to be essential for the survival of certain organisms lacking topoisomerase III. With this in mind, it is plausible that topoisomerase I may represent a potential target for selective antibacterial drug development. As many reported bacterial topoisomerase I purification protocols have either suffered from relatively low yield, numerous steps, or a simple failure to report target protein yield altogether, a high-yield and high-purity bacterial topoisomerase I expression and purification protocol is highly desirable. The goal of this study was therefore to optimize the expression and purification of topoisomerase I from Streptococcus mutans, a clinically relevant organism that plays a significant role in oral and extra-oral infection, in order to quickly and easily attain the requisite quantities of pure target enzyme suitable for use in assay development, compound library screening, and carrying out further structural and biochemical characterization analyses. Herein we report the systematic implementation and analysis of various expression and purification techniques leading to the development and optimization of a rapid and straightforward protocol for the auto-induced expression and two-step, affinity tag purification of Streptococcus mutans topoisomerase I yielding >20 mg/L of enzyme at over 95% purity.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Emily Price
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Donovan Miller
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA
| | - Kirk E Hevener
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, 1311 E. Central Drive, Meridian, ID 83642-7991, USA.
| |
Collapse
|
63
|
Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis. Infect Immun 2016; 84:1470-1477. [PMID: 26930704 PMCID: PMC4862721 DOI: 10.1128/iai.01203-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence.
Collapse
|
64
|
Ge X, Shi X, Shi L, Liu J, Stone V, Kong F, Kitten T, Xu P. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis. PLoS One 2016; 11:e0151142. [PMID: 26950587 PMCID: PMC4780693 DOI: 10.1371/journal.pone.0151142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/24/2016] [Indexed: 01/20/2023] Open
Abstract
Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.
Collapse
Affiliation(s)
- Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Jinlin Liu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Fanxiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- * E-mail:
| |
Collapse
|
65
|
Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol 2015; 18:904-22. [PMID: 26548332 DOI: 10.1111/1462-2920.13123] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 02/05/2023]
Abstract
Cyclic diadenosine monophosphate (c-di-AMP) has been implicated in the control of many important bacterial activities. However, the function of this molecule in Streptococcus mutans, the primary aetiological agent of human dental caries, is unknown. In this study, we identified and characterized a diadenylate cyclase, named CdaA, in S. mutans. Furthermore, we showed that in-frame deletion of the cdaA gene in S. mutans causes decreased c-di-AMP levels, increased sensitivity to hydrogen peroxide and increased production of extracellular polysaccharides. Global gene expression profiling revealed that more than 200 genes were significantly upregulated or downregulated (> 2.0-fold) in the cdaA mutant. Interestingly, genes with increased or decreased expression were clustered in cellular polysaccharide biosynthetic processes and oxidoreductase activity respectively. Notably, the expression of several genomic islands, such as GTF-B/C, TnSmu, CRISPR1-Cas and CRISPR2-Cas, was found to be altered in the cdaA mutant, indicating a possible link between these genomic islands and c-di-AMP signalling. Collectively, the results reported here show that CdaA is an important global modulator in S. mutans and is required for optimal growth and environmental adaption. This report also paves the way to unveil further the roles of c-di-AMP signalling networks in the biology and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhi Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Liu G, Yong MYJ, Yurieva M, Srinivasan KG, Liu J, Lim JSY, Poidinger M, Wright GD, Zolezzi F, Choi H, Pavelka N, Rancati G. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability. Cell 2015; 163:1388-99. [PMID: 26627736 DOI: 10.1016/j.cell.2015.10.069] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 08/01/2015] [Accepted: 10/20/2015] [Indexed: 11/24/2022]
Abstract
Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.
Collapse
Affiliation(s)
- Gaowen Liu
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mei Yun Jacy Yong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Marina Yurieva
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | | | - Jaron Liu
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - John Soon Yew Lim
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - Graham Daniel Wright
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore (NUS) and National University Health System, Singapore 117549, Singapore
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore.
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
67
|
Stone VN, Parikh HI, El-rami F, Ge X, Chen W, Zhang Y, Kellogg GE, Xu P. Identification of Small-Molecule Inhibitors against Meso-2, 6-Diaminopimelate Dehydrogenase from Porphyromonas gingivalis. PLoS One 2015; 10:e0141126. [PMID: 26544875 PMCID: PMC4636305 DOI: 10.1371/journal.pone.0141126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/05/2015] [Indexed: 01/03/2023] Open
Abstract
Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials.
Collapse
Affiliation(s)
- Victoria N. Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hardik I. Parikh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi El-rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Weihau Chen
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
68
|
Gurung I, Spielman I, Davies MR, Lala R, Gaustad P, Biais N, Pelicic V. Functional analysis of an unusual type IV pilus in the Gram-positive Streptococcus sanguinis. Mol Microbiol 2015; 99:380-92. [PMID: 26435398 PMCID: PMC4832360 DOI: 10.1111/mmi.13237] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/30/2022]
Abstract
Type IV pili (Tfp), which have been studied extensively in a few Gram‐negative species, are the paradigm of a group of widespread and functionally versatile nano‐machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram‐positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram‐negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface‐associated motility. Tfp power ‘train‐like’ directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis
Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano‐machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram‐negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano‐machines.
Collapse
Affiliation(s)
- Ishwori Gurung
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Ingrid Spielman
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Mark R Davies
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajan Lala
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Peter Gaustad
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicolas Biais
- Department of Biology, Brooklyn College of the City University of New York, New York, NY, USA
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
69
|
Identifying essential Streptococcus sanguinis genes using genome-wide deletion mutation. Methods Mol Biol 2015; 1279:15-23. [PMID: 25636610 DOI: 10.1007/978-1-4939-2398-4_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Essential genes in pathogens are important for the development of antibacterial drugs. In this report, we described a protocol to identify essential genes in the Streptococcus sanguinis SK36 strain using genome-wide deletion mutation. A fusion PCR-based method is used to construct gene deletion fragments, which contain kanamycin resistance cassettes with two flanking arms of DNA upstream and downstream of the target gene. The linear fused PCR amplicons were transformed into S. sanguinis SK36 cells. No kanamycin-resistant transformants suggested the gene essentiality because the deletion of the essential gene renders a lethal phenotype of the transformants. The putative essential genes were further confirmed by independent transformations up to five attempts. The false nonessential genes were also identified by removing double-band mutants.
Collapse
|
70
|
Chowdhary N, Selvaraj A, KrishnaKumaar L, Kumar GR. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production. PLoS One 2015. [PMID: 26196387 PMCID: PMC4510573 DOI: 10.1371/journal.pone.0133183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac_0437 and Csac_0424 encode for glycoside hydrolases (GH) and are proposed to be involved in the decomposition of recalcitrant plant polysaccharides. Similarly, HPs: Csac_0732, Csac_1862, Csac_1294 and Csac_0668 are suggested to play a significant role in biohydrogen production. Function prediction of these HPs by using our integrated approach will considerably enhance the interpretation of large-scale experiments targeting this industrially important organism.
Collapse
Affiliation(s)
- Nupoor Chowdhary
- AU-KBC Research Centre, Anna University, MIT Campus, Chrompet, Chennai, 600044, India
| | - Ashok Selvaraj
- AU-KBC Research Centre, Anna University, MIT Campus, Chrompet, Chennai, 600044, India
| | - Lakshmi KrishnaKumaar
- AU-KBC Research Centre, Anna University, MIT Campus, Chrompet, Chennai, 600044, India
| | - Gopal Ramesh Kumar
- AU-KBC Research Centre, Anna University, MIT Campus, Chrompet, Chennai, 600044, India
- * E-mail:
| |
Collapse
|
71
|
Grazziotin AL, Vidal NM, Venancio TM. Uncovering major genomic features of essential genes in Bacteria and a methanogenic Archaea. FEBS J 2015; 282:3395-3411. [PMID: 26084810 DOI: 10.1111/febs.13350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/02/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
Identification of essential genes is critical to understanding the physiology of a species, proposing novel drug targets and uncovering minimal gene sets required for life. Although essential gene sets of several organisms have been determined using large-scale mutagenesis techniques, systematic studies addressing their conservation, genomic context and functions remain scant. Here we integrate 17 essential gene sets from genome-wide in vitro screenings and three gene collections required for growth in vivo, encompassing 15 Bacteria and one Archaea. We refine and generalize important theories proposed using Escherichia coli. Essential genes are typically monogenic and more conserved than nonessential genes. Genes required in vivo are less conserved than those essential in vitro, suggesting that more divergent strategies are deployed when the organism is stressed by the host immune system and unstable nutrient availability. We identified essential analogous pathways that would probably be missed by orthology-based essentiality prediction strategies. For example, Streptococcus sanguinis carries horizontally transferred isoprenoid biosynthesis genes that are widespread in Archaea. Genes specifically essential in Mycobacterium tuberculosis and Burkholderia pseudomallei are reported as potential drug targets. Moreover, essential genes are not only preferentially located in operons, but also occupy the first position therein, supporting the influence of their regulatory regions in driving transcription of whole operons. Finally, these important genomic features are shared between Bacteria and at least one Archaea, suggesting that high order properties of gene essentiality and genome architecture were probably present in the last universal common ancestor or evolved independently in the prokaryotic domains.
Collapse
Affiliation(s)
- Ana Laura Grazziotin
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Newton Medeiros Vidal
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
72
|
Saliva as the Sole Nutritional Source in the Development of Multispecies Communities in Dental Plaque. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.mbp-0013-2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Dental plaque is a polymicrobial biofilm that forms on the surfaces of teeth and, if inadequately controlled, can lead to dental caries or periodontitis. Nutrient availability is the fundamental limiting factor for the formation of dental plaque, and for its ability to generate acid and erode dental enamel. Nutrient availability is also critical for bacteria to grow in subgingival biofilms and to initiate periodontitis. Over the early stages of dental plaque formation, micro-organisms acquire nutrients by breaking down complex salivary substrates such as mucins and other glycoproteins. Once dental plaque matures, dietary carbohydrates become more important for supragingival dental plaque, and gingival crevicular fluid forms the major nutrient source for subgingival microorganisms. Many species of oral bacteria do not grow in laboratory monocultures when saliva is the sole nutrient source, and it is now clear that intermicrobial interactions are critical for the development of dental plaque. This chapter aims to provide an overview of the key metabolic requirements of some well-characterized oral bacteria, and the nutrient webs that promote the growth of multispecies communities and underpin the pathogenicity of dental plaque for both dental caries and periodontitis.
Collapse
|
73
|
Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, Shirtliff ME, El-Sayed NM, McIver KS. Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes. Sci Rep 2015; 5:9838. [PMID: 25996237 PMCID: PMC4440532 DOI: 10.1038/srep09838] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/23/2015] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) remains a major public health burden worldwide, infecting over 750 million people leading to over 500,000 deaths annually. GAS pathogenesis is complex, involving genetically distinct GAS strains and multiple infection sites. To overcome fastidious genetic manipulations and accelerate pathogenesis investigations in GAS, we developed a mariner-based system (Krmit) for en masse monitoring of complex mutant pools by transposon sequencing (Tn-seq). Highly saturated transposant libraries (Krmit insertions in ca. every 25 nucleotides) were generated in two distinct GAS clinical isolates, a serotype M1T1 invasive strain 5448 and a nephritogenic serotype M49 strain NZ131, and analyzed using a Bayesian statistical model to predict GAS essential genes, identifying sets of 227 and 241 of those genes in 5448 and NZ131, respectively. A large proportion of GAS essential genes corresponded to key cellular processes and metabolic pathways, and 177 were found conserved within the GAS core genome established from 20 available GAS genomes. Selected essential genes were validated using conditional-expression mutants. Finally, comparison to previous essentiality analyses in S. sanguinis and S. pneumoniae revealed significant overlaps, providing valuable insights for the development of new antimicrobials to treat infections by GAS and other pathogenic streptococci.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Kayla M. Valdes
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Patrick Curry
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mark E. Shirtliff
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland School of Medicine, Baltimore, MD USA
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
- Center for Bioinformatics and Computation Biology, University of Maryland, College Park, MD USA
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD USA
| |
Collapse
|
74
|
Laurenceau R, Krasteva PV, Diallo A, Ouarti S, Duchateau M, Malosse C, Chamot-Rooke J, Fronzes R. Conserved Streptococcus pneumoniae spirosomes suggest a single type of transformation pilus in competence. PLoS Pathog 2015; 11:e1004835. [PMID: 25876066 PMCID: PMC4398557 DOI: 10.1371/journal.ppat.1004835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
The success of S. pneumoniae as a major human pathogen is largely due to its remarkable genomic plasticity, allowing efficient escape from antimicrobials action and host immune response. Natural transformation, or the active uptake and chromosomal integration of exogenous DNA during the transitory differentiated state competence, is the main mechanism for horizontal gene transfer and genomic makeover in pneumococci. Although transforming DNA has been proposed to be captured by Type 4 pili (T4P) in Gram-negative bacteria, and a competence-inducible comG operon encoding proteins homologous to T4P-biogenesis components is present in transformable Gram-positive bacteria, a prevailing hypothesis has been that S. pneumoniae assembles only short pseudopili to destabilize the cell wall for DNA entry. We recently identified a micrometer-sized T4P-like pilus on competent pneumococci, which likely serves as initial DNA receptor. A subsequent study, however, visualized a different structure--short, 'plaited' polymers--released in the medium of competent S. pneumoniae. Biochemical observation of concurrent pilin secretion led the authors to propose that the 'plaited' structures correspond to transformation pili acting as peptidoglycan drills that leave DNA entry pores upon secretion. Here we show that the 'plaited' filaments are not related to natural transformation as they are released by non-competent pneumococci, as well as by cells with disrupted pilus biogenesis components. Combining electron microscopy visualization with structural, biochemical and proteomic analyses, we further identify the 'plaited' polymers as spirosomes: macromolecular assemblies of the fermentative acetaldehyde-alcohol dehydrogenase enzyme AdhE that is well conserved in a broad range of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Raphaël Laurenceau
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Petya V. Krasteva
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- * E-mail: (PVK); (RF)
| | - Amy Diallo
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sahra Ouarti
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Christian Malosse
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, Paris, France
- Plate-Forme de Protéomique, Institut Pasteur, Paris, France
| | - Rémi Fronzes
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, Institut Pasteur, Paris, France
- UMR 3528, CNRS, Institut Pasteur, Paris, France
- * E-mail: (PVK); (RF)
| |
Collapse
|
75
|
Manganese uptake and streptococcal virulence. Biometals 2015; 28:491-508. [PMID: 25652937 DOI: 10.1007/s10534-015-9826-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
Abstract
Streptococcal solute-binding proteins (SBPs) associated with ATP-binding cassette transporters gained widespread attention first as ostensible adhesins, next as virulence determinants, and finally as metal ion transporters. In this mini-review, we will examine our current understanding of the cellular roles of these proteins, their contribution to metal ion homeostasis, and their crucial involvement in mediating streptococcal virulence. There are now more than 35 studies that have collected structural, biochemical and/or physiological data on the functions of SBPs across a broad range of bacteria. This offers a wealth of data to clarify the formerly puzzling and contentious findings regarding the metal specificity amongst this group of essential bacterial transporters. In particular we will focus on recent findings related to biological roles for manganese in streptococci. These advances will inform efforts aimed at exploiting the importance of manganese and manganese acquisition for the design of new approaches to combat serious streptococcal diseases.
Collapse
|
76
|
Abstract
The database of essential genes (DEG, available at http://www.essentialgene.org), constructed in 2003, has been timely updated to harbor essential-gene records of bacteria, archaea, and eukaryotes. DEG 10, the current release, includes not only essential protein-coding genes determined by genome-wide gene essentiality screens but also essential noncoding RNAs, promoters, regulatory sequences, and replication origins. Therefore, DEG 10 includes essential genomic elements under different conditions in three domains of life, with customizable BLAST tools. Based on the analysis of DEG 10, we show that the percentage of essential genes in bacterial genomes exhibits an exponential decay with increasing genome sizes. The functions, ATP binding (GO:0005524), GTP binding (GO:0005525), and DNA-directed RNA polymerase activity (GO:0003899), are likely required for organisms across life domains.
Collapse
|
77
|
Larocque M, Chénard T, Najmanovich R. A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors. BMC SYSTEMS BIOLOGY 2014; 8:117. [PMID: 25315994 PMCID: PMC4207893 DOI: 10.1186/s12918-014-0117-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridium difficile is the leading cause of hospital-borne infections occurring when the natural intestinal flora is depleted following antibiotic treatment. Current treatments for Clostridium difficile infections present high relapse rates and new hyper-virulent and multi-resistant strains are emerging, making the study of this nosocomial pathogen necessary to find novel therapeutic targets. RESULTS We present iMLTC806cdf, an extensively curated reconstructed metabolic network for the C. difficile pathogenic strain 630. iMLTC806cdf contains 806 genes, 703 metabolites and 769 metabolic, 117 exchange and 145 transport reactions. iMLTC806cdf is the most complete and accurate metabolic reconstruction of a gram-positive anaerobic bacteria to date. We validate the model with simulated growth assays in different media and carbon sources and use it to predict essential genes. We obtain 89.2% accuracy in the prediction of gene essentiality when compared to experimental data for B. subtilis homologs (the closest organism for which such data exists). We predict the existence of 76 essential genes and 39 essential gene pairs, a number of which are unique to C. difficile and have non-existing or predicted non-essential human homologs. For 29 of these potential therapeutic targets, we find 125 inhibitors of homologous proteins including approved drugs with the potential for drug repositioning, that when validated experimentally could serve as starting points in the development of new antibiotics. CONCLUSIONS We created a highly curated metabolic network model of C. difficile strain 630 and used it to predict essential genes as potential new therapeutic targets in the fight against Clostridium difficile infections.
Collapse
Affiliation(s)
- Mathieu Larocque
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| | - Thierry Chénard
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| | - Rafael Najmanovich
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
78
|
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infect Immun 2014; 82:4941-51. [PMID: 25183732 DOI: 10.1128/iai.01850-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Collapse
|
79
|
Huang M, Parker MJ, Stubbe J. Choosing the right metal: case studies of class I ribonucleotide reductases. J Biol Chem 2014; 289:28104-11. [PMID: 25160629 DOI: 10.1074/jbc.r114.596684] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Over one-third of all proteins require metallation for function (Waldron, K. J., Rutherford, J. C., Ford, D., and Robinson, N.J. (2009) Nature 460, 823-830). As biochemical studies of most proteins depend on their isolation subsequent to recombinant expression (i.e. they are seldom purified from their host organism), there is no gold standard to assess faithful metallocofactor assembly and associated function. The biosynthetic machinery for metallocofactor formation in the recombinant expression system may be absent, inadequately expressed, or incompatible with a heterologously expressed protein. A combination of biochemical and genetic studies has led to the identification of key proteins involved in biosynthesis and likely repair of the metallocofactor of ribonucleotide reductases in both bacteria and the budding yeast. In this minireview, we will discuss the recent progress in understanding controlled delivery of metal, oxidants, and reducing equivalents for cofactor assembly in ribonucleotide reductases and highlight issues associated with controlling Fe/Mn metallation and avoidance of mismetallation.
Collapse
Affiliation(s)
- Mingxia Huang
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | | | - JoAnne Stubbe
- the Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
80
|
Cross KJ, Huq NL, Park SH, Park JS, Pham P, Quah M, Ranjan M, Reynolds EC. Bioinformatic investigation of the cost management strategies of five oral microbes. Mol Oral Microbiol 2014; 30:87-96. [PMID: 25052707 DOI: 10.1111/omi.12071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Some amino acids are more energetically costly to synthesize de novo, therefore many microbes have evolved to regulate the metabolic expenditure of the cell and reduce the energy burden of extracellular unrecyclable proteins. Several oral bacterial species take up amino acids and peptides obtained from proteolysis of host proteins and hence do not rely only on de novo synthesis. The aim of this study was to investigate if five oral bacterial species implement cost management strategies to reduce the energy burden of extracellular unrecyclable proteins. Since the relative de novo amino acid synthesis costs are proportional to the masses of the amino acids, the energy costs of producing proteins were assessed by calculating the mean amino acid mass for each protein. For Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia and Streptococcus sanguinis, the outer membrane/extracellular proteins are made up of a much larger percentage of lower average mass amino acids whereas cytoplasmic proteins are made up of a larger proportion of higher average mass amino acid residues. These results are consistent with the five oral bacterial species employing energy-saving mechanisms in the production of extracellular unrecyclable proteins. Interestingly, the P. gingivalis and S. sanguinis genomes exhibited significantly lower predicted mean amino acid masses compared with those of the genomes of the other three species, suggesting that this may provide them with an energy advantage with respect to protein biosynthetic cost.
Collapse
Affiliation(s)
- K J Cross
- Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 2014; 92:1243-59. [PMID: 24750294 DOI: 10.1111/mmi.12625] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Katie E Crump
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Cheng J, Xu Z, Wu W, Zhao L, Li X, Liu Y, Tao S. Training set selection for the prediction of essential genes. PLoS One 2014; 9:e86805. [PMID: 24466248 PMCID: PMC3899339 DOI: 10.1371/journal.pone.0086805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
Various computational models have been developed to transfer annotations of gene essentiality between organisms. However, despite the increasing number of microorganisms with well-characterized sets of essential genes, selection of appropriate training sets for predicting the essential genes of poorly-studied or newly sequenced organisms remains challenging. In this study, a machine learning approach was applied reciprocally to predict the essential genes in 21 microorganisms. Results showed that training set selection greatly influenced predictive accuracy. We determined four criteria for training set selection: (1) essential genes in the selected training set should be reliable; (2) the growth conditions in which essential genes are defined should be consistent in training and prediction sets; (3) species used as training set should be closely related to the target organism; and (4) organisms used as training and prediction sets should exhibit similar phenotypes or lifestyles. We then analyzed the performance of an incomplete training set and an integrated training set with multiple organisms. We found that the size of the training set should be at least 10% of the total genes to yield accurate predictions. Additionally, the integrated training sets exhibited remarkable increase in stability and accuracy compared with single sets. Finally, we compared the performance of the integrated training sets with the four criteria and with random selection. The results revealed that a rational selection of training sets based on our criteria yields better performance than random selection. Thus, our results provide empirical guidance on training set selection for the identification of essential genes on a genome-wide scale.
Collapse
Affiliation(s)
- Jian Cheng
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao Xu
- College of Science, Northwest A&F University, Yangling Shaanxi, China
| | - Wenwu Wu
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Zhao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangchen Li
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlin Liu
- College of Wine, Northwest A&F University, Yangling Shaanxi, China
- * E-mail: (YL); (ST)
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YL); (ST)
| |
Collapse
|
83
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
84
|
Makhlynets O, Boal AK, Rhodes DV, Kitten T, Rosenzweig AC, Stubbe J. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. J Biol Chem 2013; 289:6259-72. [PMID: 24381172 DOI: 10.1074/jbc.m113.533554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with Fe(II) and O2 can self-assemble a diferric-tyrosyl radical (Fe(III)2-Y(•)) cofactor (1.2 Y(•)/β2) and with the help of NrdI can assemble a Mn(III)2-Y(•) cofactor (0.9 Y(•)/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and Mn(II)2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μM) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR.
Collapse
|
85
|
Rhodes DV, Crump KE, Makhlynets O, Snyder M, Ge X, Xu P, Stubbe J, Kitten T. Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis. J Biol Chem 2013; 289:6273-87. [PMID: 24381171 DOI: 10.1074/jbc.m113.533620] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259-6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (Fe(III)2-Y(•)) in vitro, whereas assembly of a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor requires NrdI, and Mn(III)2-Y(•) is more active than Fe(III)2-Y(•) with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that Mn(III)2-Y(•)-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets.
Collapse
Affiliation(s)
- DeLacy V Rhodes
- From the Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298 and
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Cheng J, Wu W, Zhang Y, Li X, Jiang X, Wei G, Tao S. A new computational strategy for predicting essential genes. BMC Genomics 2013; 14:910. [PMID: 24359534 PMCID: PMC3880044 DOI: 10.1186/1471-2164-14-910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/29/2013] [Indexed: 12/17/2022] Open
Abstract
Background Determination of the minimum gene set for cellular life is one of the central goals in biology. Genome-wide essential gene identification has progressed rapidly in certain bacterial species; however, it remains difficult to achieve in most eukaryotic species. Several computational models have recently been developed to integrate gene features and used as alternatives to transfer gene essentiality annotations between organisms. Results We first collected features that were widely used by previous predictive models and assessed the relationships between gene features and gene essentiality using a stepwise regression model. We found two issues that could significantly reduce model accuracy: (i) the effect of multicollinearity among gene features and (ii) the diverse and even contrasting correlations between gene features and gene essentiality existing within and among different species. To address these issues, we developed a novel model called feature-based weighted Naïve Bayes model (FWM), which is based on Naïve Bayes classifiers, logistic regression, and genetic algorithm. The proposed model assesses features and filters out the effects of multicollinearity and diversity. The performance of FWM was compared with other popular models, such as support vector machine, Naïve Bayes model, and logistic regression model, by applying FWM to reciprocally predict essential genes among and within 21 species. Our results showed that FWM significantly improves the accuracy and robustness of essential gene prediction. Conclusions FWM can remarkably improve the accuracy of essential gene prediction and may be used as an alternative method for other classification work. This method can contribute substantially to the knowledge of the minimum gene sets required for living organisms and the discovery of new drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Gehong Wei
- College of Life Science, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | | |
Collapse
|
87
|
Ghosh S, Baloni P, Mukherjee S, Anand P, Chandra N. A multi-level multi-scale approach to study essential genes in Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2013; 7:132. [PMID: 24308365 PMCID: PMC4234997 DOI: 10.1186/1752-0509-7-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Abstract
Background The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.
Collapse
Affiliation(s)
| | | | | | | | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
88
|
Evans K, Stone V, Chen L, Ge X, Xu P. Systematic study of genes influencing cellular chain length in Streptococcus sanguinis. MICROBIOLOGY-SGM 2013; 160:307-315. [PMID: 24295823 PMCID: PMC3919539 DOI: 10.1099/mic.0.071688-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus sanguinis is a Gram-positive bacterium that is indigenous to the oral cavity. S. sanguinis, a primary colonizer of the oral cavity, serves as a tether for the attachment of other oral pathogens. The colonization of microbes on the tooth surface forms dental plaque, which can lead to the onset of periodontal disease. We examined a comprehensive mutant library to identify genes related to cellular chain length and morphology using phase-contrast microscopy. A number of hypothetical genes related to the cellular chain length were identified in this study. Genes related to the cellular chain length were analysed along with clusters of orthologous groups (COG) for gene functions. It was discovered that the highest proportion of COG functions related to cellular chain length was 'cell division and chromosome separation'. However, different COG functions were also found to be related with altered cellular chain length. This suggested that different genes related with multiple mechanisms contribute to the cellular chain length in S. sanguinis SK36.
Collapse
Affiliation(s)
- Karra Evans
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Victoria Stone
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Lei Chen
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Xiuchun Ge
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Ping Xu
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
- Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
89
|
Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2013; 42:D574-80. [PMID: 24243843 PMCID: PMC3965060 DOI: 10.1093/nar/gkt1131] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combination of high-density transposon-mediated mutagenesis and high-throughput sequencing has led to significant advancements in research on essential genes, resulting in a dramatic increase in the number of identified prokaryotic essential genes under diverse conditions and a revised essential-gene concept that includes all essential genomic elements, rather than focusing on protein-coding genes only. DEG 10, a new release of the Database of Essential Genes (available at http://www.essentialgene.org), has been developed to accommodate these quantitative and qualitative advancements. In addition to increasing the number of bacterial and archaeal essential genes determined by genome-wide gene essentiality screens, DEG 10 also harbors essential noncoding RNAs, promoters, regulatory sequences and replication origins. These essential genomic elements are determined not only in vitro, but also in vivo, under diverse conditions including those for survival, pathogenesis and antibiotic resistance. We have developed customizable BLAST tools that allow users to perform species- and experiment-specific BLAST searches for a single gene, a list of genes, annotated or unannotated genomes. Therefore, DEG 10 includes essential genomic elements under different conditions in three domains of life, with customizable BLAST tools.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China and Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit 48201, USA
| | | | | | | | | |
Collapse
|
90
|
SmbFT, a putative ABC transporter complex, confers protection against the lantibiotic Smb in Streptococci. J Bacteriol 2013; 195:5592-601. [PMID: 24123816 DOI: 10.1128/jb.01060-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a dental pathogen, secretes different kinds of lantibiotic and nonlantibiotic bacteriocins. For self-protection, a bacteriocin producer strain must possess one or more cognate immunity mechanisms. We report here the identification of one such immunity complex in S. mutans strain GS-5 that confers protection against Smb, a two-component lantibiotic. The immunity complex that we identified is an ABC transporter composed of two proteins: SmbF (the ATPase component) and SmbT (the permease component). Both of the protein-encoding genes are located within the smb locus. We show that GS-5 becomes sensitized to Smb upon deletion of smbT, which makes the ABC transporter nonfunctional. To establish the role SmbFT in providing immunity, we heterologously expressed this ABC transporter complex in four different sensitive streptococcal species and demonstrated that it can confer resistance against Smb. To explore the specificity of SmbFT in conferring resistance, we tested mutacin IV (a nonlantibiotic), nisin (a single peptide lantibiotics), and three peptide antibiotics (bacitracin, polymyxin B, and vancomycin). We found that SmbFT does not recognize these structurally different peptides. We then tested whether SmbFT can confer protection against haloduracin, another two-component lantibiotic that is structurally similar to Smb; SmbFT indeed conferred protection against haloduracin. SmbFT can also confer protection against an uncharacterized but structurally similar lantibiotic produced by Streptococcus gallolyticus. Our data suggest that SmbFT truly displays immunity function and confer protection against Smb and structurally similar lantibiotics.
Collapse
|
91
|
An association between peptidoglycan synthesis and organization of the Streptococcus pyogenes ExPortal. mBio 2013; 4:e00485-13. [PMID: 24065630 PMCID: PMC3781834 DOI: 10.1128/mbio.00485-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ExPortal of Streptococcus pyogenes is a focal microdomain of the cytoplasmic membrane that clusters the translocons of the general secretory pathway with accessory factors to facilitate the maturation of secreted polypeptides. While it is known that the ExPortal is enriched in anionic lipids, the mechanisms that organize the ExPortal are poorly understood. In the present study, we examined the role of the cell wall in organizing and maintaining the ExPortal. Removal of the cell wall resulted in a loss of ExPortal focal integrity accompanied by the circumferential redistribution of ExPortal lipid and protein components. A similar loss occurred upon treatment with gallidermin, a nonpermeabilizing lantibiotic that targets the lipid II precursor of peptidoglycan synthesis, and this treatment disrupted the secretion of several ExPortal substrates. Furthermore, several enzymes involved in the membrane-associated steps of lipid II synthesis, including MraY and MurN, were found to localize to a single discrete focus in the membrane that was coincident with the focal location of the secretory translocons and the anionic lipid microdomain. These data suggest that the ExPortal is associated with the site of peptidoglycan precursor synthesis and that peptidoglycan biogenesis influences ExPortal organization. These data add to an emerging literature indicating that cell wall biogenesis, cell division, and protein secretion are spatially coorganized processes. Since Gram-positive bacteria lack a periplasmic space, they lack a protected compartment to spatially coordinate interaction between newly secreted proteins and the factors required to process them. This represents a significant problem for pathogens that depend on the secretion of toxins and cell wall-associated adhesins to cause disease. Streptococci solve this dilemma by restricting secretion and processing factors to a defined region of the membrane. However, the mechanisms that promote restriction are not understood. In this study, we show that restriction of these factors in the pathogen Streptococcus pyogenes is intimately linked with the presence of the cell wall and its synthesis. Furthermore, several cell wall synthesis proteins are also restricted to the site of protein secretion. This study contributes to our understanding of how the Gram-positive cell is organized to coordinate protein secretion and biogenesis with cell wall synthesis and to the ongoing development of antibiotics that target these processes.
Collapse
|
92
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
93
|
Lee SJ, Lee SJ, Lee DW. Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 2013; 4:92. [PMID: 23626588 PMCID: PMC3630320 DOI: 10.3389/fmicb.2013.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/03/2013] [Indexed: 12/26/2022] Open
Abstract
The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.
Collapse
Affiliation(s)
- Sang Jun Lee
- Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea
| | | | | |
Collapse
|
94
|
A statistical framework for improving genomic annotations of prokaryotic essential genes. PLoS One 2013; 8:e58178. [PMID: 23520492 PMCID: PMC3592911 DOI: 10.1371/journal.pone.0058178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Large-scale systematic analysis of gene essentiality is an important step closer toward unraveling the complex relationship between genotypes and phenotypes. Such analysis cannot be accomplished without unbiased and accurate annotations of essential genes. In current genomic databases, most of the essential gene annotations are derived from whole-genome transposon mutagenesis (TM), the most frequently used experimental approach for determining essential genes in microorganisms under defined conditions. However, there are substantial systematic biases associated with TM experiments. In this study, we developed a novel Poisson model–based statistical framework to simulate the TM insertion process and subsequently correct the experimental biases. We first quantitatively assessed the effects of major factors that potentially influence the accuracy of TM and subsequently incorporated relevant factors into the framework. Through iteratively optimizing parameters, we inferred the actual insertion events occurred and described each gene’s essentiality on probability measure. Evaluated by the definite mapping of essential gene profile in Escherichia coli, our model significantly improved the accuracy of original TM datasets, resulting in more accurate annotations of essential genes. Our method also showed encouraging results in improving subsaturation level TM datasets. To test our model’s broad applicability to other bacteria, we applied it to Pseudomonas aeruginosa PAO1 and Francisella tularensis novicida TM datasets. We validated our predictions by literature as well as allelic exchange experiments in PAO1. Our model was correct on six of the seven tested genes. Remarkably, among all three cases that our predictions contradicted the TM assignments, experimental validations supported our predictions. In summary, our method will be a promising tool in improving genomic annotations of essential genes and enabling large-scale explorations of gene essentiality. Our contribution is timely considering the rapidly increasing essential gene sets. A Webserver has been set up to provide convenient access to this tool. All results and source codes are available for download upon publication at http://research.cchmc.org/essentialgene/.
Collapse
|
95
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
96
|
Trihn M, Ge X, Dobson A, Kitten T, Munro CL, Xu P. Two-component system response regulators involved in virulence of Streptococcus pneumoniae TIGR4 in infective endocarditis. PLoS One 2013; 8:e54320. [PMID: 23342132 PMCID: PMC3546988 DOI: 10.1371/journal.pone.0054320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Streptococci resident in the oral cavity have been linked to infective endocarditis (IE). While other viridans streptococci are commonly studied in relation to IE, less research has been focused on Streptococcus pneumoniae. We established for the first time an animal model of S. pneumoniae IE, and examined the virulence of the TIGR4 strain in this model. We hypothesized that two-component systems (TCS) may mediate S. pneumoniae TIGR4 strain virulence in IE and examined TCS response regulator (RR) mutants of TIGR4 in vivo with the IE model. Thirteen of the 14 RR protein genes were mutagenized, excluding only the essential gene SP_1227. The requirement of the 13 RRs for S. pneumoniae competitiveness in the IE model was assessed in vivo through use of quantitative real-time PCR (qPCR) and competitive index assays. Using real-time PCR, several RR mutants were detected at significantly lower levels in infected heart valves compared with a control strain suggesting the respective RRs are candidate virulence factors for IE. The virulence reduction of the ΔciaR mutant was further confirmed by competitive index assay. Our data suggest that CiaR is a virulence factor of S. pneumoniae strain TIGR4 for IE.
Collapse
Affiliation(s)
- My Trihn
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiuchun Ge
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Alleson Dobson
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Todd Kitten
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Cindy L. Munro
- The College of Nursing, University of South Florida, Tampa, Florida, United States of America
| | - Ping Xu
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
97
|
Ge X, Xu P. Genome-wide gene deletions in Streptococcus sanguinis by high throughput PCR. J Vis Exp 2012. [PMID: 23207952 DOI: 10.3791/4356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transposon mutagenesis and single-gene deletion are two methods applied in genome-wide gene knockout in bacteria (1,2). Although transposon mutagenesis is less time consuming, less costly, and does not require completed genome information, there are two weaknesses in this method: (1) the possibility of a disparate mutants in the mixed mutant library that counter-selects mutants with decreased competition; and (2) the possibility of partial gene inactivation whereby genes do not entirely lose their function following the insertion of a transposon. Single-gene deletion analysis may compensate for the drawbacks associated with transposon mutagenesis. To improve the efficiency of genome-wide single gene deletion, we attempt to establish a high-throughput technique for genome-wide single gene deletion using Streptococcus sanguinis as a model organism. Each gene deletion construct in S. sanguinis genome is designed to comprise 1-kb upstream of the targeted gene, the aphA-3 gene, encoding kanamycin resistance protein, and 1-kb downstream of the targeted gene. Three sets of primers F1/R1, F2/R2, and F3/R3, respectively, are designed and synthesized in a 96-well plate format for PCR-amplifications of those three components of each deletion construct. Primers R1 and F3 contain 25-bp sequences that are complementary to regions of the aphA-3 gene at their 5' end. A large scale PCR amplification of the aphA-3 gene is performed once for creating all single-gene deletion constructs. The promoter of aphA-3 gene is initially excluded to minimize the potential polar effect of kanamycin cassette. To create the gene deletion constructs, high-throughput PCR amplification and purification are performed in a 96-well plate format. A linear recombinant PCR amplicon for each gene deletion will be made up through four PCR reactions using high-fidelity DNA polymerase. The initial exponential growth phase of S. sanguinis cultured in Todd Hewitt broth supplemented with 2.5% inactivated horse serum is used to increase competence for the transformation of PCR-recombinant constructs. Under this condition, up to 20% of S. sanguinis cells can be transformed using ~50 ng of DNA. Based on this approach, 2,048 mutants with single-gene deletion were ultimately obtained from the 2,270 genes in S. sanguinis excluding four gene ORFs contained entirely within other ORFs in S. sanguinis SK36 and 218 potential essential genes. The technique on creating gene deletion constructs is high throughput and could be easy to use in genome-wide single gene deletions for any transformable bacteria.
Collapse
Affiliation(s)
- Xiuchun Ge
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
98
|
Juhas M, Eberl L, Church GM. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends Biotechnol 2012; 30:601-7. [DOI: 10.1016/j.tibtech.2012.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 11/15/2022]
|
99
|
Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 2012; 13:578. [PMID: 23114059 PMCID: PMC3547785 DOI: 10.1186/1471-2164-13-578] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with periodontal disease onset and progression. Genetic tools for the manipulation of bacterial genomes allow for in-depth mechanistic studies of metabolism, physiology, interspecies and host-pathogen interactions. Analysis of the essential genes, protein-coding sequences necessary for survival of P. gingivalis by transposon mutagenesis has not previously been attempted due to the limitations of available transposon systems for the organism. We adapted a Mariner transposon system for mutagenesis of P. gingivalis and created an insertion mutant library. By analyzing the location of insertions using massively-parallel sequencing technology we used this mutant library to define genes essential for P. gingivalis survival under in vitro conditions. Results In mutagenesis experiments we identified 463 genes in P. gingivalis strain ATCC 33277 that are putatively essential for viability in vitro. Comparing the 463 P. gingivalis essential genes with previous essential gene studies, 364 of the 463 are homologues to essential genes in other species; 339 are shared with more than one other species. Twenty-five genes are known to be essential in P. gingivalis and B. thetaiotaomicron only. Significant enrichment of essential genes within Cluster of Orthologous Groups ‘D’ (cell division), ‘I’ (lipid transport and metabolism) and ‘J’ (translation/ribosome) were identified. Previously, the P. gingivalis core genome was shown to encode 1,476 proteins out of a possible 1,909; 434 of 463 essential genes are contained within the core genome. Thus, for the species P. gingivalis twenty-two, seventy-seven and twenty-three percent of the genome respectively are devoted to essential, core and accessory functions. Conclusions A Mariner transposon system can be adapted to create mutant libraries in P. gingivalis amenable to analysis by next-generation sequencing technologies. In silico analysis of genes essential for in vitro growth demonstrates that although the majority are homologous across bacterial species as a whole, species and strain-specific subsets are apparent. Understanding the putative essential genes of P. gingivalis will provide insights into metabolic pathways and niche adaptations as well as clinical therapeutic strategies.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
100
|
Cotruvo JA, Stubbe J. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 2012; 4:1020-36. [PMID: 22991063 PMCID: PMC3488304 DOI: 10.1039/c2mt20142a] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|