51
|
Voglstaetter M, Thomsen AR, Nouvel J, Koch A, Jank P, Navarro EG, Gainey-Schleicher T, Khanduri R, Groß A, Rossner F, Blaue C, Franz CM, Veil M, Puetz G, Hippe A, Dindorf J, Kashef J, Thiele W, Homey B, Greco C, Boucheix C, Baur A, Erbes T, Waller CF, Follo M, Hossein G, Sers C, Sleeman J, Nazarenko I. Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles. J Pathol 2019; 248:421-437. [PMID: 30982971 PMCID: PMC6771825 DOI: 10.1002/path.5281] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8− tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up‐regulation of E‐cadherin and down‐regulation of Twist, p120‐catenin, and β‐catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal–epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell–cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several‐fold increase in EV number in cell culture and the circulation of tumour‐bearing animals. We observed increased protein levels of E‐cadherin and p120‐catenin in these EVs; furthermore, Tspan8 and p120‐catenin were co‐immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maren Voglstaetter
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jerome Nouvel
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Arend Koch
- Institute of Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elena Grueso Navarro
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Gainey-Schleicher
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Richa Khanduri
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Groß
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Rossner
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carina Blaue
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marina Veil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerhard Puetz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Hippe
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Jochen Dindorf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Jubin Kashef
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Wilko Thiele
- Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Celine Greco
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Claude Boucheix
- UMR-S935, Inserm, Université Paris Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker Hospital, Paris, France
| | - Andreas Baur
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Translational Research Center, Friedrich-Alexander-University of Erlangen-Nuernberg, Erlangen, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius F Waller
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ghamartaj Hossein
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Animal Physiology, Laboratory of Developmental Biology, University of Tehran, Tehran, Iran
| | - Christine Sers
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology; Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
52
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
53
|
Sun G, Liu M, Han H. Overexpression of microRNA‐190 inhibits migration, invasion, epithelial‐mesenchymal transition, and angiogenesis through suppression of protein kinase B‐extracellular signal‐regulated kinase signaling pathway via binding to stanniocalicin 2 in breast cancer. J Cell Physiol 2019; 234:17824-17838. [PMID: 30993707 DOI: 10.1002/jcp.28409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Guiming Sun
- Department of Oncology Liaocheng People's Hospital Liaocheng P.R. China
| | - Meirong Liu
- Department of Oncology Liaocheng People's Hospital Liaocheng P.R. China
| | - Hui Han
- Department of Oncology Liaocheng People's Hospital Liaocheng P.R. China
| |
Collapse
|
54
|
Wu Y, Tan X, Liu P, Yang Y, Huang Y, Liu X, Meng X, Yu B, Wu M, Jin H. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res 2019; 379:30-47. [PMID: 30894280 DOI: 10.1016/j.yexcr.2019.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors. Invasion and metastasis can occur in the early stage of pancreatic cancer, contributing to the poor prognosis. Accordingly, in this study, we evaluated the molecular mechanisms underlying invasion and metastasis. Using mass spectrometry, we found that Integrin alpha 6 (ITGA6) was more highly expressed in a highly invasive pancreatic cancer cell line (PC-1.0) than in a less invasive cell line (PC-1). Through in vitro and in vivo experiments, we observed significant decreases in invasion and metastasis in pancreatic cancer cells after inhibiting ITGA6. Based on data in TCGA, high ITGA6 expression significantly predicted poor prognosis. By using Co-IP combined mass spectrometry, we found that ribosomal protein SA (RPSA), which was also highly expressed in PC-1.0, interacted with ITGA6. Similar to ITGA6, high RPSA expression promoted invasion and metastasis and indicated poor prognosis. Interestingly, although ITGA6 and RPSA interacted, they did not mutually regulate each other. ITGA6 and RPSA affected invasion and metastasis via the PI3K and MAPK signaling pathways, respectively. Inhibiting ITGA6 significantly reduced the expression of p-AKT, while inhibiting RPSA led to the downregulation of p-ERK1/2. Compared with the inhibition of ITGA6 or RPSA alone, the downregulation of both ITGA6 and RPSA weakened invasion and metastasis to a greater extent and led to the simultaneous downregulation of p-AKT and p-ERK1/2. Our research indicates that the development of drugs targeting both ITGA6 and RPSA may be an effective strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China.
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yifan Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yinpeng Huang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xinlu Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiangli Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Boqiang Yu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Mengwei Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Haoyi Jin
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
55
|
Guo L, Fu J, Sun S, Zhu M, Zhang L, Niu H, Chen Z, Zhang Y, Guo L, Wang S. MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci 2019; 110:805-816. [PMID: 30536996 PMCID: PMC6361562 DOI: 10.1111/cas.13910] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs, which regulate mRNAs, operate through a variety of signaling pathways to participate in the development of colorectal cancer (CRC). In this study, we found that microRNA (miR)‐143‐3p expression was significantly lower in both CRC and liver metastatic CRC tissues from liver compared with normal colonic tissues. Functional assays showed that miR‐143‐3p inhibited CRC cell invasion and migration in vitro. Using a bioinformatics approach, we identified miR‐143‐3p target mRNAs. Among the candidate targets, only the expression of integrin alpha 6 (ITGA6) and ArfGAP with the SH3 domain and ankyrin repeat and PH domain 3 (ASAP3) were significantly reduced by miR‐143‐3p mimics as examined by western blot, and the metastasis potential of CRC cells was attenuated by endogenous ITGA6 and ASAP3 knockdown, determined by migration and invasion assays. Both ITGA6 and ASAP3 were upregulated in CRC tissues compared to normal tissues. Analysis of the relationship between clinicopathological features and ITGA6/ASAP3 protein expression in 200 patients with CRC showed a significant difference in positive ITGA6 expression between the early stage (I + II) and the advanced stage (III + IV), and ASAP3 expression levels positively correlated with metastasis in the lymph nodes. These results indicate that miR‐143‐3p acts as an anti‐oncogene by downregulating ITGA6/ASAP3 protein expression and could offer new insight into potential therapeutic targets for CRC.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jianhong Fu
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shimei Sun
- Department of Gastroenterology, the People's Hospital of Sihong County, Sihong, China
| | - Minsheng Zhu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lifeng Zhang
- Department of Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Niu
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhi Chen
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingling Guo
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shouli Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, China
| |
Collapse
|
56
|
Abstract
Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
57
|
Schwartz AD, Hall CL, Barney LE, Babbitt CC, Peyton SR. Integrin α 6 and EGFR signaling converge at mechanosensitive calpain 2. Biomaterials 2018; 178:73-82. [PMID: 29909039 PMCID: PMC6211197 DOI: 10.1016/j.biomaterials.2018.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022]
Abstract
Cells sense and respond to mechanical cues from the extracellular matrix (ECM) via integrins. ECM stiffness is known to enhance integrin clustering and response to epidermal growth factor (EGF), but we lack information on when or if these mechanosensitive growth factor receptors and integrins converge intracellularly. Towards closing this knowledge gap, we combined a biomaterial platform with transcriptomics, molecular biology, and functional assays to link integrin-mediated mechanosensing and epidermal growth factor receptor (EGFR) signaling. We found that high integrin α6 expression controlled breast cancer cell adhesion and motility on soft, laminin-coated substrates, and this mimicked the response of cells to EGF stimulation. The mechanisms that drove both mechanosensitive cell adhesion and motility converged on calpain 2, an intracellular protease important for talin cleavage and focal adhesion turnover. EGF stimulation enhanced adhesion and motility on soft substrates, but required integrin α6 and calpain 2 signaling. In sum, we identified a new role for integrin α6 mechanosensing in breast cancer, wherein cell adhesion to laminin on soft substrates mimicked EGF stimulation. We identified calpain 2, downstream of both integrin α6 engagement and EGFR phosphorylation, as a common intracellular signaling node, and implicate integrin α6 and calpain 2 as potential targets to inhibit the migration of cancer cells in stiff tumor environments.
Collapse
Affiliation(s)
- A D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - C L Hall
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - L E Barney
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - C C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
58
|
Kowalski-Chauvel A, Modesto A, Gouaze-Andersson V, Baricault L, Gilhodes J, Delmas C, Lemarie A, Toulas C, Cohen-Jonathan-Moyal E, Seva C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis 2018; 9:872. [PMID: 30158599 PMCID: PMC6115442 DOI: 10.1038/s41419-018-0853-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022]
Abstract
Radiotherapy is the cornerstone of glioblastoma (GBM) standard treatment. However, radioresistance of cancer cells leads to an inevitable recurrence. In the present study, we showed that blocking α6-integrin in cells derived from GBM biopsy specimens cultured as neurospheres, sensitized cells to radiation. In cells downregulated for α6-integrin expression, we observed a decrease in cell survival after irradiation and an increase in radio-induced cell death. We also demonstrated that inhibition of α6-integrin expression affects DNA damage checkpoint and repair. Indeed, we observed a persistence of γ-H2AX staining after IR and the abrogation of the DNA damage-induced G2/M checkpoint, likely through the downregulation of the checkpoint kinase CHK1 and its downstream target Cdc25c. We also showed that α6-integrin contributes to GBM radioresistance by controlling the expression of the transcriptional network ZEB1/OLIG2/SOX2. Finally, the clinical data from TCGA and Rembrandt databases demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin and its targets, CHK1, ZEB1, OLIG2 and SOX2, have a significantly shorter overall survival. Our study suggest that α6-integrin is an attractive therapeutic target to overcome radioresistance of GBM cancer cells.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Anouchka Modesto
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Valerie Gouaze-Andersson
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Laurent Baricault
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | | | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Anthony Lemarie
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
59
|
Campbell PS, Mavingire N, Khan S, Rowland LK, Wooten JV, Opoku-Agyeman A, Guevara A, Soto U, Cavalli F, Loaiza-Pérez AI, Nagaraj G, Denham LJ, Adeoye O, Jenkins BD, Davis MB, Schiff R, Brantley EJ. AhR ligand aminoflavone suppresses α6-integrin-Src-Akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol 2018; 234:108-121. [PMID: 30076704 DOI: 10.1002/jcp.27013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
More than 40% of patients with luminal breast cancer treated with endocrine therapy agent tamoxifen demonstrate resistance. Emerging evidence suggests tumor initiating cells (TICs) and aberrant activation of Src and Akt signaling drive tamoxifen resistance and relapse. We previously demonstrated that aryl hydrocarbon receptor ligand aminoflavone (AF) inhibits the expression of TIC gene α6-integrin and disrupts mammospheres derived from tamoxifen-sensitive breast cancer cells. In the current study, we hypothesize that tamoxifen-resistant (TamR) cells exhibit higher levels of α6-integrin than tamoxifen-sensitive cells and that AF inhibits the growth of TamR cells by suppressing α6-integrin-Src-Akt signaling. In support of our hypothesis, TamR cells and associated mammospheres were found to exhibit elevated α6-integrin expression compared with their tamoxifen-sensitive counterparts. Furthermore, tumor sections from patients who relapsed on tamoxifen showed enhanced α6-integrin expression. Gene expression profiling from the TCGA database further revealed that basal-like breast cancer samples, known to be largely unresponsive to tamoxifen, demonstrated higher α6-integrin levels than luminal breast cancer samples. Importantly, AF reduced TamR cell viability and disrupted TamR mammospheres while concomitantly reducing α6-integrin messenger RNA and protein levels. In addition, AF and small interfering RNA against α6-integrin blocked tamoxifen-stimulated proliferation of TamR MCF-7 cells and further sensitized these cells to tamoxifen. Moreover, AF reduced Src and Akt signaling activation in TamR MCF-7 cells. Our findings suggest elevated α6-integrin expression is associated with tamoxifen resistance and AF suppresses α6-integrin-Src-Akt signaling activation to confer activity against TamR breast cancer.
Collapse
Affiliation(s)
- Petreena S Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Salma Khan
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Leah K Rowland
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Jonathan V Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Anna Opoku-Agyeman
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Ashley Guevara
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Ubaldo Soto
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Fiorella Cavalli
- Área de Investigaciónes, Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo," Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Irene Loaiza-Pérez
- Área de Investigaciónes, Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo," Ciudad Autónoma de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gayathri Nagaraj
- Department of Medicine, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Laura J Denham
- Department of Pathology, Loma Linda University Health School of Medicine, Loma Linda, California
| | - Olayemi Adeoye
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, California
| | - Brittany D Jenkins
- Department of Public Health Sciences, Henry Ford Cancer Institute, Detroit, Michigan
| | - Melissa B Davis
- Department of Public Health Sciences, Henry Ford Cancer Institute, Detroit, Michigan
| | - Rachel Schiff
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Lester and Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Eileen J Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, California.,Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, California
| |
Collapse
|
60
|
Deipolyi AR, Riedl CC, Bromberg J, Chandarlapaty S, Klebanoff CA, Sofocleous CT, Yarmohammadi H, Brody LA, Boas FE, Ziv E. Association of PI3K Pathway Mutations with Early Positron-Emission Tomography/CT Imaging Response after Radioembolization for Breast Cancer Liver Metastases: Results of a Single-Center Retrospective Pilot Study. J Vasc Interv Radiol 2018; 29:1226-1235. [PMID: 30078647 DOI: 10.1016/j.jvir.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To describe imaging response and survival after radioembolization for metastatic breast cancer and to delineate genetic predictors of imaging responses and outcomes. MATERIALS AND METHODS This retrospective study included 31 women (average age, 52 y) with liver metastasis from invasive ductal carcinoma who underwent resin and glass radioembolization (average cumulative dose, 2.0 GBq ± 1.8) between January 2011 and September 2017 after receiving ≥ 3 lines of chemotherapy. Twenty-four underwent genetic profiling with MSK-IMPACT or Sequenom; 26 had positron-emission tomography (PET)/CT imaging before and after treatment. Survival after the first radioembolization and 2-4-month PET/CT imaging response were assessed. Laboratory and imaging features were assessed to determine variables predictive of outcomes. Unpaired Student t tests and Fisher exact tests were used to compare responders and nonresponders categorized by changes in fluorodeoxyglucose avidity. Kaplan-Meier survival analysis was used to determine the impact of predictors on survival after radioembolization. RESULTS Median survival after radioembolization was 11 months (range, 1-49 mo). Most patients (18 of 26; 69%) had complete or partial response based on changes in fluorodeoxyglucose avidity. Imaging response was associated with longer survival (P = .005). Whereas 100% of patients with PI3K pathway mutations showed an imaging response, only 45% of wild-type patients showed a response (P = .01). Median survival did not differ between PI3K pathway wild-type (10.9 mo) and mutant (undefined) patients (P = .50). CONCLUSIONS These preliminary data suggest that genomic profiling may predict which patients with metastatic breast cancer benefit most from radioembolization. PI3K pathway mutations are associated with improved imaging response, which is associated with longer survival.
Collapse
Affiliation(s)
- Amy R Deipolyi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York.
| | - Christopher C Riedl
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Jacqueline Bromberg
- Department of Radiology, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Sarat Chandarlapaty
- Department of Radiology, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Lynn A Brody
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - F Edward Boas
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Etay Ziv
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| |
Collapse
|
61
|
Lee TS, Kim Y, Zhang W, Song IH, Tung CH. Facile metabolic glycan labeling strategy for exosome tracking. Biochim Biophys Acta Gen Subj 2018; 1862:1091-1100. [PMID: 29410228 DOI: 10.1016/j.bbagen.2018.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surrounding plasma membrane. Exosomes have various diagnostic and therapeutic potentials in cancer and other diseases, thus tracking exosomes is an important issue. METHODS Here, we report a facile exosome labeling strategy using a natural metabolic incorporation of an azido-sugar into the glycan, and a strain-promoted azide-alkyne click reaction. In culture, tetra-acetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz) was spontaneously incorporated into glycans within the cells and later redistributed onto their exosomes. These azido-containing exosomes were then labeled with azadibenzylcyclooctyne (ADIBO)-fluorescent dyes by a bioorthogonal click reaction. RESULTS Cellular uptake and the in vivo tracking of fluorescent labeled exosomes were evaluated in various cells and tumor bearing mice. Highly metastatic cancer-derived exosomes showed an increased self-homing in vitro and selective organ distribution in vivo. CONCLUSION Our metabolic exosome labeling strategy could be a promising tool in studying the biology and distribution of exosomes, and optimizing exosome based therapeutic approaches. GENERAL SIGNIFICANT A facile and effective exosome labeling strategy was introduced by presenting azido moiety on the surface of exosome through metabolic glycan synthesis, and then conjugating a strain-promoted fluorescent dye.
Collapse
Affiliation(s)
- Tae Sup Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA; Division of RI-convergence Research, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Republic of Korea
| | - Young Kim
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - In Ho Song
- Division of RI-convergence Research, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
62
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
63
|
Tsubouchi K, Minami K, Hayashi N, Yokoyama Y, Mori S, Yamamoto H, Koizumi M. The CD44 standard isoform contributes to radioresistance of pancreatic cancer cells. JOURNAL OF RADIATION RESEARCH 2017; 58:816-826. [PMID: 29106581 PMCID: PMC5710530 DOI: 10.1093/jrr/rrx033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 05/08/2023]
Abstract
Resistance to chemoradiotherapy is one reason for the increased recurrence rate of pancreatic cancer after these therapies. These cells change the expression levels of several proteins, such as epithelial-mesenchymal transition (EMT), while acquiring the chemo- or radio-resistance. In this study, we focused on CD44, a pancreatic cancer stem cell marker. CD44 has isoforms with different functions: standard isoform (CD44s) and several variant isoforms (CD44v). However, little is known about the roles of these isoforms after ionizing irradiation. The purpose of this study was to investigate the role of CD44 isoforms in radioresistance of pancreatic cancer cells. AsPC-1 (a human pancreatic cancer cell line) was irradiated with 4 MV X-rays. The mRNA and protein levels of CD44s were strongly upregulated, dose dependently, compared with CD44v after irradiation. Thus, we further investigated CD44s at the point of cell proliferation. We evaluated cell proliferation and survival, using CD44s knockdown cells. CD44s knockdown did not change the proliferation rate for up to 72 h after the irradiation, but decreased cell viability in the colony formation assay. As one of the reasons for these effects, we found downregulation of phosphorylated extracellular signal-regulated kinase (Erk; which is involved with cell proliferation) by CD44s knockdown, time dependently. Moreover, radiation-induced EMT-like expression changes were detected and suppressed by CD44s knockdown. In conclusion, our work demonstrated that CD44 standard isoform was especially upregulated after high-dose X-ray irradiation in several isoforms of CD44 and contributed to longer-term cell survival after the irradiation through the maintenance of Erk phosphorylation and radiation-induced EMT.
Collapse
Affiliation(s)
- Kento Tsubouchi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author. Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel. and Fax: +81-6-6879-2579;
| | - Naoki Hayashi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871,Japan
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nanko-kita, Suminoe, Osaka 559-8611, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871,Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
64
|
Yu YX, Wang Y, Liu H. Overexpression of PTEN suppresses non-small-cell lung carcinoma metastasis through inhibition of integrin αVβ6 signaling. Am J Transl Res 2017; 9:3304-3314. [PMID: 28804548 PMCID: PMC5553880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Studies have demonstrated that the abnormal expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is associated with multiple malignancies, but its functional role in non-small-cell lung carcinoma (NSCLC) metastasis remains to be elucidated. In the present study, we investigated the role of PTEN in regulating proliferation, migration, and invasion of NSCLC cells by establishing NSCLC cell strains with constitutively silenced or elevated PTEN expression. We demonstrated that ectopic expression of PTEN inhibits migration and invasion of NSCLC cells in vitro through wound healing and Transwell invasion assays. Furthermore, PTEN overexpression in NSCLC cells greatly inhibits cell viability and colony formation, which was confirmed by MTT and colony formation assays. Conversely, further analysis indicated that suppression of PTEN expression via shRNA promotes metastasis and growth of NSCLC cells. Finally, our findings demonstrate that PTEN promotes invasion and migration of NSCLC cells through the integrin αVβ6 signaling pathway. Overall, this study provides novel insights into the role of PTEN as a crucial regulator of NSCLC cell metastasis, and suggests that targeted treatment of PTEN-expressing tumors serves as a new therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Xia Yu
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo. 107, Wenhua West Road, Jinan, China
| | - Yi Wang
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo. 107, Wenhua West Road, Jinan, China
| | - Hong Liu
- Cancer Treatment Research Center, Qilu Hospital of Shandong UniversityNo. 107, Wenhua West Road, Jinan, China
| |
Collapse
|