51
|
Ezzat S, Louka ML, Zakaria ZM, Nagaty MM, Metwaly RG. Autophagy in osteoporosis: Relation to oxidative stress. J Cell Biochem 2019; 120:2560-2568. [PMID: 30216504 DOI: 10.1002/jcb.27552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
Impaired autophagy and oxidative stress are implicated in the development of many diseases. This study aimed to investigate the involvement of autophagy represented by autophagy-related gene 7 (Atg7) and oxidative stress represented by superoxide dismutase 2 (SOD2) gene expression and enzyme activity in the pathogenesis of osteoporosis. Atg7 and SOD2 gene relative expression were evaluated by SYBR green quantitative real-time-polymerase chain reaction in the osteoporotic group (n = 26) versus the osteoporosis free group (n = 14). SOD2 enzyme activity was evaluated by colorimetric method in both study groups. Both Atg7 and SOD2 relative expression showed highly significant decrease (P < 0.01) between both groups. However, SOD2 enzyme activity showed no significant difference between the two groups. There was a significant direct correlation between Atg7 and SOD2 gene expression in both study groups. Atg7 relative expression showed significant ( P < 0.01) direct correlation with vitamin D serum levels and body mass index in osteoporotic group. In conclusion, both genes are involved in the pathogenesis of osteoporosis and this could be amenable to future therapeutic intervention.
Collapse
Affiliation(s)
- Sara Ezzat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal L Louka
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Zeiad M Zakaria
- Orthopedic Surgery and Traumatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Magda M Nagaty
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Radwan G Metwaly
- Orthopedic Surgery and Traumatology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
52
|
Tamaoka J, Takaoka K, Hattori H, Ueta M, Maeda H, Yamamura M, Yamanegi K, Noguchi K, Kishimoto H. Osteonecrosis of the jaws caused by bisphosphonate treatment and oxidative stress in mice. Exp Ther Med 2018; 17:1440-1448. [PMID: 30680026 DOI: 10.3892/etm.2018.7076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022] Open
Abstract
Aging is a significant risk factor for the development of bisphosphonate-related osteonecrosis of the jaws (BRONJ). Accumulating evidence suggests that bone aging is associated with oxidative stress (OS), and OS is associated with osteonecrosis. To elucidate the mechanisms of the onset of BRONJ, the present study focused on OS and the effects of treatment with the pro-oxidant DL-buthionine-(S,R)-sulfoximine (BSO), an oxidative stressor, on healing of a surgically induced penetrating injury of the palate. Six-week-old C57BL/6J mice were randomly divided into four groups (n=5 each) and treated with or without zoledronic acid (ZOL) and with or without BSO (experimental groups: ZOL, BSO, and ZOL+BSO; control group: saline solution). A penetrating injury of the midline palate was surgically created using a root elevator. ZOL (250 µg/kg/day) was injected intraperitoneally every day from 7 days prior to the surgical treatment to 4 days following the surgical treatment. BSO (500 µg/kg/day) was administered 7 days prior to the surgical treatment as a single intraperitoneal injection. The maxillae were harvested at 5 days following the surgical treatment for histological and histochemical studies. The presence of empty osteocyte lacunae in the palatal bone was increased by ZOL and BSO treatment. The highest number of empty osteocyte lacunae was observed in the ZOL+BSO group. The number of tartrate-resistant acid phosphatase-positive cells was decreased by ZOL treatment and increased by BSO treatment. The number of canaliculi per osteocyte lacuna was significantly decreased by BSO treatment. The mineral apposition rate was significantly lower in the treatment groups than the control group. Bisphosphonates and OS suppressed bone turnover. The present study has demonstrated that BSO treatment affects osteocytes, and OS in osteocytes exacerbates impairment of the osteocytic canalicular networks. As a result, bisphosphonates and OS may induce osteonecrosis following invasive dentoalveolar surgery. OS has been identified as an additional risk factor for the development of BRONJ.
Collapse
Affiliation(s)
- Joji Tamaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuki Takaoka
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hirokazu Hattori
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Miho Ueta
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hanako Maeda
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Michiyo Yamamura
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
53
|
Hoshina C, Omura T, Okuda K, Tanaka H, Asari M, Isozaki S, Horioka K, Yamada H, Doi H, Shiono H, Matsubara K, Shimizu K. Paraquat toxicity is attenuated by 4-phenylbutyrate-induced phosphorylation of ERK2 via PI3K in A549 cells. Biochem Biophys Res Commun 2018; 503:809-814. [DOI: 10.1016/j.bbrc.2018.06.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 02/01/2023]
|
54
|
Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res 2018; 33:1568-1584. [PMID: 30075061 PMCID: PMC6327947 DOI: 10.1002/jbmr.3564] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Aging research has undergone unprecedented advances at an accelerating rate in recent years, leading to excitement in the field as well as opportunities for imagination and innovation. Novel insights indicate that, rather than resulting from a preprogrammed series of events, the aging process is predominantly driven by fundamental non-adaptive mechanisms that are interconnected, linked, and overlap. To varying degrees, these mechanisms also manifest with aging in bone where they cause skeletal fragility. Because these mechanisms of aging can be manipulated, it might be possible to slow, delay, or alleviate multiple age-related diseases and their complications by targeting conserved genetic signaling pathways, controlled functional networks, and basic biochemical processes. Indeed, findings in various mammalian species suggest that targeting fundamental aging mechanisms (eg, via either loss-of-function or gain-of-function mutations or administration of pharmacological therapies) can extend healthspan; ie, the healthy period of life free of chronic diseases. In this review, we summarize the evidence supporting the role of the spectrum of fundamental basic science discoveries contributing to organismal aging, with emphasis on mammalian studies and in particular aging mechanisms in bone that drive skeletal fragility. These mechanisms or aging hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Because these mechanisms are linked, interventions that ameliorate one hallmark can in theory ameliorate others. In the field of bone and mineral research, current challenges include defining the relative contributions of each aging hallmark to the natural skeletal aging process, better understanding the complex interconnections among the hallmarks, and identifying the most effective therapeutic strategies to safely target multiple hallmarks. Based on their interconnections, it may be feasible to simultaneously interfere with several fundamental aging mechanisms to alleviate a wide spectrum of age-related chronic diseases, including osteoporosis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
55
|
Farris M, McTyre ER, Okoukoni C, Dugan G, Johnson BJ, Blackstock AW, Munley MT, Bourland JD, Cline JM, Willey JS. Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 2018; 190:63-71. [PMID: 29738279 PMCID: PMC6036641 DOI: 10.1667/rr15007.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereotactic body radiation therapy (SBRT) is associated with an increased risk of vertebral compression fracture. While bone is typically considered radiation resistant, fractures frequently occur within the first year of SBRT. The goal of this work was to determine if rapid deterioration of bone occurs in vertebrae after irradiation. Sixteen male rhesus macaque non-human primates (NHPs) were analyzed after whole-chest irradiation to a midplane dose of 10 Gy. Ages at the time of exposure varied from 45-134 months. Computed tomography (CT) scans were taken 2 months prior to irradiation and 2, 4, 6 and 8 months postirradiation for all animals. Bone mineral density (BMD) and cortical thickness were calculated longitudinally for thoracic (T) 9, lumbar (L) 2 and L4 vertebral bodies; gross morphology and histopathology were assessed per vertebra. Greater mortality (related to pulmonary toxicity) was noted in NHPs <50 months at time of exposure versus NHPs >50 months ( P = 0.03). Animals older than 50 months at time of exposure lost cortical thickness in T9 by 2 months postirradiation ( P = 0.0009), which persisted to 8 months. In contrast, no loss of cortical thickness was observed in vertebrae out-of-field (L2 and L4). Loss of BMD was observed by 4 months postirradiation for T9, and 6 months postirradiation for L2 and L4 ( P < 0.01). For NHPs younger than 50 months at time of exposure, both cortical thickness and BMD decreased in T9, L2 and L4 by 2 months postirradiation ( P < 0.05). Regions that exhibited the greatest degree of cortical thinning as determined from CT scans also exhibited increased porosity histologically. Rapid loss of cortical thickness was observed after high-dose chest irradiation in NHPs. Younger age at time of exposure was associated with increased pneumonitis-related mortality, as well as greater loss of both BMD and cortical thickness at both in- and out-of-field vertebrae. Older NHPs exhibited rapid loss of BMD and cortical thickness from in-field vertebrae, but only loss of BMD in out-of-field vertebrae. Bone is sensitive to high-dose radiation, and rapid loss of bone structure and density increases the risk of fractures.
Collapse
Affiliation(s)
| | | | | | - Greg Dugan
- c Pathology/Section on Comparative Medicine
| | - Brendan J Johnson
- e Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | | | - Michael T Munley
- Departments of a Radiation Oncology
- b Biomedical Engineering
- d Physics, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J Daniel Bourland
- Departments of a Radiation Oncology
- d Physics, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | |
Collapse
|
56
|
Masuda I, Koike M, Nakashima S, Mizutani Y, Ozawa Y, Watanabe K, Sawada Y, Sugiyama H, Sugimoto A, Nojiri H, Sashihara K, Yokote K, Shimizu T. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep 2018; 8:7229. [PMID: 29739985 PMCID: PMC5940809 DOI: 10.1038/s41598-018-25348-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Apples are well known to have various benefits for the human body. Procyanidins are a class of polyphenols found in apples that have demonstrated effects on the circulatory system and skeletal organs. Osteoarthritis (OA) is a locomotive syndrome that is histologically characterized by cartilage degeneration associated with the impairment of proteoglycan homeostasis in chondrocytes. However, no useful therapy for cartilage degeneration has been developed to date. In the present study, we detected beneficial effects of apple polyphenols or their procyanidins on cartilage homeostasis. An in vitro assay revealed that apple polyphenols increased the activities of mitochondrial dehydrogenases associated with an increased copy number of mitochondrial DNA as well as the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), suggesting the promotion of PGC-1α-mediated mitochondrial biogenesis. Apple procyanidins also enhanced proteoglycan biosynthesis with aggrecan upregulation in primary chondrocytes. Of note, oral treatment with apple procyanidins prevented articular cartilage degradation in OA model mice induced by mitochondrial dysfunction in chondrocytes. Our findings suggest that apple procyanidins are promising food components that inhibit OA progression by promoting mitochondrial biogenesis and proteoglycan homeostasis in chondrocytes.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan.,Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | - Masato Koike
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Nakashima
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan.,Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | - Yu Mizutani
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoko Sawada
- Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | | | - Atsushi Sugimoto
- Quality Assurance Department, Quality Assurance Headquarters, Asahi Group Foods, Ltd., Tokyo, Japan
| | - Hidetoshi Nojiri
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Sashihara
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan. .,Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
57
|
Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB. Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes. Diabetes 2018; 67:607-623. [PMID: 29301852 PMCID: PMC5860855 DOI: 10.2337/db17-0965] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022]
Abstract
Bone loss and fractures are underrecognized complications of type 1 diabetes and are primarily due to impaired bone formation by osteoblasts. The mechanisms leading to osteoblast dysfunction in diabetes are incompletely understood, but insulin deficiency, poor glycemic control, and hyperglycemia-induced oxidative stress likely contribute. Here we show that insulin promotes osteoblast proliferation and survival via the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signal transduction pathway and that PKG stimulation of Akt provides a positive feedback loop. In osteoblasts exposed to high glucose, NO/cGMP/PKG signaling was reduced due in part to the addition of O-linked N-acetylglucosamine to NO synthase-3, oxidative inhibition of guanylate cyclase activity, and suppression of PKG transcription. Cinaciguat-an NO-independent activator of oxidized guanylate cyclase-increased cGMP synthesis under diabetic conditions and restored proliferation, differentiation, and survival of osteoblasts. Cinaciguat increased trabecular and cortical bone in mice with type 1 diabetes by improving bone formation and osteocyte survival. In bones from diabetic mice and in osteoblasts exposed to high glucose, cinaciguat reduced oxidative stress via PKG-dependent induction of antioxidant genes and downregulation of excess NADPH oxidase-4-dependent H2O2 production. These results suggest that cGMP-elevating agents could be used as an adjunct treatment for diabetes-associated osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gerburg Schwaerzer
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ghania Ramdani
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Francine Castillo
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wolfgang Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
58
|
Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment. Sci Rep 2018; 8:5318. [PMID: 29593232 PMCID: PMC5871752 DOI: 10.1038/s41598-018-23532-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/14/2018] [Indexed: 12/02/2022] Open
Abstract
Homeostasis of osteoclast formation from bone marrow macrophages (BMM) is regulated by paracrine signals of the neighbourhood bone cells particularly mesenchymal stem cells (MSC), osteoblasts and osteocytes (OC). Besides paracrine cues, collagen and glycosaminoglycan are involved in controlling bone homeostasis. Towards this approach, different molecular weight collagens were reacted with MSC, OC and BMM to understand the bone homeostasis activity of collagen. The up-regulating effect of collagens on osteogenic cell growth was confirmed by the presence of mineralized nodules in the osteoblastogenic lineage cells and increased osteogenic stimulatory gene expression. The decreased BMM-derived TRAP+ osteoclasts number and osteoclastogenic regulatory gene expression of OC could demonstrate the exploitive osteoclastogenic activity of collagens. Osteoclastogenesis from BMM was triggered by paracrine cues of OC in some extend, but it was down-regulated by collagen. Overall, the effect of collagen on osteoclastogenesis and osteoblastogenesis may depend on the molecular weight of collagens, and collagen suppresses osteoclastogenesis, at least in part by downregulating the secretion of cytokines in OC.
Collapse
|
59
|
Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY) 2017; 9:2190-2208. [PMID: 29074822 PMCID: PMC5680562 DOI: 10.18632/aging.101308] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/15/2017] [Indexed: 11/25/2022]
Abstract
Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.
Collapse
Affiliation(s)
- LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Molly A. Hulbert
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Richard Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Mark R. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Departments of Anatomy and Cell Biology and Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
60
|
Abstract
With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided.
Collapse
|
61
|
Langdahl JH, Frederiksen AL, Hansen SJ, Andersen PH, Yderstraede KB, Dunø M, Vissing J, Frost M. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength: A Case-Control Study. J Bone Miner Res 2017; 32:2041-2048. [PMID: 28603900 DOI: 10.1002/jbmr.3193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse models, effects of alterations in mitochondrial function on bone remodeling and mass have not been investigated in humans. We recruited 45 carriers (29 females, 16 males) with the m.3243A>G mutation and healthy controls matched for gender, age, height, and menopausal status. DXA and HRpQCT scans were performed, and bone turnover markers (BTMs) P1NP and CTX were measured. Cases and controls were well matched except for body weight, which was lower in cases (63.6 ± 18.1 kg versus 74.6 ± 14.8 kg, p < 0.01), and manifest DM was present in 25 of 45 cases (none in controls). Bone scans showed lower BMD at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p < 0.05). The m.3243A>G mutation was associated with lower BMD, cortical but not trabecular density, cortical thickness, and estimated bone strength. Furthermore, BTMs were lower in the m.3243A>G group before but not after adjustment for DM. The mitochondrial point mutation m.3243A>G was associated with decreased bone mass and strength. Although the coexistence of DM may have influenced bone turnover, the bone phenotype observed in m.3243A>G cases appeared to mirror age-related deterioration in bone, suggesting that mitochondrial dysfunction may cause a premature aging of bone. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Jakob Høgild Langdahl
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stinus Jørn Hansen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Per Heden Andersen
- Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | | | - Morten Dunø
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
62
|
SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 2017; 25:229-240. [PMID: 28914882 PMCID: PMC5762839 DOI: 10.1038/cdd.2017.144] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by increased ATP production and decreased mitochondrial stress. Inhibition of mitochondrial activity or an increase in mitochondrial superoxide production significantly suppressed osteoblast differentiation. During differentiation, SOD2 was specifically induced to eliminate excess mitochondrial superoxide and protein oxidation, whereas SIRT3 expression was increased to enhance SOD2 activity through deacetylation of K68. Both SOD2 and SIRT3 knockdown resulted in suppression of differentiation. Meanwhile, mice deficient in SIRT3 exhibited obvious osteopenia accompanied by osteoblast dysfunction, whereas overexpression of SOD2 or SIRT3 improved the differentiation capability of primary osteoblasts derived from SIRT3-deficient mice. These results suggest that SIRT3/SOD2 is required for regulating mitochondrial stress and plays a vital role in osteoblast differentiation and bone formation.
Collapse
|
63
|
Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, Bayat M. Effect of low‐level laser therapy and oxytocin on osteoporotic bone marrow‐derived mesenchymal stem cells. J Cell Biochem 2017; 119:983-997. [DOI: 10.1002/jcb.26265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Somaye Fallahnezhad
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Piryaei
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hasan Darbandi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abdollah Amini
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
64
|
Burke M, Golaraei A, Atkins A, Akens M, Barzda V, Whyne C. Collagen fibril organization within rat vertebral bone modified with metastatic involvement. J Struct Biol 2017; 199:153-164. [PMID: 28655593 DOI: 10.1016/j.jsb.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.
Collapse
Affiliation(s)
- Mikhail Burke
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ahmad Golaraei
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ayelet Atkins
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Techna, University Health Network, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Cari Whyne
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
65
|
Burke M, Atkins A, Kiss A, Akens M, Yee A, Whyne C. The impact of metastasis on the mineral phase of vertebral bone tissue. J Mech Behav Biomed Mater 2017; 69:75-84. [DOI: 10.1016/j.jmbbm.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
|
66
|
Ucer S, Iyer S, Kim HN, Han L, Rutlen C, Allison K, Thostenson JD, de Cabo R, Jilka RL, O’Brien C, Almeida M, Manolagas SC. The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. J Bone Miner Res 2017; 32:560-574. [PMID: 27714847 PMCID: PMC5340621 DOI: 10.1002/jbmr.3014] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Old age and sex steroid deficiency are the two most critical factors for the development of osteoporosis. It remains unknown, however, whether the molecular culprits of the two conditions are similar or distinct. We show herein that at 19.5 months of age-a time by which the age-dependent decline of cortical and cancellous bone mass and cortical porosity were fully manifested in C57BL/6J mice-these animals remained functionally estrogen sufficient. Transgenic mice with conditional expression of mitochondria-targeted catalase-a potent H2 O2 inactivating enzyme-in cells of the myeloid lineage (mitoCAT;LysM-Cre mice) were protected from the loss of cortical, but not cancellous, bone caused by gonadectomy in either sex. Consistent with these findings, in vitro studies with ERα-deficient Prx1+ cells and gonadectomized young adult mice showed that in both sexes decreased ERα signaling in Prx1+ cells leads to an increase in SDF1, a.k.a. CXCL12, an osteoclastogenic cytokine whose effects were abrogated in macrophages from mitoCAT;LysM-Cre mice. In contrast to sex steroid deficiency, the adverse effects of aging on either cortical or cancellous bone were unaffected in mitoCAT;LysM-Cre mice. On the other hand, attenuation of H2 O2 generation in cells of the mesenchymal lineage targeted by Prx1-Cre partially prevented the loss of cortical bone caused by old age. Our results suggest the effects of sex steroid deficiency and aging on the murine skeleton are independent and result from distinct mechanisms. In the former, the prevailing mechanism of the cortical bone loss in both sexes is increased osteoclastogenesis caused by estrogen deficiency; this is likely driven, at least in part, by mesenchymal/stromal cell-derived SDF1. Decreased osteoblastogenesis, owing in part to increased H2 O2, combined with increased osteoclastogenesis caused by aging mechanisms independent of estrogen deficiency, are the prevailing mechanisms of the loss of cortical bone with old age. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Serra Ucer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Christine Rutlen
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Kelly Allison
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Jeff D Thostenson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Charles O’Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
67
|
Choi EM, Suh KS, Rhee SY, Oh S, Woo JT, Kim SW, Kim YS, Pak YK, Chon S. Perfluorooctanoic acid induces mitochondrial dysfunction in MC3T3-E1 osteoblast cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:281-289. [PMID: 27901621 DOI: 10.1080/10934529.2016.1253402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA), a stable organic perfluorinated compound, is an emerging persistent organic pollutant, found widely in human and wildlife populations. Recent evidence suggests that exposure to environmental toxicants can be associated with higher risks of osteoporosis and fractures. We studied the cellular toxicology of PFOA in MC3T3-E1osteoblast cells. To examine the effect of PFOA, we measured cell viability, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, mitochondrial membrane potential (MMP), cardiolipin content, and cytochrome c release in MC3T3-E1 cells. Incubating MC3T3-E1 cells in different concentrations of PFOA for 48 h resulted in a concentration-dependent decrease in cell viability and significant inductions of ROS and mitochondrial superoxide. Moreover, PFOA induced MMP collapse, cardiolipin peroxidation, cytochrome c release, and decreased ATP levels, which in turn induced apoptosis or necrosis. When osteoblast differentiation markers were assessed, PFOA treatment caused a significant reduction in alkaline phosphatase activity, collagen synthesis, and mineralization in the cells. In summary, we found an ROS- and mitochondria-mediated pathway for the induction of cell damage by PFOA in MC3T3-E1 cells. Together, our results indicate that mitochondrial toxicity could be a plausible mechanism for the toxic effects of PFOA on osteoblast function.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- b Research Institute of Endocrinology, Kyung Hee University Hospital , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Jeong-Taek Woo
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Young Seol Kim
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
- c Department of Internal Medicine , Chung Hospital , Seongnam-si , Gyeonggi-do , Republic of Korea
| | - Youngmi Kim Pak
- d Department of Physiology , Kyung Hee University, College of Medicine , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
68
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
69
|
Dobson PF, Rocha MC, Grady JP, Chrysostomou A, Hipps D, Watson S, Greaves LC, Deehan DJ, Turnbull DM. Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA(-/-) mice. Sci Rep 2016; 6:31907. [PMID: 27553587 PMCID: PMC4995399 DOI: 10.1038/srep31907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 01/15/2023] Open
Abstract
Fragility fractures caused by osteoporosis affect millions of people worldwide every year with significant levels of associated morbidity, mortality and costs to the healthcare economy. The pathogenesis of declining bone mineral density is poorly understood but it is inherently related to increasing age. Growing evidence in recent years, especially that provided by mouse models, suggest that accumulating somatic mitochondrial DNA mutations may cause the phenotypic changes associated with the ageing process including osteoporosis. Methods to study mitochondrial abnormalities in individual osteoblasts, osteoclasts and osteocytes are limited and impair our ability to assess the changes seen with age and in animal models of ageing. To enable the assessment of mitochondrial protein levels, we have developed a quadruple immunofluorescence method to accurately quantify the presence of mitochondrial respiratory chain components within individual bone cells. We have applied this technique to a well-established mouse model of ageing and osteoporosis and show respiratory chain deficiency.
Collapse
Affiliation(s)
- Philip F Dobson
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Mariana C Rocha
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - John P Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Alexia Chrysostomou
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Daniel Hipps
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom
| | - Sharon Watson
- Musculoskeletal Research Group, Medical School, Newcastle University, United Kingdom
| | - Laura C Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom.,MRC/BBSRC Centre for Ageing and Vitality, Newcastle University, United Kingdom
| | - David J Deehan
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute for Neuroscience, Medical School, Newcastle University, United Kingdom.,MRC/BBSRC Centre for Ageing and Vitality, Newcastle University, United Kingdom
| |
Collapse
|
70
|
Prideaux M, Findlay DM, Atkins GJ. Osteocytes: The master cells in bone remodelling. Curr Opin Pharmacol 2016; 28:24-30. [DOI: 10.1016/j.coph.2016.02.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
71
|
Abstract
The decrease in bone mass and strength during aging has multiple causes. Osteocytes are long-lived cells within the bone matrix that perform a variety of functions, including the control of bone remodeling. Because of their longevity, osteocytes are more likely than osteoclasts or osteoblasts to accumulate molecular damage over time. Osteocytes utilize quality-control pathways like autophagy to remove damaged organelles and macromolecules, and thereby maintain function. When the damage is excessive, cell death pathways such as apoptosis minimize the impact of potential osteocyte dysfunction on the skeleton. The goal of this review is to discuss how dysregulation of these pathways in osteocytes may contribute to the decline in bone mass and strength with age.
Collapse
Affiliation(s)
- Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
72
|
The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells. Tumour Biol 2015; 37:4083-91. [PMID: 26490979 DOI: 10.1007/s13277-015-4190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022] Open
Abstract
Mitochondria as the critical powerhouse of eukaryotic cells play important roles in regulating cell survival or cell death. Under numerous stimuli, impaired mitochondria will generate massive reactive oxygen species (ROS) which participate in the regulation of vital signals and could even determine the fate of cancer cells. While the roles of mitochondria in radiation-induced autophagic cell death still need to be elucidated. Human cervical cancer cell line, Hela, was used, and the SOD2 silencing model (SOD2-Ri) was established by gene engineering. Cell viability was detected by methyl thiazolyl tetrazolium (MTT) assays, MitoTracker Green staining was used to detect mitochondrial mass, Western blot was used to detect protein expression, and the level of ROS, autophagy, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. Ionizing radiation (IR) could induce the increase of MAPLC3-II/MAPLC3-I ratio, Beclin1 expression, and ROS generation but decrease the MMP in a time-dependent manner. After SOD2 silencing, the IR-induced changes of ROS and the MMP were significantly enhanced. Moreover, both the radio sensitivity and autophagy increased in SOD2-Ri cells. Whereas, compared with SOD2-Ri, the opposite results were obtained by NAC, an antioxidant. After the treatment with the inhibitor of mitochondrial electron-transport chain complex II, thenoyltrifluoroacetone (TTFA), the rate of autophagy, ROS, and the total cell death induced by IR increased. In addition, the decrease of MMP was more obvious. However, these results were reversed by cyclosporine A (CsA). IR could induce ROS generation and mitochondrial damage which lead to autophagic cell death in Hela cells.
Collapse
|
73
|
Koike M, Nojiri H, Ozawa Y, Watanabe K, Muramatsu Y, Kaneko H, Morikawa D, Kobayashi K, Saita Y, Sasho T, Shirasawa T, Yokote K, Kaneko K, Shimizu T. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 2015; 5:11722. [PMID: 26108578 PMCID: PMC4480010 DOI: 10.1038/srep11722] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022] Open
Abstract
Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.
Collapse
Affiliation(s)
- Masato Koike
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetoshi Nojiri
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuta Muramatsu
- Department of Orthopaedics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Haruka Kaneko
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daichi Morikawa
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiji Kobayashi
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshitomo Saita
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahisa Sasho
- Department of Orthopaedics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takuji Shirasawa
- Department of Aging Control Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine' Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuo Kaneko
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|