51
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
52
|
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol 2016; 8:a023754. [PMID: 27908936 PMCID: PMC5131771 DOI: 10.1101/cshperspect.a023754] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the engineering advances that facilitated their development and highlight several achievements in genome engineering that were made possible by these tools. We also consider artificial transcription factors, illustrating how this technology can complement targeted nucleases for synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Sai-Lan Shui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
53
|
Wang K, Tang X, Liu Y, Xie Z, Zou X, Li M, Yuan H, Ouyang H, Jiao H, Pang D. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e396. [PMID: 27898095 PMCID: PMC5155319 DOI: 10.1038/mtna.2016.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN) mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR) efficiency was achieved in porcine fetal fibroblasts (PFFs) by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT). Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs.
Collapse
Affiliation(s)
- Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Yan Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, PR China
| |
Collapse
|
54
|
Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler KG, Niemann H. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 2016; 23:338-46. [PMID: 27610605 DOI: 10.1111/xen.12258] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Xenotransplantation is considered to be a promising solution to the growing demand for suitable donor organs for transplantation. Despite tremendous progress in the generation of pigs with multiple genetic modifications thought to be necessary to overcoming the severe rejection responses after pig-to-non-human primate xenotransplantation, the production of knockout pigs by somatic cell nuclear transfer (SCNT) is still an inefficient process. Producing genetically modified pigs by intracytoplasmic microinjection of porcine zygotes is an alluring alternative. The porcine GGTA1 gene encodes for the α1,3-galactosyltransferase that synthesizes the Gal epitopes on porcine cells which constitute the major antigen in a xenotransplantation setting. GGTA1-KO pigs have successfully been produced by transfecting somatic cells with zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or CRISPR/Cas targeting GGTA1, followed by SCNT. METHODS Here, we microinjected a CRISPR/Cas9 vector coding for a single-guide RNA (sgRNA) targeting exon 8 of the GGTA1 gene into the cytoplasm of 97 in vivo-derived porcine zygotes and transferred 86 of the microinjected embryos into three hormonally synchronized recipients. Fetuses and piglets were analyzed by flow cytometry for remaining Gal epitopes. DNA was sequenced to detect mutations at the GGTA1 locus. RESULTS Two of the recipients remained pregnant as determined by ultrasound scanning on day 25 of gestation. One pregnancy was terminated on day 26, and six healthy fetuses were recovered. The second pregnancy was allowed to go to term and resulted in the birth of six healthy piglets. Flow cytometry analysis revealed the absence of Gal epitopes in four of six fetuses (66%), indicating a biallelic KO of GGTA1. Additionally, three of the six live-born piglets (50%) did not express Gal epitopes on their cell surface. Two fetuses and two piglets showed a mosaicism with a mixed population of Gal-free and Gal-expressing cells. Only a single piglet did not have any genomic modifications. Genomic sequencing revealed indel formation at the GGTA1 locus ranging from +17 bp to -20 bp. CONCLUSIONS These results demonstrate the efficacy of CRISPR/Cas to generate genetic modifications in pigs by simplified technology, such as intracytoplasmic microinjection into zygotes, which would significantly facilitate the production of genetically modified pigs suitable for xenotransplantation. Importantly, this simplified injection protocol avoids the penetration of the vulnerable pronuclear membrane, and is thus compatible with higher survival rates of microinjected embryos, which in turn facilitates production of genetically modified piglets.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| | - Antje Frenzel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Sabine Klein
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Maren Ziegler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Klaus-Gerd Hadeler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany.
| |
Collapse
|
55
|
Jung CJ, Ménoret S, Brusselle L, Tesson L, Usal C, Chenouard V, Remy S, Ouisse LH, Poirier N, Vanhove B, de Jong PJ, Anegon I. Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Sci Rep 2016; 6:31455. [PMID: 27530248 PMCID: PMC4987655 DOI: 10.1038/srep31455] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Chris J Jung
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Séverine Ménoret
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Lucas Brusselle
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laurent Tesson
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Claire Usal
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Vanessa Chenouard
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Séverine Remy
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laure-Hélène Ouisse
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Nicolas Poirier
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Bernard Vanhove
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Pieter J de Jong
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Ignacio Anegon
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| |
Collapse
|
56
|
Koutroumpa FA, Monsempes C, François MC, de Cian A, Royer C, Concordet JP, Jacquin-Joly E. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 2016; 6:29620. [PMID: 27403935 PMCID: PMC4940732 DOI: 10.1038/srep29620] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Lepidoptera suffer critical lack of genetic tools and heritable genome edition has been achieved only in a few model species. Here we demonstrate that the CRISPR/Cas9 system is highly efficient for genome editing in a non-model crop pest Lepidoptera, the noctuid moth Spodoptera littoralis. We knocked-out the olfactory receptor co-receptor Orco gene to investigate its function in Lepidoptera olfaction. We find that 89.6% of the injected individuals carried Orco mutations, 70% of which transmitted them to the next generation. CRISPR/Cas9-mediated Orco knockout caused defects in plant odor and sex pheromone olfactory detection in homozygous individuals. Our work genetically defines Orco as an essential OR partner for both host and mate detection in Lepidoptera, and demonstrates that CRISPR/Cas9 is a simple and highly efficient genome editing technique in noctuid pests opening new routes for gene function analysis and the development of novel pest control strategies.
Collapse
Affiliation(s)
| | | | | | - Anne de Cian
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | - Corinne Royer
- INSA-Lyon, Villeurbanne F-69621, France.,INRA, UMR203 BF2I, Biologie Fonctionnelle Insecte et Interaction, F-69621, France
| | - Jean-Paul Concordet
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | | |
Collapse
|
57
|
Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 2016; 34:807-8. [DOI: 10.1038/nbt.3596] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
Haeussler M, Concordet JP. Genome Editing with CRISPR-Cas9: Can It Get Any Better? J Genet Genomics 2016; 43:239-50. [PMID: 27210042 PMCID: PMC5708852 DOI: 10.1016/j.jgg.2016.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage.
Collapse
Affiliation(s)
- Maximilian Haeussler
- Santa Cruz Genomics Institute, MS CBSE, 1156 High Street, University of California, Santa Cruz, CA 95064, USA
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Inserm U1154, CNRS UMR7196, Muséum national d'Histoire naturelle, 43 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
59
|
Kouranova E, Forbes K, Zhao G, Warren J, Bartels A, Wu Y, Cui X. CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos. Hum Gene Ther 2016; 27:464-75. [PMID: 27094534 PMCID: PMC4931306 DOI: 10.1089/hum.2016.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid development of CRISPR technology greatly impacts the field of genetic engineering. The simplicity in design and generation of highly efficient CRISPR reagents allows more and more researchers to take on genome editing in different model systems in their own labs, even for those who found it daunting before. An active CRISPR complex contains a protein component (Cas9) and an RNA component (small guide RNA [sgRNA]), which can be delivered into cells in various formats. Cas9 can be introduced as a DNA expression plasmid, in vitro transcripts, or as a recombinant protein bound to the RNA portion in a ribonucleoprotein particle (RNP), whereas the sgRNA can be delivered either expressed as a DNA plasmid or as an in vitro transcript. Here we compared the different delivery methods in cultured cell lines as well as mouse and rat single-cell embryos and view the RNPs as the most convenient and efficient to use. We also report the detection of limited off-targeting in cells and embryos and discuss approaches to lower that chance. We hope that researchers new to CRISPR find our results helpful to their adaptation of the technology for optimal gene editing.
Collapse
Affiliation(s)
| | - Kevin Forbes
- Horizon Discovery Group Company , Saint Louis, Missouri
| | - Guojun Zhao
- Horizon Discovery Group Company , Saint Louis, Missouri
| | - Joe Warren
- Horizon Discovery Group Company , Saint Louis, Missouri
| | | | - Yumei Wu
- Horizon Discovery Group Company , Saint Louis, Missouri
| | - Xiaoxia Cui
- Horizon Discovery Group Company , Saint Louis, Missouri
| |
Collapse
|
60
|
Lemoine A, Chauveau-Le Friec G, Langa F, Louvet C. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping. J Genet Genomics 2016; 43:329-40. [DOI: 10.1016/j.jgg.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 01/16/2023]
|
61
|
Nguyen TH, Anegon I. Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med 2016; 8:439-41. [PMID: 27138565 PMCID: PMC5130315 DOI: 10.15252/emmm.201606325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hemophilia B is a serious hemostasis disorder due to mutations of the factor IX gene in the X chromosome. Gene therapy has gained momentum in recent years as a therapeutic option for hemophilia B. In hemophilia, reconstitution with a mere 1–2% of the clotting factor improves the quality of life, while 5–20% suffices to ameliorate the bleeding disorder. A paper by Guan et al (2016 ) in this issue of EMBO Molecular Medicine reports on the direct CRISPR s/Cas9‐mediated correction in the liver of a hemophilia‐causing point mutation in FIX .
Collapse
Affiliation(s)
- Tuan Huy Nguyen
- INSERMUMR 1064‐Center for Research in Transplantation and ImmunologyNantesFrance
- ITUNCHU NantesNantesFrance
- Faculté de MédecineUniversité de NantesNantesFrance
| | - Ignacio Anegon
- INSERMUMR 1064‐Center for Research in Transplantation and ImmunologyNantesFrance
- ITUNCHU NantesNantesFrance
- Faculté de MédecineUniversité de NantesNantesFrance
| |
Collapse
|
62
|
Chenouard V, Brusselle L, Heslan JM, Remy S, Ménoret S, Usal C, Ouisse LH, NGuyen TH, Anegon I, Tesson L. A Rapid and Cost-Effective Method for Genotyping Genome-Edited Animals: A Heteroduplex Mobility Assay Using Microfluidic Capillary Electrophoresis. J Genet Genomics 2016; 43:341-8. [DOI: 10.1016/j.jgg.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
|
63
|
New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016; 86:160-9. [PMID: 27155732 DOI: 10.1016/j.theriogenology.2016.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world.
Collapse
|
64
|
Nakao H, Harada T, Nakao K, Kiyonari H, Inoue K, Furuta Y, Aiba A. A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis 2016; 54:65-77. [PMID: 26713866 DOI: 10.1002/dvg.22914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023]
Abstract
The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock-in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge. Here the generation of knock-in mice with successful targeted insertion of large donor DNA elements ranged from 3.0 to 7.1 kb at the ROSA26 locus using the CRISPR/Cas system was achieved. Multiple independent knock-in founder mice were obtained by injection of hCas9 mRNA/sgRNA/donor vector mixtures into the cytoplasm of C57BL/6N zygotes when the injected zygotes were treated with an inhibitor of actin polymerization, cytochalasin. Successful germ line transmission of three of these knock-in alleles was also confirmed. The results suggested that treatment of zygotes with actin polymerization inhibitors following microinjection could be a viable method to facilitate targeted insertion of large DNA elements by the CRISPR/Cas system, enabling targeted knock-in readily attainable in zygotes.
Collapse
Affiliation(s)
- Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takeshi Harada
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan.,Animal Resource Development Unit, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan.,Genetic Engineering Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Kenichi Inoue
- Animal Resource Development Unit, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan.,Genetic Engineering Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| |
Collapse
|