51
|
The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. J Virol 2018; 92:JVI.00465-18. [PMID: 29848585 DOI: 10.1128/jvi.00465-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
The presence of a PDZ binding motif (PBM) in the human papillomavirus (HPV) E6 oncoprotein appears to be a characteristic marker of high oncogenic potential and confers interaction with a number of different cellular PDZ domain-containing substrates. The E6 PBM is also subject to phosphorylation, resulting in inhibition of E6 PDZ binding activity and instead allowing E6 to associate with 14-3-3 proteins. In this study, we analyzed the conditions under which the E6 PBM is phosphorylated. We demonstrate that in normal cycling cells, the levels of E6 phosphorylation are very low. However, following exposure of cells to oxidative stress or the induction of DNA damage, there is a striking increase in the levels of E6 phosphorylation. Depending on the specific stimulus, this phosphorylation of E6 can involve the ATM/ATR pathway and is performed primarily through Chk1, although the Chk2 pathway is also involved indirectly through activation of protein kinase A (PKA). To understand the biological relevance of these phospho-modifications of E6, we analyzed their effects upon the ability of E6 to inhibit p53 transcriptional activity. We show that an intact E6 phospho-acceptor site plays an essential role in the ability of E6 to inhibit p53 transcriptional activity on a subset of p53-responsive promoters in a manner that is independent of E6's ability to direct p53 degradation. These results are, to our knowledge, the first example of a DNA damage response controlling PBM-PDZ recognition. This study also provides links between the DNA damage response, the regulation of E6 PBM function, and the inhibition of p53 activity and begins to explain how HPV-infected cells remain within the cell cycle, despite activation of DNA damage response pathways during productive virus infections.IMPORTANCE The cancer-causing HPV E6 oncoproteins all possess a PDZ binding motif at their extreme carboxy termini. Depending upon whether this motif is phosphorylated, E6 can recognize PDZ domain-containing proteins or members of the 14-3-3 family of proteins. We show here that DNA damage response pathways directly signal to the E6 PBM, resulting in Chk1- and Chk2-driven phosphorylation. This phosphorylation is particularly pronounced following treatment of cells with a variety of different chemotherapeutic drugs. A direct functional consequence of this signaling is to confer an enhanced ability upon E6 to inhibit p53 transcriptional activity in a proteasome-independent but phosphorylation-dependent manner. These results are the first example of DNA damage signaling pathways regulating PBM-PDZ interactions and provide the mechanistic link between E6 PBM function and perturbation of p53 activity.
Collapse
|
52
|
Einarsdottir BO, Karlsson J, Söderberg EMV, Lindberg MF, Funck-Brentano E, Jespersen H, Brynjolfsson SF, Olofsson Bagge R, Carstam L, Scobie M, Koolmeister T, Wallner O, Stierner U, Berglund UW, Ny L, Nilsson LM, Larsson E, Helleday T, Nilsson JA. A patient-derived xenograft pre-clinical trial reveals treatment responses and a resistance mechanism to karonudib in metastatic melanoma. Cell Death Dis 2018; 9:810. [PMID: 30042422 PMCID: PMC6057880 DOI: 10.1038/s41419-018-0865-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Karonudib (TH1579) is a novel compound that exerts anti-tumor activities and has recently entered phase I clinical testing. The aim of this study was to conduct a pre-clinical trial in patient-derived xenografts to identify the possible biomarkers of response or resistance that could guide inclusion of patients suffering from metastatic melanoma in phase II clinical trials. Patient-derived xenografts from 31 melanoma patients with metastatic disease were treated with karonudib or a vehicle for 18 days. Treatment responses were followed by measuring tumor sizes, and the models were categorized in the response groups. Tumors were harvested and processed for RNA sequencing and protein analysis. To investigate the effect of karonudib on T-cell-mediated anti-tumor activities, tumor-infiltrating T cells were injected in mice carrying autologous tumors and the mice treated with karonudib. We show that karonudib has heterogeneous anti-tumor effect on metastatic melanoma. Thus, based on the treatment responses, we could divide the 31 patient-derived xenografts in three treatment groups: progression group (32%), suppression group (42%), and regression group (26%). Furthermore, we show that karonudib has anti-tumor effect, irrespective of major melanoma driver mutations. Also, we identify high expression of ABCB1, which codes for p-gp pumps as a resistance biomarker. Finally, we show that karonudib treatment does not hamper T-cell-mediated anti-tumor responses. These findings can be used to guide future use of karonudib in clinical use with a potential approach as precision medicine.
Collapse
Affiliation(s)
- Berglind O Einarsdottir
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joakim Karlsson
- Department of Medical Chemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elin M V Söderberg
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias F Lindberg
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisa Funck-Brentano
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Jespersen
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Siggeir F Brynjolfsson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olof Wallner
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Stierner
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Ny
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lisa M Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Chemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
53
|
Arczewska KD, Stachurska A, Wojewódzka M, Karpińska K, Kruszewski M, Nilsen H, Czarnocka B. hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair (Amst) 2018; 69:53-62. [PMID: 30055508 DOI: 10.1016/j.dnarep.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells, including thyroid cancer cells, suffer from oxidative stress damaging multiple cellular targets, such as DNA and the nucleotide pool. The human MutT homologue 1 (hMTH1) controls the oxidative DNA damage load by sanitizing the nucleotide pool from the oxidized DNA precursor, 8-oxodGTP. It has previously been shown that hMTH1 is essential for cancer cell proliferation and survival, therefore hMTH1 inhibition has been proposed as a novel anticancer therapeutic strategy. Here we show that thyroid cancer cells respond to siRNA mediated hMTH1 depletion with increased DNA damage load and moderately reduced proliferation rates, but without detectable apoptosis, cell-cycle arrest or senescence. Importantly, however, hMTH1 depletion significantly reduced migration and invasion potential of the thyroid cancer cells. Accordingly, our results allow us to propose that hMTH1 may be a therapeutic target in thyroid malignancy, especially for controlling metastasis.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Kamila Karpińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Sykehusveien 25, Lørenskog, Norway.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
54
|
Abbas HHK, Alhamoudi KMH, Evans MD, Jones GDD, Foster SS. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good? BMC Cancer 2018; 18:423. [PMID: 29661172 PMCID: PMC5903006 DOI: 10.1186/s12885-018-4332-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Background Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Methods Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. Results MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. Conclusions MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution. Electronic supplementary material The online version of this article (10.1186/s12885-018-4332-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein H K Abbas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.,Department of Pathology and Forensic Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Kheloud M H Alhamoudi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK
| | - Mark D Evans
- Faculty of Health and Life Sciences, De Montfort University, Leicester, Leicestershire, LE1 9BH, UK
| | - George D D Jones
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| | - Steven S Foster
- Department of Genetics and Genome Biology, University of Leicester, Leicester, Leicestershire, LE1 7RH, UK.
| |
Collapse
|
55
|
Rahm F, Viklund J, Trésaugues L, Ellermann M, Giese A, Ericsson U, Forsblom R, Ginman T, Günther J, Hallberg K, Lindström J, Persson LB, Silvander C, Talagas A, Díaz-Sáez L, Fedorov O, Huber KVM, Panagakou I, Siejka P, Gorjánácz M, Bauser M, Andersson M. Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design. J Med Chem 2018; 61:2533-2551. [DOI: 10.1021/acs.jmedchem.7b01884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fredrik Rahm
- Sprint Bioscience AB, Novum, 14157 Huddinge, Sweden
| | | | | | | | - Anja Giese
- Bayer AG, Muellerstrasse 178, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | - Laura Díaz-Sáez
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Kilian V. M. Huber
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Ioanna Panagakou
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Paulina Siejka
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | | | | | | |
Collapse
|
56
|
Kaneko M, Futamura Y, Tsukuda S, Kondoh Y, Sekine T, Hirano H, Fukano K, Ohashi H, Saso W, Morishita R, Matsunaga S, Kawai F, Ryo A, Park SY, Suzuki R, Aizaki H, Ohtani N, Sureau C, Wakita T, Osada H, Watashi K. Chemical array system, a platform to identify novel hepatitis B virus entry inhibitors targeting sodium taurocholate cotransporting polypeptide. Sci Rep 2018; 8:2769. [PMID: 29426822 PMCID: PMC5807303 DOI: 10.1038/s41598-018-20987-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) agents including interferons and nucleos(t)ide analogs efficiently suppress HBV infection. However, as it is difficult to eliminate HBV from chronically infected liver, alternative anti-HBV agents targeting a new molecule are urgently needed. In this study, we applied a chemical array to high throughput screening of small molecules that interacted with sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for HBV. From approximately 30,000 compounds, we identified 74 candidates for NTCP interactants, and five out of these were shown to inhibit HBV infection in cell culture. One of such compound, NPD8716, a coumarin derivative, interacted with NTCP and inhibited HBV infection without causing cytotoxicity. Consistent with its NTCP interaction capacity, this compound was shown to block viral attachment to host hepatocytes. NPD8716 also prevented the infection with hepatitis D virus, but not hepatitis C virus, in agreement with NPD8716 specifically inhibiting NTCP-mediated infection. Analysis of derivative compounds showed that the anti-HBV activity of compounds was apparently correlated with the affinity to NTCP and the capacity to impair NTCP-mediated bile acid uptake. These results are the first to show that the chemical array technology represents a powerful platform to identify novel viral entry inhibitors.
Collapse
Affiliation(s)
- Manabu Kaneko
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies (CLST), Wako, 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan
| | - Tomomi Sekine
- Bio-Active Compounds Discovery Research Unit, RIKEN CSRS, Wako, 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, 351-0198, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, 204-8588, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd, Matsuyama, 790-8577, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0027, Japan
| | - Fumihiro Kawai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0027, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Naoko Ohtani
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris, 75015, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, 351-0198, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan. .,Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan. .,CREST, JST, Saitama, 332-0012, Japan.
| |
Collapse
|
57
|
Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidock M, Hamrén B, Johnson A, March RE, Matcham J, Mettetal J, Nicholls DJ, Platz S, Rees S, Snowden MA, Pangalos MN. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov 2018; 17:167-181. [DOI: 10.1038/nrd.2017.244] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
58
|
Narwal M, Jemth AS, Gustafsson R, Almlöf I, Warpman Berglund U, Helleday T, Stenmark P. Crystal Structures and Inhibitor Interactions of Mouse and Dog MTH1 Reveal Species-Specific Differences in Affinity. Biochemistry 2018; 57:593-603. [PMID: 29281266 DOI: 10.1021/acs.biochem.7b01163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MTH1 hydrolyzes oxidized nucleoside triphosphates, thereby sanitizing the nucleotide pool from oxidative damage. This prevents incorporation of damaged nucleotides into DNA, which otherwise would lead to mutations and cell death. The high level of reactive oxygen species in cancer cells leads to a higher level of oxidized nucleotides in cancer cells compared to that in nonmalignant cells, making cancer cells more dependent on MTH1 for survival. The possibility of specifically targeting cancer cells by inhibiting MTH1 has highlighted MTH1 as a promising cancer target. The progression of MTH1 inhibitors into the clinic requires animal studies, and knowledge of species differences in the potency of inhibitors is vitally important. We here show that the human MTH1 inhibitor TH588 is approximately 20-fold less potent with respect to inhibition of mouse MTH1 than the human, rat, pig, and dog MTH1 proteins are. We present the crystal structures of mouse MTH1 in complex with TH588 and dog MTH1 and elucidate the structural and sequence basis for the observed difference in affinity for TH588. We identify amino acid residue 116 in MTH1 as an important determinant of TH588 affinity. Furthermore, we present the structure of mouse MTH1 in complex with the substrate 8-oxo-dGTP. The crystal structures provide insight into the high degree of structural conservation between MTH1 proteins from different organisms and provide a detailed view of interactions between MTH1 and the inhibitor, revealing that minute structural differences can have a large impact on affinity and specificity.
Collapse
Affiliation(s)
- Mohit Narwal
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , S-171 21 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
59
|
Ikejiri F, Honma Y, Kasukabe T, Urano T, Suzumiya J. TH588, an MTH1 inhibitor, enhances phenethyl isothiocyanate-induced growth inhibition in pancreatic cancer cells. Oncol Lett 2017; 15:3240-3244. [PMID: 29435064 DOI: 10.3892/ol.2017.7713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy and radiotherapy are the most common approaches in cancer therapy. They may kill cancer cells through the generation of high levels of reactive oxygen species (ROS), which leads to oxidative DNA damage. However, tumor resistance to ROS is a problem in cancer therapy. MTH1 sanitizes oxidized dNTP pools to prevent the incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, cancer cells require MTH1 activity to avoid the incorporation of oxidized dNTPs, which would result in DNA damage and cell death. By targeting a redox-adaptation mechanism, MTH1 inhibition represents a novel therapeutic strategy against cancer. However, recent reports have indicated that growth inhibition by MTH1 inhibitors may be due to off-target cytotoxic effects. TH588, one of the first-in-class MTH1 inhibitors, kills cancer cells by an off-target effect. However, a low concentration of TH588 may effectively inhibit MTH1 activity without inhibiting cell proliferation. Phenethyl isothiocyanate (PEITC) is a dietary anticarcinogenic compound and an inducer of ROS. In the present study, it has been demonstrated that combined treatment with PEITC and TH588 effectively inhibited the growth of pancreatic cancer MIAPaCa-2 and Panc-1 cells. The antioxidant N-acetylcysteine negated this synergistic growth inhibition. PEITC and TH588 cooperatively induced the formation of 8-oxo-deoxyguanine in nuclei and pH2AX foci, a marker of DNA damage. However, the combined effects are not associated with MTH1 mRNA expression in several cancer cell lines, suggesting that the possibility of an off-target effect of TH588 cannot be eliminated. These results suggest that the combination of PEITC and TH588 has potential as a novel therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Fumiyoshi Ikejiri
- The Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Yoshio Honma
- The Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan.,The Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takashi Kasukabe
- The Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takeshi Urano
- The Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Junji Suzumiya
- The Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
60
|
MutT-related proteins are novel progression and prognostic markers for colorectal cancer. Oncotarget 2017; 8:105714-105726. [PMID: 29285286 PMCID: PMC5739673 DOI: 10.18632/oncotarget.22393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023] Open
Abstract
Background MutT-related proteins, including MTH1, MTH2, MTH3 and NUDT5, can effectively degrade 8-oxoGua-containing nucleotides. The MTH1 expression is elevated in many types of human tumors and MTH1 overexpression correlates with the tumor pathological stage and poor prognosis. However, the expression of other MutT-related proteins in human cancers remains unknown. The present study systematically investigated the expression of MTH1, MTH2, MTH3 and NUDT5 in human colorectal cancer to establish its clinical significance. Methods Amounts of MutT-related mRNA and protein in CRC cell lines were assessed by qRT-PCR and Western blotting, respectively. Furthermore, the MutT-related protein expression was evaluated by immunohistochemical staining of tissue microarrays containing 87 paired CRC tissues and by Western blotting of 44 CRC tissue samples. Finally, the effect of knockdown of MutT-related proteins on CRC cell proliferation was investigated. Results The expression of MTH1, MTH2, MTH3 and NUDT5 was significantly higher in CRC cells and CRC tissues than normal cells and tissues, and this phenomenon was significantly associated with AJCC stage and lymph node metastasis of CRC specimens. CRC patients with high expression of MTH1, MTH2 or NUDT5 had an extremely poor overall survival after surgical resection. Notably, NUDT5 was an independent prognostic factor of CRC patients. We found that knockdown of MutT-related proteins inhibited CRC cell proliferation. Conclusions We showed for the first time that MutT-related proteins play an important role in CRC progression and prognosis. Further investigations are needed to elucidate the role of these proteins in CRC progression and their potential use for therapeutic targets.
Collapse
|
61
|
Geneste CC, Massey AJ. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411. SLAS DISCOVERY 2017; 23:144-153. [PMID: 29048945 DOI: 10.1177/2472555217738534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC50 values were 43- and 19-fold greater than the autophosphorylation IC50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.
Collapse
|
62
|
Duan J, Zhang H, Li S, Wang X, Yang H, Jiao S, Ba Y. The role of miR-485-5p/NUDT1 axis in gastric cancer. Cancer Cell Int 2017; 17:92. [PMID: 29075149 PMCID: PMC5645910 DOI: 10.1186/s12935-017-0462-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Cancers can survive the oxidative conditions by upregulating nucleoside diphosphate linked moiety X-type motif 1 (NUDT1). However, the mechanisms underlying gastric carcinogenesis and the dys-regulation of NUDT1 in gastric cancer (GC) remain unknown. Our study aimed to explore the role of NUDT1 and its regulatory pathway by miR-485-5p in GC. Methods Gastric cancer tissues and paired noncancerous tissue samples were collected, and the expression level of NUDT1 and miR-485-5p were detected. Two cohorts from The Cancer Genome Atlas (TCGA) database and another cohort from the Tianjin Medical University Cancer Institute and Hospital were further analyzed. Luciferase assays were performed, and the effects of the miR-485-5p/NUDT1 axis on GC cells and normal gastric cells were determined by subsequent experiments. Results We found that the expression of miR-485-5p was clearly repressed in GC tissues, while NUDT1 expression level was dramatically increased. The overexpression of NUDT1 correlated closely with an increase in invasive depth and a decrease in survival in GC patients. MiR-485-5p could directly bind to the 3′UTR of NUDT1 mRNA and induce its degradation, thus down-regulate its expression. The miR-485-5p/NUDT1 axis could lead to the changes of 8-oxo-dG in GC cells. And the increased expression of NUDT1 resulting from the downregulation of miR-485-5p could accelerate cell proliferation and metastasis in GC. However, the growth and migration of normal gastric cells did not depend on the protection of NUDT1, while the overexpression of NUDT1 could promote malignant transition in normal gastric cells. Conclusions MiR-485-5p acts as a tumor suppressor by targeting NUDT1 in GC. The miR-485-5p/NUDT1 axis is involved in the processes of cell growth and cell motility and plays a key role in the tumorigenesis of GC. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0462-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjing Duan
- Medical College, Nankai University, Weijin Road 94, Tianjin, 300071 China.,Department of Oncology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
| | - Haiyang Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Xinyi Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Haiou Yang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| | - Shunchang Jiao
- Medical College, Nankai University, Weijin Road 94, Tianjin, 300071 China.,Department of Oncology, Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853 China
| | - Yi Ba
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huan hu xi Road 18, Tianjin, 300060 China
| |
Collapse
|
63
|
Rudling A, Gustafsson R, Almlöf I, Homan E, Scobie M, Warpman Berglund U, Helleday T, Stenmark P, Carlsson J. Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. J Med Chem 2017; 60:8160-8169. [PMID: 28929756 DOI: 10.1021/acs.jmedchem.7b01006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragment-based lead discovery has emerged as a leading drug development strategy for novel therapeutic targets. Although fragment-based drug discovery benefits immensely from access to atomic-resolution information, structure-based virtual screening has rarely been used to drive fragment discovery and optimization. Here, molecular docking of 0.3 million fragments to a crystal structure of cancer target MTH1 was performed. Twenty-two predicted fragment ligands, for which analogs could be acquired commercially, were experimentally evaluated. Five fragments inhibited MTH1 with IC50 values ranging from 6 to 79 μM. Structure-based optimization guided by predicted binding modes and analogs from commercial chemical libraries yielded nanomolar inhibitors. Subsequently solved crystal structures confirmed binding modes predicted by docking for three scaffolds. Structure-guided exploration of commercial chemical space using molecular docking gives access to fragment libraries that are several orders of magnitude larger than those screened experimentally and can enable efficient optimization of hits to potent leads.
Collapse
Affiliation(s)
- Axel Rudling
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Box 1031, SE-171 21 Solna, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Box 1031, SE-171 21 Solna, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Box 1031, SE-171 21 Solna, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Box 1031, SE-171 21 Solna, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Box 1031, SE-171 21 Solna, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, BMC, Uppsala University , Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
64
|
Gao Y, Zhu L, Guo J, Yuan T, Wang L, Li H, Chen L. Farnesyl phenolic enantiomers as natural MTH1 inhibitors from Ganoderma sinense. Oncotarget 2017; 8:95865-95879. [PMID: 29221173 PMCID: PMC5707067 DOI: 10.18632/oncotarget.21430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer cells are more addictive to MTH1 than normal cells because of their dysfunctional redox regulations. MTH1 plays an important role to maintain tumor cell survival, while it is not indispensable for the growth of normal cells. Farnesyl phenols having a coumaroyl substitution are rather uncommon in nature. Eight farnesyl phenolic compounds with such substituent moiety (1-8), including six new ones, ganosinensols E-J (1-6) were isolated from the 95% EtOH extract of the fruiting bodies of Ganoderma sinense. Four pairs of enantiomers 1/2, 3/4, 5/6 and 7/8 were resolved by HPLC using a Daicel Chiralpak IE column. Their structures were elucidated from extensive spectroscopic analyses and comparison with literature data. The absolute configurations of C-1' in 1-6 were assigned by ECD spectra. These compounds were predicted to have high binding affinity to MTH1 through virtual ligand screening. The enzyme inhibition experiments and cell-based assays confirmed their inhibitory effects on MTH1. Furthermore, siRNA knockdown experiments and the cellular thermal shift assay (CETSA) confirmed that the farnesyl phenolic enantiomers specifically bound with MTH1 in intact cells. Meanwhile, the low cytotoxicity of 1-8 on normal human cells further verified their good selectivity and specificity to MTH1. These active structures are expected to be potential anti-cancer lead compounds.
Collapse
Affiliation(s)
- Ya Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lihan Zhu
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ting Yuan
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Liqing Wang
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hua Li
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lixia Chen
- Wuya College of Innovation, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
65
|
Wang JY, Liu GZ, Wilmott JS, La T, Feng YC, Yari H, Yan XG, Thorne RF, Scolyer RA, Zhang XD, Jin L. Skp2-Mediated Stabilization of MTH1 Promotes Survival of Melanoma Cells upon Oxidative Stress. Cancer Res 2017; 77:6226-6239. [PMID: 28947420 DOI: 10.1158/0008-5472.can-17-1965] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
MTH1 helps prevent misincorporation of ROS-damaged dNTPs into genomic DNA; however, there is little understanding of how MTH1 itself is regulated. Here, we report that MTH1 is regulated by polyubiquitination mediated by the E3 ligase Skp2. In melanoma cells, MTH1 was upregulated commonly mainly due to its improved stability caused by K63-linked polyubiquitination. Although Skp2 along with other components of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex was physically associated with MTH1, blocking the SCF function ablated MTH1 ubiquitination and expression. Conversely, overexpressing Skp2-elevated levels of MTH1 associated with an increase in its K63-linked ubiquitination. In melanoma cell lines and patient specimens, we observed a positive correlation of Skp2 and MTH1 expression. Mechanistic investigations showed that Skp2 limited DNA damage and apoptosis triggered by oxidative stress and that MAPK upregulated Skp2 and MTH1 to render cells more resistant to such stress. Collectively, our findings identify Skp2-mediated K63-linked polyubiquitination as a critical regulatory mechanism responsible for MTH1 upregulation in melanoma, with potential implications to target the MAPK/Skp2/MTH1 pathway to improve its treatment. Cancer Res; 77(22); 6226-39. ©2017 AACR.
Collapse
Affiliation(s)
- Jia Yu Wang
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Guang Zhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China
| | - James S Wilmott
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China.,School of Environmental and Life Sciences, The University of Newcastle, New South Wales, Australia
| | - Richard A Scolyer
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China. .,School of Biomedical Sciences and Pharmacy, The University of Newcastle, New South Wales, Australia
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital, Henan, China. .,School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
66
|
Dai X, Guo G, Zou P, Cui R, Chen W, Chen X, Yin C, He W, Vinothkumar R, Yang F, Zhang X, Liang G. (S)-crizotinib induces apoptosis in human non-small cell lung cancer cells by activating ROS independent of MTH1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:120. [PMID: 28882182 PMCID: PMC5590185 DOI: 10.1186/s13046-017-0584-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. Targeted therapy has produced unprecedented outcomes in patients with NSCLC as a number of oncogenic drivers have been found. Crizotinib, a selective small-molecule inhibitor, has been widely used for the treatment of NSCLC patients with ALK gene rearrangements. A recent study has also shown that (S)-enantiomer of crizotinib exhibits anticancer activity by targeting the protein mutT homologue (MTH1). Since this discovery, contradictory studies have cast a doubt on MTH1 as a therapeutic target of (S)-crizotinib. METHODS NCI-H460, H1975, and A549 cells and immunodeficient mice were chosen as a model to study the (S)-crizotinib treatment. The changes induced by (S)-crizotinib treatment in cell viability, apoptosis as well as ROS, and endoplasmic reticulum stress pathway in the cells were analyzed by MTT assay, FACSCalibur, Western blotting, ROS imaging and electron microscopy. RESULTS Here, we report that MTH1 does not affect survival of NSCLC cells. We found that (S)-crizotinib induces lethal endoplasmic reticulum stress (ER) response in cultured NSCLC cells by increasing intracellular levels of reactive oxygen species (ROS). Blockage of ROS production markedly reversed (S)-crizotinib-induced ER stress and cell apoptosis, independent of MTH1. We confirmed these findings in NSCLC xenograft studies and showed that (S)-crizotinib-induced ER stress and cell apoptosis. CONCLUSIONS Our results reveal a novel antitumor mechanism of (S)-crizotinib in NSCLC which involves activation of ROS-dependent ER stress apoptotic pathway and is independent of MTH1 inhibition.
Collapse
Affiliation(s)
- Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guilong Guo
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weiqian Chen
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Changtian Yin
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rajamanickam Vinothkumar
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fan Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohua Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
67
|
Ellermann M, Eheim A, Rahm F, Viklund J, Guenther J, Andersson M, Ericsson U, Forsblom R, Ginman T, Lindström J, Silvander C, Trésaugues L, Giese A, Bunse S, Neuhaus R, Weiske J, Quanz M, Glasauer A, Nowak-Reppel K, Bader B, Irlbacher H, Meyer H, Queisser N, Bauser M, Haegebarth A, Gorjánácz M. Novel Class of Potent and Cellularly Active Inhibitors Devalidates MTH1 as Broad-Spectrum Cancer Target. ACS Chem Biol 2017; 12:1986-1992. [PMID: 28679043 DOI: 10.1021/acschembio.7b00370] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.
Collapse
|
68
|
Blagg J, Workman P. Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell 2017; 32:9-25. [PMID: 28697345 PMCID: PMC5511331 DOI: 10.1016/j.ccell.2017.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Small-molecule chemical probes or tools have become progressively more important in recent years as valuable reagents to investigate fundamental biological mechanisms and processes causing disease, including cancer. Chemical probes have also achieved greater prominence alongside complementary biological reagents for target validation in drug discovery. However, there is evidence of widespread continuing misuse and promulgation of poor-quality and insufficiently selective chemical probes, perpetuating a worrisome and misleading pollution of the scientific literature. We discuss current challenges with the selection and use of chemical probes, and suggest how biologists can and should be more discriminating in the probes they employ.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
69
|
Robke L, Laraia L, Carnero Corrales MA, Konstantinidis G, Muroi M, Richters A, Winzker M, Engbring T, Tomassi S, Watanabe N, Osada H, Rauh D, Waldmann H, Wu YW, Engel J. Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucas Robke
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Luca Laraia
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Marjorie A. Carnero Corrales
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Georgios Konstantinidis
- Chemical Genomics Centre of the Max-Planck-Society; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Makoto Muroi
- Chemical Biology Research Group; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - André Richters
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Michael Winzker
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Tobias Engbring
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Stefano Tomassi
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Bio-Active Compounds Discovery Research Unit; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck-Society; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
70
|
Robke L, Laraia L, Carnero Corrales MA, Konstantinidis G, Muroi M, Richters A, Winzker M, Engbring T, Tomassi S, Watanabe N, Osada H, Rauh D, Waldmann H, Wu YW, Engel J. Phenotypic Identification of a Novel Autophagy Inhibitor Chemotype Targeting Lipid Kinase VPS34. Angew Chem Int Ed Engl 2017; 56:8153-8157. [DOI: 10.1002/anie.201703738] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lucas Robke
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Luca Laraia
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Marjorie A. Carnero Corrales
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Georgios Konstantinidis
- Chemical Genomics Centre of the Max-Planck-Society; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Makoto Muroi
- Chemical Biology Research Group; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - André Richters
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Michael Winzker
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Tobias Engbring
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Stefano Tomassi
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Bio-Active Compounds Discovery Research Unit; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology; RIKEN CSRS; 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology; Department of Chemical Biology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck-Society; Otto-Hahn-Strasse 15 44227 Dortmund Germany
| | - Julian Engel
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
71
|
Nakabeppu Y, Ohta E, Abolhassani N. MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe? Free Radic Biol Med 2017; 107:151-158. [PMID: 27833032 DOI: 10.1016/j.freeradbiomed.2016.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
8-Oxo-7,8-dihydroguanine (GO) can originate as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), an oxidized form of dGTP in the nucleotide pool, or by direct oxidation of guanine base in DNA. Accumulation of GO in cellular genomes can result in mutagenesis or programmed cell death, and is thus minimized by the actions of MutT homolog-1 (MTH1) with 8-oxo-dGTPase, OGG1 with GO DNA glycosylase and MutY homolog (MUTYH) with adenine DNA glycosylase. Studies on Mth1/Ogg1/Mutyh-triple knockout mice demonstrated that the defense systems efficiently minimize GO accumulation in cellular genomes, and thus maintain low incidences of spontaneous mutagenesis and tumorigenesis. Mth1/Ogg1-double knockout mice increased GO accumulation in the genome, but exhibited little susceptibility to spontaneous tumorigenesis, thus revealing that accumulation of GO in cellular genomes induces MUTYH-dependent cell death. Cancer cells are exposed to high oxidative stress levels and accumulate a high level of 8-oxo-dGTP in their nucleotide pools; cancer cells consequently express increased levels of MTH1 to eliminate 8-oxo-dGTP, indicating that increased expression of MTH1 in cancer cells may be detrimental for cancer patients. Mth1/Ogg1-double knockout mice are highly vulnerable to neurodegeneration under oxidative conditions, while transgenic expression of human MTH1 efficiently prevents neurodegeneration by avoiding GO accumulation in mitochondrial genomes of neurons and/or nuclear genomes of microglia, indicating that increased expression of MTH1 may be beneficial for neuronal tissues.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Eiko Ohta
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
72
|
The MTH1 inhibitor TH588 demonstrates anti-tumoral effects alone and in combination with everolimus, 5-FU and gamma-irradiation in neuroendocrine tumor cells. PLoS One 2017; 12:e0178375. [PMID: 28542590 PMCID: PMC5444855 DOI: 10.1371/journal.pone.0178375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
Modulation of the redox system in cancer cells has been considered a promising target for anti-cancer therapy. The novel MTH1 inhibitor TH588 proved tremendous potential in terms of cancer cell eradication, yet its specificity has been questioned by recent reports, indicating that TH588 may also induce cancer cell death by alternative mechanisms than MTH1 inhibition. Here we used a panel of heterogeneous neuroendocrine tumor cells in order to assess cellular mechanisms and molecular signaling pathways implicated in the effects of TH588 alone as well as dual-targeting approaches combining TH588 with everolimus, cytotoxic 5-fluorouracil or γ-irradiation. Our results reflect that TH588 alone efficiently decreased the survival of neuroendocrine cancer cells by PI3K-Akt-mTOR axis downregulation, increased apoptosis and oxidative stress. However, in the dual-targeting approaches cell survival was further decreased due to an even stronger downregulation of the PI3K-Akt-mTOR axis and augmentation of apoptosis but not oxidative stress. Furthermore, we could attribute TH588 chemo- and radio-sensitizing properties. Collectively our data not only provide insights into how TH588 exactly kills cancer cells but also depict novel perspectives for combinatorial treatment approaches encompassing TH588.
Collapse
|
73
|
Taniguchi Y. Development of Damaged Nucleoside Mimics for Inhibition of Their Repair Enzymes. YAKUGAKU ZASSHI 2017; 137:293-300. [PMID: 28250323 DOI: 10.1248/yakushi.16-00231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
8-Oxo-2'-deoxyguanosine (8-oxo-dG) is a representative of nucleoside damage, which is generated by the reaction of the 8 position of dG with reactive oxygen species. Abundant 8-oxo-dG in DNA exhibits genotoxicity and has been linked to aging and disease, such as cancer. As the metabolism of cancer cells is much faster than that of normal cells, the oxidized product of the oligonucleotides and the nucleotide pool produces 8-oxo-dG and 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dGTP), respectively. Human oxoguanine glycosylase (hOGG1) shows base excision activity for 8-oxo-dG in duplex DNA. On the other hand, human mutT homologue protein (hMTH1, also known as NUDT1) is important for oxidized nucleotide removal including 8-oxo-dGTP, and it is reported that the presence of hMTH1 is not essential for normal cells but is required for the survival of cancer cells. Therefore, we designed and synthesized 8-halogenated 7-deaza-2'-deoxyguanosine triphosphate (8-halo-7-deaza-dGTP) derivatives as mimics of 8-oxo-dGTP in order to interact with hMTH1. The 8-halo-7-deaza-dGTP derivatives were poor substrates for but strong binders to hMTH1. Interestingly, they exhibited strong competitive inhibition of hMTH1 in the hydrolysis of 8-oxo-dGTP. This inhibitory effect is caused by the slower rate of hydrolysis due to possible small enzyme structural changes. Although the detailed inhibition mechanism of the hydrolysis activity of hMTH1 is unknown, this result is the first to demonstrate the potential of nucleoside triphosphate derivatives as antitumor agents.
Collapse
|
74
|
Samaranayake GJ, Huynh M, Rai P. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers (Basel) 2017; 9:cancers9050047. [PMID: 28481306 PMCID: PMC5447957 DOI: 10.3390/cancers9050047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/26/2022] Open
Abstract
Many tumors sustain elevated levels of reactive oxygen species (ROS), which drive oncogenic signaling. However, ROS can also trigger anti-tumor responses, such as cell death or senescence, through induction of oxidative stress and concomitant DNA damage. To circumvent the adverse consequences of elevated ROS levels, many tumors develop adaptive responses, such as enhanced redox-protective or oxidatively-generated damage repair pathways. Targeting these enhanced oxidative stress-protective mechanisms is likely to be both therapeutically effective and highly specific to cancer, as normal cells are less reliant on such mechanisms. In this review, we discuss one such stress-protective protein human MutT Homolog1 (MTH1), an enzyme that eliminates 8-oxo-7,8-dihydro-2’-deoxyguanosine triphosphate (8-oxodGTP) through its pyrophosphatase activity, and is found to be elevated in many cancers. Our studies, and subsequently those of others, identified MTH1 inhibition as an effective tumor-suppressive strategy. However, recent studies with the first wave of MTH1 inhibitors have produced conflicting results regarding their cytotoxicity in cancer cells and have led to questions regarding the validity of MTH1 as a chemotherapeutic target. To address the proverbial "elephant in the room" as to whether MTH1 is a bona fide chemotherapeutic target, we provide an overview of MTH1 function in the context of tumor biology, summarize the current literature on MTH1 inhibitors, and discuss the molecular contexts likely required for its efficacy as a therapeutic target.
Collapse
Affiliation(s)
- Govindi J Samaranayake
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami, Miami, FL 33136, USA.
| | - Mai Huynh
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33146, USA.
| | - Priyamvada Rai
- Department of Medicine/Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
75
|
|
76
|
Understanding the molecular mechanism for the differential inhibitory activities of compounds against MTH1. Sci Rep 2017; 7:40557. [PMID: 28074893 PMCID: PMC5225434 DOI: 10.1038/srep40557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
MTH1 can hydrolyze oxidized nucleotides and is required for cancer survival. The IC50 values were 0.8 nM for TH287 with a methyl substitution, 5.0 nM for TH588 with a cyclopropyl substitution, and 2.1 μM for TH650 with an oxetanyl substitution. Thus, it is very significant to understand inhibitory mechanisms of these structurally similar compounds against MTH1 and influences of the substituent on the bioactivities. Our MD researches indicate that TH287 maintains significant hydrogen bonds with Asn33 and Asp119, stabilizes the binding site, and induces MTH1 adopt a closed motion, leading to a high inhibitory activity. When bound with TH588, the binding site can be partially stabilized and take a semi-closed state, which is because the cyclopropyl group in TH588 has larger steric hindrance than a methyl group in TH287. So TH588 has a slightly reduced inhibitory activity compared to TH287. TH650 induces greater conformation fluctuations than TH588 and the binding site adopts an opening state, which is caused by the large bulk of oxetanyl group and the interference of solvent on the oxetanyl substituent, leading to the lowest inhibitory activity. Thus, the inhibitory activity follows a TH287 > TH588 > TH650 trend, which well matches with the experimental finding.
Collapse
|
77
|
Kumar A, Kawamura T, Kawatani M, Osada H, Zhang KYJ. Identification and structure-activity relationship of purine derivatives as novel MTH1 inhibitors. Chem Biol Drug Des 2016; 89:862-869. [PMID: 27863017 DOI: 10.1111/cbdd.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
The human mutT homolog-1 (MTH1) protein prevents the incorporation of oxidized nucleotides such as 2-OH-dATP and 8-oxo-dGTP during DNA replication by hydrolyzing them into their corresponding monophosphates. It was found previously that cancer cells could tolerate oxidative stress due to this enzymatic activity of MTH1 and its inhibition could be a promising approach to treat several types of cancer. This finding has been challenged recently with increasing line of evidence suggesting that the cancer cell-killing effects of MTH1 inhibitors may be related to their engagement of off-targets. We have previously reported a few purine-based MTH1 inhibitors that enabled us to elucidate the dispensability of MTH1 in cancer cell survival. Here, we provide a detailed process of the identification of purine-based MTH1 inhibitors. Several new compounds with potency in the submicromolar range are disclosed. Furthermore, the structure-activity relationship and associated binding mode prediction using molecular docking have provided insights for the development of highly potent MTH1 inhibitors.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| |
Collapse
|
78
|
Warpman Berglund U, Sanjiv K, Gad H, Kalderén C, Koolmeister T, Pham T, Gokturk C, Jafari R, Maddalo G, Seashore-Ludlow B, Chernobrovkin A, Manoilov A, Pateras IS, Rasti A, Jemth AS, Almlöf I, Loseva O, Visnes T, Einarsdottir BO, Gaugaz FZ, Saleh A, Platzack B, Wallner OA, Vallin KSA, Henriksson M, Wakchaure P, Borhade S, Herr P, Kallberg Y, Baranczewski P, Homan EJ, Wiita E, Nagpal V, Meijer T, Schipper N, Rudd SG, Bräutigam L, Lindqvist A, Filppula A, Lee TC, Artursson P, Nilsson JA, Gorgoulis VG, Lehtiö J, Zubarev RA, Scobie M, Helleday T. Validation and development of MTH1 inhibitors for treatment of cancer. Ann Oncol 2016; 27:2275-2283. [PMID: 27827301 DOI: 10.1093/annonc/mdw429] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. MATERIAL AND METHODS Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. RESULTS Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. CONCLUSION We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.
Collapse
Affiliation(s)
- U Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - K Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - H Gad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - C Kalderén
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Koolmeister
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Pham
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - C Gokturk
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - R Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - G Maddalo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - B Seashore-Ludlow
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A Chernobrovkin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Manoilov
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - I S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Rasti
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A-S Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - I Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - O Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Visnes
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - B O Einarsdottir
- Sahlgrenska Translational Melanoma Group (SATMEG), Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg
| | - F Z Gaugaz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,Department of Pharmacy and
| | - A Saleh
- Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - B Platzack
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | - O A Wallner
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - K S A Vallin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - M Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - P Wakchaure
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - S Borhade
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - P Herr
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - Y Kallberg
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm
| | - P Baranczewski
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - E J Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - E Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - V Nagpal
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,SP Process Development, Södertälje, Sweden
| | - T Meijer
- SP Process Development, Södertälje, Sweden
| | - N Schipper
- SP Process Development, Södertälje, Sweden
| | - S G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - L Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A Lindqvist
- Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - A Filppula
- Uppsala Drug Optimisation and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - T-C Lee
- Institute of biomedical sciences, Academia Sinica, Taipei-115, Taiwan
| | - P Artursson
- Department of Pharmacy and.,Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden.,Uppsala Drug Optimisation and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - J A Nilsson
- Sahlgrenska Translational Melanoma Group (SATMEG), Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg
| | - V G Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - J Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - R A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - M Scobie
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| |
Collapse
|
79
|
Verne SH, Perper M, Magno RJ, Eber AE, Aldahan AS, Al-Harbi M, Nouri K. Cells to Surgery Quiz: November 2016. J Invest Dermatol 2016; 136:e117. [PMID: 30477673 DOI: 10.1016/j.jid.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sebastian H Verne
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marina Perper
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert J Magno
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ariel E Eber
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adam S Aldahan
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mana Al-Harbi
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Keyvan Nouri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
80
|
Wang JY, Jin L, Yan XG, Sherwin S, Farrelly M, Zhang YY, Liu F, Wang CY, Guo ST, Yari H, La T, McFarlane J, Lei FX, Tabatabaee H, Chen JZ, Croft A, Jiang CC, Zhang XD. Reactive Oxygen Species Dictate the Apoptotic Response of Melanoma Cells to TH588. J Invest Dermatol 2016; 136:2277-2286. [DOI: 10.1016/j.jid.2016.06.625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
|