51
|
Lozano-Sepúlveda SA, Rincón-Sanchez AR, Rivas-Estilla AM. Antioxidants benefits in hepatitis C infection in the new DAAs era. Ann Hepatol 2020; 18:410-415. [PMID: 31122787 DOI: 10.1016/j.aohep.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/04/2023]
Abstract
Some of the evidence on whether antioxidant supplements are effective in treatment of liver diseases is contradictory. Here we perform a descriptive analysis of the available data in vivo and in vitro of the possible antiviral action and controversy of several antioxidant molecules against HCV.
Collapse
Affiliation(s)
- Sonia A Lozano-Sepúlveda
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. Jose Eluterio Gonzalez", Department of Biochemistry and Molecular Medicine, Monterrey, Nuevo Leon, Mexico
| | - Ana R Rincón-Sanchez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Ana M Rivas-Estilla
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. Jose Eluterio Gonzalez", Department of Biochemistry and Molecular Medicine, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
52
|
Huang F, Li Y, Leung ELH, Liu X, Liu K, Wang Q, Lan Y, Li X, Yu H, Cui L, Luo H, Luo L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res 2020; 158:104929. [PMID: 32442720 PMCID: PMC7237953 DOI: 10.1016/j.phrs.2020.104929] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
The epidemic of pneumonia (COVID-19) caused by novel coronavirus (SARS-CoV-2) infection has been listed as a public health emergency of international concern by the World Health Organization (WHO), and its harm degree is defined as a global "pandemic". At present, the efforts of various countries focus on the rapid diagnosis and isolation of patients, as well as to find a treatment that can combat the most serious impact of the disease. The number of reported COVID-19 virus infections is still increasing. Unfortunately, no drugs or vaccines have been approved for the treatment of human coronaviruses, but there is an urgent need for in-depth research on emerging human infectious coronaviruses. Clarification transmission routes and pathogenic mechanisms, and identification of potential drug treatment targets will promote the development of effective prevention and treatment measures. In the absence of confirmed effective treatments, due to public health emergencies, it is essential to study the possible effects of existing approved antivirals drugs or Chinese herbal medicines for SARS-CoV-2. This review summarizes the epidemiological characteristics, pathogenesis, virus structure and targeting strategies of COVID-19. Meanwhile, this review also focus on the re-purposing of clinically approved drugs and Chinese herbal medicines that may be used to treat COVID-19 and provide new ideas for the discovery of small molecular compounds with potential therapeutic effects on novel COVID-19.
Collapse
Affiliation(s)
- Fangfang Huang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ying Li
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Xiaohua Liu
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Kaifeng Liu
- The First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Qu Wang
- The First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yongqi Lan
- The First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiaoling Li
- Animal Experiment Center of Guangdong Medical University, Zhanjiang, 524023, China
| | - Haibing Yu
- Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
53
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
54
|
Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous south African medicinal plant Rapanea melanophloeos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:346. [PMID: 31791311 PMCID: PMC6888925 DOI: 10.1186/s12906-019-2774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza A virus (IAV) is still a major health threat. The clinical manifestations of this infection are related to immune dysregulation, which causes morbidity and mortality. The usage of traditional medication with immunomodulatory properties against influenza infection has been increased recently. Our previous study showed antiviral activity of quercetin-3-O-α-L-rhamnopyranoside (Q3R) isolated from Rapanea melanophloeos (RM) (L.) Mez (family Myrsinaceae) against H1N1 (A/PR/8/34) infection. This study aimed to confirm the wider range of immunomodulatory effect of Q3R on selective pro- and anti-inflammatory cytokines against IAV in vitro, to evaluate the effect of Q3R on apoptosis pathway in combination with H1N1, also to assess the physical interaction of Q3R with virus glycoproteins and RhoA protein using computational docking. METHODS MDCK cells were exposed to Q3R and 100CCID50/100 μl of H1N1 in combined treatments (co-, pre- and post-penetration treatments). The treatments were tested for the cytokines evaluation at RNA and protein levels by qPCR and ELISA, respectively. In another set of treatment, apoptosis was examined by detecting RhoA GTPase protein and caspase-3 activity. Molecular docking was used as a tool for evaluation of the potential anti-influenza activity of Q3R. RESULTS The expressions of cytokines in both genome and protein levels were significantly affected by Q3R treatment. It was shown that Q3R was much more effective against influenza when it was applied in co-penetration treatment. Q3R in combination with H1N1 increased caspase-3 activity while decreasing RhoA activation. The molecular docking results showed strong binding ability of Q3R with M2 transmembrane, Neuraminidase of 2009 pandemic H1N1, N1 and H1 of PR/8/1934 and Human RhoA proteins, with docking energy of - 10.81, - 10.47, - 9.52, - 9.24 and - 8.78 Kcal/mol, respectively. CONCLUSIONS Quercetin-3-O-α-L-rhamnopyranoside from RM was significantly effective against influenza infection by immunomodulatory properties, affecting the apoptosis pathway and binding ability to viral receptors M2 transmembrane and Neuraminidase of 2009 pandemic H1N1 and human RhoA cellular protein. Further research will focus on detecting the detailed specific mechanism of Q3R in virus-host interactions.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Eskandari
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam, Tanzania
| |
Collapse
|
55
|
Lopes BRP, da Costa MF, Genova Ribeiro A, da Silva TF, Lima CS, Caruso IP, de Araujo GC, Kubo LH, Iacovelli F, Falconi M, Desideri A, de Oliveira J, Regasini LO, de Souza FP, Toledo KA. Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion. Virus Res 2019; 276:197805. [PMID: 31712123 DOI: 10.1016/j.virusres.2019.197805] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.
Collapse
Affiliation(s)
- Bruno Rafael Pereira Lopes
- Universidade Estadual Paulista, UNESP (FCLAssis), Brazil; Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | - Mirian Feliciano da Costa
- Universidade Estadual Paulista, UNESP (FCLAssis), Brazil; Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | - Amanda Genova Ribeiro
- Universidade Estadual Paulista, UNESP (FCLAssis), Brazil; Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | | | | | - Icaro Putinhon Caruso
- Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil; Centro Multiusuário de Inovação Biomolecular (CMIB), Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | - Gabriela Campos de Araujo
- Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil; Centro Multiusuário de Inovação Biomolecular (CMIB), Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | | | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Fatima Pereira de Souza
- Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil; Centro Multiusuário de Inovação Biomolecular (CMIB), Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil
| | - Karina Alves Toledo
- Universidade Estadual Paulista, UNESP (FCLAssis), Brazil; Universidade Estadual Paulista, UNESP IBILCE, São José do Rio Preto, Brazil.
| |
Collapse
|
56
|
Medicinal plants used in management of cancer and other related diseases in Woleu-Ntem province, Gabon. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses 2019; 11:v11070625. [PMID: 31284698 PMCID: PMC6669683 DOI: 10.3390/v11070625] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures; however, to date, there are no reported data on their effects in animal models. In this study, we confirmed the in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in newborn mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.
Collapse
|
58
|
Li F, Ma K, Liu Y, Zhou JJ, Gao X. Characterization of the Cytochrome P450 Gene CYP305A1 of the Cotton Aphid (Hemiptera: Aphididae) and Its Responsive Cis-Elements to Plant Allelochemicals. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1365-1371. [PMID: 30768168 DOI: 10.1093/jee/toz021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Insect cytochrome P450 monooxygenases play an important role in plant allelochemical detoxification. In this study, a full-length gene CYP305A1 of the P450 Clan 2 family was cloned from Aphis gossypii Glover, and its promoter was identified and characterized. The transcript level of CYP305A1 and its promoter activity were significantly induced by two plant allelochemicals, gossypol and 2-tridecanone. Furthermore, the 5'-end promoter region from -810 to +62 bp was demonstrated to be essential for basal transcriptional activity of CYP305A1, and the promoter region from -810 to -581 bp was shown as an essential plant allelochemical responsive element and had a cis-element 5'-CACACTA-3' as the binding site of aryl hydrocarbon receptor. Interestingly, there was an identical overlapping region of 1,094 bp between CYP305A1 promoter and the venom protease gene. When the expression of CYP305A1 gene was knocked down by RNA interference with CYP305A1 dsRNA, the expression of the venom protease gene was decreased. However, the knockdown of the expression of the venom protease gene did not affect the CYP305A1 expression. These results provide important insights for understanding the functions of P450 genes and the regulatory mechanism of P450 gene expressions in the resistance of Aphis gossypii Glover to plant allelochemicals.
Collapse
Affiliation(s)
- Fen Li
- Department of Entomology, China Agricultural University, Beijing, China
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing-Jiang Zhou
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
- College of Plant Science, Jilin University, Changchun, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
59
|
Lee WP, Lan KL, Liao SX, Huang YH, Hou MC, Lan KH. Antiviral effect of saikosaponin B2 in combination with daclatasvir on NS5A resistance-associated substitutions of hepatitis C virus. J Chin Med Assoc 2019; 82:368-374. [PMID: 30920421 DOI: 10.1097/jcma.0000000000000095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The rapid progress in the development of direct-acting antivirals has greatly elevated the cure rate to ≥95% in recent years. However, the high cost of treatment is not affordable to patients in some countries, necessitating the development of less expensive treatment. METHODS We adopted a cell culture-derived HCV system to screen a library of the pure compounds extracted from herbs deposited in the chemical bank of the National Research Institute of Chinese Medicine, Taiwan. RESULTS We found that saikosaponin B2 inhibited viral entry, replication, and translation. Saikosaponin B2 is a plant glycoside and a component of xiao-chai-hu-tang, a traditional Chinese herbal medicine extracted from the roots of Bupleurum falcatum. It also inhibited daclatasvir-resistant mutant strains of HCV, especially in combination with daclatasvir. CONCLUSION Our results may aid the development of a new combination therapy useful for patients with HCV who are intolerant or refractory to the currently available medications, including pegylated interferon and direct-acting antiviral agents.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Keng-Li Lan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
60
|
Li F, Ma K, Chen X, Zhou JJ, Gao X. The regulation of three new members of the cytochrome P450 CYP6 family and their promoters in the cotton aphid Aphis gossypii by plant allelochemicals. PEST MANAGEMENT SCIENCE 2019; 75:152-159. [PMID: 29797492 DOI: 10.1002/ps.5081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The expression of P450 genes in insects can be induced by plant allelochemicals. To understand the induction mechanisms, we measured the expression profiles of three P450 genes and their promoter activities under the induction of plant allelochemicals. RESULTS The inducible expression of CYP6CY19 was the highest among three genes, followed by those of CYP6CY22 and CYP6DA1. The regions from -687 to +586 bp of CYP6DA1, from -666 to +140 bp of CYP6CY19 and from -530 to +218 bp of CYP6CY22 were essential for basal transcriptional activity. The cis-elements for plant allelochemicals induction were identified between -193 and +56 bp of CYP6DA1, between -157 and +140 bp of CYP6CY19 and between -108 and +218 bp of CYP6CY22. These promoter regions were found to contain a potential aryl hydrocarbon receptor element binding site with a conservative sequence motif 5'-C/TAC/ANCA/CA-3'. All these four plant allelochemicals were able to induce the expression of these P450 genes. Tannic acid had a better inductive effect than other three plant allelochemicals. CONCLUSIONS Our study identified the plant allelochemical responsive cis-elements. This provides further research targets aimed at understanding the regulatory mechanisms of P450 genes expression and their interactions with plant allelochemicals in insect pests. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fen Li
- Department of Entomology, China Agricultural University, Beijing, P. R. China
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Jing-Jiang Zhou
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
61
|
Khalil H, Abd El Maksoud AI, Roshdey T, El‐Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol 2018; 91:45-55. [DOI: 10.1002/jmv.25295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Hany Khalil
- Department of Molecular BiologyGenetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat Egypt
| | - Ahmed I. Abd El Maksoud
- Department of Industrial BiotechnologyGenetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat Egypt
| | - Tamer Roshdey
- Department of Molecular BiologyGenetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat Egypt
| | - Samir El‐Masry
- Department of Molecular BiologyGenetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat Egypt
| |
Collapse
|
62
|
Yao C, Xi C, Hu K, Gao W, Cai X, Qin J, Lv S, Du C, Wei Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J 2018; 15:116. [PMID: 30064445 PMCID: PMC6069798 DOI: 10.1186/s12985-018-1023-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/16/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), which is sometimes associated with severe central nervous system disease in children. There is currently no specific medication for EV71 infection. Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to inhibit various viral infections. However, investigation of the anti-EV71 mechanism has not been reported to date. METHODS The anti-EV71 activity of quercetin was evaluated by phenotype screening, determining the cytopathic effect (CPE) and EV71-induced cells apoptosis. The effects on EV71 replication were evaluated further by determining virus yield, viral RNA synthesis and protein expression, respectively. The mechanism of action against EV71 was determined from the effective stage and time-of-addition assays. The possible inhibitory functions of quercetin via viral 2Apro, 3Cpro or 3Dpol were tested. The interaction between EV71 3Cpro and quercetin was predicted and calculated by molecular docking. RESULTS Quercetin inhibited EV71-mediated cytopathogenic effects, reduced EV71 progeny yields, and prevented EV71-induced apoptosis with low cytotoxicity. Investigation of the underlying mechanism of action revealed that quercetin exhibited a preventive effect against EV71 infection and inhibited viral adsorption. Moreover, quercetin mediated its powerful therapeutic effects primarily by blocking the early post-attachment stage of viral infection. Further experiments demonstrated that quercetin potently inhibited the activity of the EV71 protease, 3Cpro, blocking viral replication, but not the activity of the protease, 2Apro, or the RNA polymerase, 3Dpol. Modeling of the molecular binding of the 3Cpro-quercetin complex revealed that quercetin was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. CONCLUSIONS Quercetin can effectively prevent EV71-induced cell injury with low toxicity to host cells. Quercetin may act in more than one way to deter viral infection, exhibiting some preventive and a powerful therapeutic effect against EV71. Further, quercetin potently inhibits EV71 3Cpro activity, thereby blocking EV71 replication.
Collapse
Affiliation(s)
- Chenguang Yao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Caili Xi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Kanghong Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Wa Gao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Xiaofeng Cai
- Merck Stiftungsprofessur Molekulare BiotechnologieInstitut für Molekulare Biowissenschaften Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jinlan Qin
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Shiyun Lv
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Canghao Du
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| | - Yanhong Wei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068 China
| |
Collapse
|
63
|
Arabyan E, Hakobyan A, Kotsinyan A, Karalyan Z, Arakelov V, Arakelov G, Nazaryan K, Simonyan A, Aroutiounian R, Ferreira F, Zakaryan H. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res 2018; 156:128-137. [PMID: 29940214 PMCID: PMC7127377 DOI: 10.1016/j.antiviral.2018.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023]
Abstract
African swine fever virus (ASFV) is the causal agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic consequences in affected countries. Once, neither an anti-viral drug nor an effective vaccines are available, studies on new anti-ASFV molecules are urgently need. Recently, it has been shown that ASFV type II topoisomerase (ASFV-topo II) is inhibited by several fluoroquinolones (bacterial DNA topoisomerase inhibitors), raising the idea that this viral enzyme can be a potential target for drug development against ASFV. Here, we report that genistein hampers ASFV infection at non-cytotoxic concentrations in Vero cells and porcine macrophages. Interestingly, the antiviral activity of this isoflavone, previously described as a topo II poison in eukaryotes, is maximal when it is added to cells at middle-phase of infection (8 hpi), disrupting viral DNA replication, blocking the transcription of late viral genes as well as the synthesis of late viral proteins, reducing viral progeny. Further, the single cell electrophoresis analysis revealed the presence of fragmented ASFV genomes in cells exposed to genistein, suggesting that this molecule also acts as an ASFV-topo II poison and not as a reversible inhibitor. No antiviral effects were detected when genistein was added before or at entry phase of ASFV infection. Molecular docking studies demonstrated that genistein may interact with four residues of the ATP-binding site of ASFV-topo II (Asn-144, Val-146, Gly-147 and Leu-148), showing more binding affinity (−4.62 kcal/mol) than ATP4− (−3.02 kcal/mol), emphasizing the idea that this viral enzyme has an essential role during viral genome replication and can be a good target for drug development against ASFV. Genistein shows potent anti-ASFV activity at non-cytotoxic concentrations. Genistein disrupts viral genome replication and viral protein synthesis. It acts as an ASFV-topo II poison promoting irreversible viral genome breaks. Docking studies revealed that genistein interacts with the ATP-binding site of ASFV-topo II with more affinity than ATP4−.
Collapse
Affiliation(s)
- Erik Arabyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Armen Kotsinyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Zaven Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Vahram Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Russian-Armenian (Slavonic) University, 0051, Yerevan, Armenia
| | - Grigor Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Russian-Armenian (Slavonic) University, 0051, Yerevan, Armenia
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Russian-Armenian (Slavonic) University, 0051, Yerevan, Armenia
| | - Anna Simonyan
- Department of Genetics and Cytology, Yerevan State University, 0025, Yerevan, Armenia
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, 0025, Yerevan, Armenia
| | - Fernando Ferreira
- Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia.
| |
Collapse
|
64
|
Lee WP, Lan KL, Liao SX, Huang YH, Hou MC, Lan KH. Inhibitory Effects of Amentoflavone and Orobol on Daclatasvir-Induced Resistance-Associated Variants of Hepatitis C Virus. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:835-852. [DOI: 10.1142/s0192415x18500441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatitis C virus (HCV) is recognized as a major causative agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Despite rapid progress in the development of direct-acting antivirals (DAA) against HCV infection in recent years, cost-effective antiviral drugs with more affordable prices still need to be developed. In this study, we screened a library of natural compounds to identify natural HCV inhibitors. The library of the pure compounds extracted from Chinese herbs deposited in the chemical bank of National Research Institute of Chinese Medicine (NRICM), Taiwan was screened in the cell culture-derived HCV (HCVcc) system. We identified the flavone or flavan-based compounds amentoflavone, 7,4[Formula: see text]-dihydroxyflavanone, and orobol with the inhibition of viral entry, replication, and translation of the HCV life cycle. Amentoflavone and orobol also showed inhibitory effects on resistant-associated variants to the NS5A inhibitor daclatasvir. The results of this study have the potential to benefit patients who are intolerant to the adverse effect of pegylated interferon or who harbor resistant strains refractory to treatment by current direct-acting antiviral agents.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research and Education, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Keng-Li Lan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
65
|
Crouchet E, Wrensch F, Schuster C, Zeisel MB, Baumert TF. Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therap Adv Gastroenterol 2018; 11:1756284818759483. [PMID: 29619090 PMCID: PMC5871046 DOI: 10.1177/1756284818759483] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) worldwide. In the past few years, anti-HCV therapies have undergone a revolution with the approval of multiple direct-acting antivirals (DAAs), which enable interferon-free treatments with considerable improvement of sustained virologic response in patients. Today, DAAs have become the standard of care for HCV therapy. However, several limitations remain, which include access to therapy, treatment failure in a subset of patients and persistent risk of HCC development following cure in patients with advanced fibrosis. By targeting conserved host proteins involved in the HCV life cycle, host-targeting agents (HTAs) offer opportunities for pan-genotypic antiviral approaches with a high barrier to drug resistance. Moreover, when applied in combination with DAAs, HTAs could improve the management of difficult-to-treat patients by acting through a complementary mechanism of action. In this review, we summarize the different HTAs evaluated in preclinical and clinical development and discuss their potential role for anti-HCV therapies.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Florian Wrensch
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | | |
Collapse
|
66
|
Li S, Tan HY, Wang N, Cheung F, Hong M, Feng Y. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8394818. [PMID: 29507653 PMCID: PMC5817364 DOI: 10.1155/2018/8394818] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Liver disease, involving a wide range of liver pathologies from fatty liver, hepatitis, and fibrosis to cirrhosis and hepatocellular carcinoma, is a serious health problem worldwide. In recent years, many natural foods and herbs with abundant phytochemicals have been proposed as health supplementation for patients with hepatic disorders. As an important category of phytochemicals, natural polyphenols have attracted increasing attention as potential agents for the prevention and treatment of liver diseases. The striking capacities in remitting oxidative stress, lipid metabolism, insulin resistance, and inflammation put polyphenols in the spotlight for the therapies of liver diseases. It has been reported that many polyphenols from a wide range of foods and herbs exert therapeutic effects on liver injuries via complicated mechanisms. Therefore, it is necessary to have a systematical review to sort out current researches to help better understand the potentials of polyphenols in liver diseases. In this review, we aim to summarize and update the existing evidence of natural polyphenols in the treatment of various liver diseases by in vitro, in vivo, and clinical studies, while special attention is paid to the action mechanisms.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| |
Collapse
|
67
|
Liu S, Tian L, Chai G, Wen B, Wang B. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation. Food Funct 2018; 9:4184-4193. [PMID: 29993075 DOI: 10.1039/c8fo00650d] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quercetin can ameliorate alcohol-induced acute liver injury via inducing heme oxygenase-1 and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shu Liu
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| | - Lei Tian
- Department of Gastroenterology
- The First Affiliated Hospital of Jinzhou Medical University
- China
| | - Guangrui Chai
- Department of Ophthalmology
- Shengjing Hospital of China Medical University
- China
| | - Bo Wen
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| | - Bingyuan Wang
- Department of Geriatrics
- The First Affiliated Hospital of China Medical University
- China
| |
Collapse
|
68
|
Synthesis and Biological Evaluation of S-Substituted Perhalo-2-nitrobuta-1,3-dienes as Novel Xanthine Oxidase, Tyrosinase, Elastase, and Neuraminidase Inhibitors. J CHEM-NY 2018. [DOI: 10.1155/2018/4386031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
S-substituted perhalo-2-nitrobuta-1,3-dienes 3a, b were synthesized by the reaction of polyhalo-2-nitrobuta-1,3-dienes 1a, b with allyl mercaptan. 1-(2,3-Dibromopropanethio)-4-bromo-1,3,4-trichloro-2-nitrobuta-1,3-diene 4 was obtained from the addition of bromine to S-substituted polyhalo-2-nitrobuta-1,3-diene 3b in carbon tetrachloride. Sulfoxides 5a, b, and 6 were obtained from the reaction of thiosubstituted polyhalonitrobutadienes 3a, b, and 4 with m-CPBA in CHCl3. The structures of the new compounds were determined by spectroscopic data (FTIR, 1H NMR, 13C NMR, MS). These compounds exhibited antixanthine oxidase, antityrosinase, antielastase, and antineuraminidase activities.
Collapse
|
69
|
Shimizu JF, Pereira CM, Bittar C, Batista MN, Campos GRF, da Silva S, Cintra ACO, Zothner C, Harris M, Sampaio SV, Aquino VH, Rahal P, Jardim ACG. Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLoS One 2017; 12:e0187857. [PMID: 29141010 PMCID: PMC5687739 DOI: 10.1371/journal.pone.0187857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/28/2017] [Indexed: 01/12/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle.
Collapse
Affiliation(s)
- Jacqueline Farinha Shimizu
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carina Machado Pereira
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Cintia Bittar
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Mariana Nogueira Batista
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | | | - Suely da Silva
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Suely Vilela Sampaio
- Laboratory of Toxinology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Victor Hugo Aquino
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Ana Carolina Gomes Jardim
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
70
|
Morosanu AC, Benchea AC, Babusca D, Dimitriu DG, Dorohoi DO. Quantum-Mechanical and Solvatochromic Characterization of Quercetin. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1291657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Daniela Babusca
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | | | | |
Collapse
|