51
|
Liu HW, Hu Y, Ren Y, Nam H, Santos JL, Ng S, Gong L, Brummet M, Carrington CA, Ullman CG, Pomper MG, Minn I, Mao HQ. Scalable Purification of Plasmid DNA Nanoparticles by Tangential Flow Filtration for Systemic Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30326-30336. [PMID: 34162211 PMCID: PMC9701136 DOI: 10.1021/acsami.1c05750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmid DNA (pDNA) nanoparticles synthesized by complexation with linear polyethylenimine (lPEI) are one of the most effective non-viral gene delivery vehicles. However, the lack of scalable and reproducible production methods and the high toxicity have hindered their clinical translation. Previously, we have developed a scalable flash nanocomplexation (FNC) technique to formulate pDNA/lPEI nanoparticles using a continuous flow process. Here, we report a tangential flow filtration (TFF)-based scalable purification method to reduce the uncomplexed lPEI concentration in the nanoparticle formulation and improve its biocompatibility. The optimized procedures achieved a 60% reduction of the uncomplexed lPEI with preservation of the nanoparticle size and morphology. Both in vitro and in vivo studies showed that the purified nanoparticles significantly reduced toxicity while maintaining transfection efficiency. TFF also allows for gradual exchange of solvents to isotonic solutions and further concentrating the nanoparticles for injection. Combining FNC production and TFF purification, we validated the purified pDNA/lPEI nanoparticles for future clinical translation of this gene nanomedicine.
Collapse
Affiliation(s)
- Heng-Wen Liu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yizong Hu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Ren
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hwanhee Nam
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jose Luis Santos
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shirley Ng
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Like Gong
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | - Martin G. Pomper
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Il Minn
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
52
|
Zu H, Gao D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS JOURNAL 2021; 23:78. [PMID: 34076797 PMCID: PMC8171234 DOI: 10.1208/s12248-021-00608-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Gene therapy has been experiencing a breakthrough in recent years, targeting various specific cell groups in numerous therapeutic areas. However, most recent clinical studies maintain the use of traditional viral vector systems, which are challenging to manufacture cost-effectively at a commercial scale. Non-viral vectors have been a fast-paced research topic in gene delivery, such as polymers, lipids, inorganic particles, and combinations of different types. Although non-viral vectors are low in their cytotoxicity, immunogenicity, and mutagenesis, attracting more and more researchers to explore the promising delivery system, they do not carry ideal characteristics and have faced critical challenges, including gene transfer efficiency, specificity, gene expression duration, and safety. This review covers the recent advancement in non-viral vectors research and formulation aspects, the challenges, and future perspectives.
Collapse
Affiliation(s)
- Hui Zu
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA
| | - Danchen Gao
- Abbvie Inc., 1 N. Waukegan Rd, North Chicago, Illinois, 60064, USA.
| |
Collapse
|
53
|
Annenkov VV, Danilovtseva EN, Zelinskiy SN, Pal'shin VA. Submicro- and nanoplastics: How much can be expected in water bodies? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116910. [PMID: 33743272 DOI: 10.1016/j.envpol.2021.116910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Plastic particles smaller than 1 μm are considered to be highly dangerous pollutants due to their ability to penetrate living cells. Model experiments on the toxicity of plastics should be correlated with actual concentrations of plastics in natural water. We simulated the natural destruction of polystyrene, polyvinyl chloride, and poly(methyl methacrylate) in experiments on the abrasion of plastics with small stones. The plastics were dyed in mass with a fluorescent dye, which made it possible to distinguish plastic particles from stone fragments. We found that less than 1% of polystyrene and polyvinyl chloride were converted to submicron size particles. In the case of more rigid poly(methyl methacrylate), the fraction of such particles reaches 11%. The concentration of particles with a diameter less than 1 μm in the model experiments was from 0.7 (polystyrene) to 13 mg/L (poly(methyl methacrylate)), and when transferring the obtained data to real reservoirs, these values should be reduced by several orders of magnitude. These data explain the difficulties associated with the search for nanoplastics in natural waters. The toxicity of such particles to hydrobionts in model experiments was detected for concentrations greater than 1 mg/L, which is unrealistic in nature. Detectable and toxic amounts of nano- and submicron plastic particles in living organisms can be expected only in the case of filter-feeding organisms, such as molluscs, krill, sponges, etc.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia.
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str., 3, Irkutsk, 664033, Russia
| |
Collapse
|
54
|
N-[4-( N,N,N-Trimethylammonium)Benzyl]Chitosan Chloride as a Gene Carrier: The Influence of Polyplex Composition and Cell Type. MATERIALS 2021; 14:ma14092467. [PMID: 34068680 PMCID: PMC8126137 DOI: 10.3390/ma14092467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Polyplex-based gene delivery systems are promising substitutes for viral vectors because of their high versatility and lack of disadvantages commonly encountered with viruses. In this work, we studied the DNA polyplexes with N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride (TMAB-CS) of various compositions in different cell types. Investigations of the interaction of TMAB-CS with DNA by different physical methods revealed that the molecular weight and the degree of substitution do not dramatically influence the hydrodynamic properties of polyplexes. Highly substituted TMAB-CS samples had a high affinity for DNA. The transfection protocol was optimized in HEK293T cells and achieved the highest efficiency of 30-35%. TMAB-CS was dramatically less effective in nonadherent K562 cells (around 1% transfected cells), but it was more effective and less toxic than polyarginine.
Collapse
|
55
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
56
|
Karimov M, Schulz M, Kahl T, Noske S, Kubczak M, Gockel I, Thieme R, Büch T, Reinert A, Ionov M, Bryszewska M, Franke H, Krügel U, Ewe A, Aigner A. Tyrosine-modified linear PEIs for highly efficacious and biocompatible siRNA delivery in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102403. [PMID: 33932594 DOI: 10.1016/j.nano.2021.102403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic gene silencing by RNA interference relies on the safe and efficient in vivo delivery of small interfering RNAs (siRNAs). Polyethylenimines are among the most studied cationic polymers for gene delivery. For several reasons including superior tolerability, small linear PEIs would be preferable over branched PEIs, but they show poor siRNA complexation. Their chemical modification for siRNA formulation has not been extensively explored so far. We generated a set of small linear PEIs bearing tyrosine modifications (LPxY), leading to substantially enhanced siRNA delivery and knockdown efficacy in vitro in various cell lines, including hard-to-transfect cells. The tyrosine-modified linear 10 kDa PEI (LP10Y) is particularly powerful, associated with favorable physicochemical properties and very high biocompatibility. Systemically administered LP10Y/siRNA complexes reveal antitumor effects in mouse xenograft and patient-derived xenograft (PDX) models, and their direct application into the brain achieves therapeutic inhibition of orthotopic glioma xenografts. LP10Y is particularly interesting for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Marion Schulz
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Tim Kahl
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Malgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Büch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Anja Reinert
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Heike Franke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| |
Collapse
|
57
|
Singh R, Kumar P. Disaccharide-polyethylenimine organic nanoparticles as non-toxic in vitro gene transporters and their anticancer potential. Bioorg Chem 2021; 112:104918. [PMID: 33932768 DOI: 10.1016/j.bioorg.2021.104918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Polyethylenimines (PEIs) have been shown as efficient gene delivery vectors due to their unique properties, however, toxicity as well as non-specific interactions with the tissues/cells because of high charge density have hampered their use in clinical applications. To counter these concerns, here, we have prepared disachharide-PEI organic nanoparticles by mixing PEIs with non-reducing disaccharides, i.e. trehalose (TPONs) and sucrose (SPONs), under mild conditions. The fabricated nanoparticles were complexed with pDNA and size of these complexes was found in the range of ~130-162 nm with zeta potential ~ +8-25 mV. Further evaluation of these nanoparticles revealed that substitution of disaccharides on PEIs successfully augmented cell viability. Transfection efficiency exhibited by these complexes was significantly higher than the unmodified polymer and the standard, Lipofectamine, complexes. Fabrication of organic nanoparticles did not alter the buffering capacity considerably which was found to be instrumental during endosomal escape of the complexes. Among both the series of nanoparticles, trehalose-PEI organic nanoparticles (TPONs) exhibited greater pDNA transportation potential than sucrose-PEI organic nanoparticles (SPONs) which was also established by flow cytometric data, wherein percent cells expressing GFP was higher in case of TP/pDNA complexes as compared to SP/pDNA complexes. Interestingly, TPONs also showed promising anticancer activity on cancer cell lines i.e. Mg63, MCF-7 and HepG2. Overall, the results advocate promising potential of disaccharide-PEI organic nanoparticles as efficient gene delivery agents which can be used effectively in future gene therapy applications along with anti-cancer competence of TPONs.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
58
|
Diaz Ariza IL, Jérôme V, Pérez Pérez LD, Freitag R. Amphiphilic Graft Copolymers Capable of Mixed-Mode Interaction as Alternative Nonviral Transfection Agents. ACS APPLIED BIO MATERIALS 2021; 4:1268-1282. [DOI: 10.1021/acsabm.0c01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ivonne L. Diaz Ariza
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| | - León D. Pérez Pérez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
59
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
60
|
Van Bruggen C, Punihaole D, Keith AR, Schmitz AJ, Tolar J, Frontiera RR, Reineke TM. Quinine copolymer reporters promote efficient intracellular DNA delivery and illuminate a protein-induced unpackaging mechanism. Proc Natl Acad Sci U S A 2020; 117:32919-32928. [PMID: 33318196 PMCID: PMC7777095 DOI: 10.1073/pnas.2016860117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polymeric vehicles that efficiently package and controllably release nucleic acids enable the development of safer and more efficacious strategies in genetic and polynucleotide therapies. Developing delivery platforms that endogenously monitor the molecular interactions, which facilitate binding and release of nucleic acids in cells, would aid in the rational design of more effective vectors for clinical applications. Here, we report the facile synthesis of a copolymer containing quinine and 2-hydroxyethyl acrylate that effectively compacts plasmid DNA (pDNA) through electrostatic binding and intercalation. This polymer system poly(quinine-co-HEA) packages pDNA and shows exceptional cellular internalization, transgene expression, and low cytotoxicity compared to commercial controls for several human cell lines, including HeLa, HEK 293T, K562, and keratinocytes (N/TERTs). Using quinine as an endogenous reporter for pDNA intercalation, Raman imaging revealed that proteins inside cells facilitate the unpackaging of polymer-DNA complexes (polyplexes) and the release of their cargo. Our work showcases the ability of this quinine copolymer reporter to not only facilitate effective gene delivery but also enable diagnostic monitoring of polymer-pDNA binding interactions on the molecular scale via Raman imaging. The use of Raman chemical imaging in the field of gene delivery yields unprecedented insight into the unpackaging behavior of polyplexes in cells and provides a methodology to assess and design more efficient delivery vehicles for gene-based therapies.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - David Punihaole
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Allison R Keith
- Department of Pediatrics, Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Andrew J Schmitz
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Jakub Tolar
- Department of Pediatrics, Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455;
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
61
|
Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS NANO 2020; 14:17626-17639. [PMID: 33225680 DOI: 10.1021/acsnano.0c08549] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemically defined vectors such as cationic polymers are versatile alternatives to engineered viruses for the delivery of genome-editing payloads. However, their clinical translation hinges on rapidly exploring vast chemical design spaces and deriving structure-function relationships governing delivery performance. Here, we discovered a polymer for efficient intracellular ribonucleoprotein (RNP) delivery through combinatorial polymer design and parallelized experimental workflows. A chemically diverse library of 43 statistical copolymers was synthesized via combinatorial RAFT polymerization, realizing systematic variations in physicochemical properties. We selected cationic monomers that varied in their pKa values (8.1-9.2), steric bulk, and lipophilicity of their alkyl substituents. Co-monomers of varying hydrophilicity were also incorporated, enabling elucidation of the roles of protonation equilibria and hydrophobic-hydrophilic balance in vehicular properties and performance. We screened our multiparametric vector library through image cytometry and rapidly uncovered a hit polymer (P38), which outperforms state-of-the-art commercial transfection reagents, achieving nearly 60% editing efficiency via nonhomologous end-joining. Structure-function correlations underlying editing efficiency, cellular toxicity, and RNP uptake were probed through machine learning approaches to uncover the physicochemical basis of P38's performance. Although cellular toxicity and RNP uptake were solely determined by polyplex size distribution and protonation degree, respectively, these two polyplex design parameters were found to be inconsequential for enhancing editing efficiency. Instead, polymer hydrophobicity and the Hill coefficient, a parameter describing cooperativity-enhanced polymer deprotonation, were identified as the critical determinants of editing efficiency. Combinatorial synthesis and high-throughput characterization methodologies coupled with data science approaches enabled the rapid discovery of a polymeric vehicle that would have otherwise remained inaccessible to chemical intuition. The statistically derived design rules elucidated herein will guide the synthesis and optimization of future polymer libraries tailored for therapeutic applications of RNP-based genome editing.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary E Brown
- University Imaging Centers, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shan Jiang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
62
|
Keil TWM, Merkel OM. Characterization of positively charged polyplexes by tunable resistive pulse sensing. Eur J Pharm Biopharm 2020; 158:359-364. [PMID: 33338601 DOI: 10.1016/j.ejpb.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
With the approval of the first siRNA-based drugs, non-viral siRNA delivery has gained special interest in industry and academia in the last two years. For non-viral delivery, positively charged lipid and polymer formulations play a central role in research and development. However, nanoparticle size characterization, particularly of polydisperse formulations, can be very challenging. Tunable resistive pulse sensing for particle by particle measurements of size, polydispersity, zeta potential and a direct concentration promises better assessment of nanoparticle formulations. However, the current application is not optimized for positively charged particles. A supplier-provided coating solution for difficult-to-measure samples does not allow for successful measurements of positively charged nanoparticles. This article describes a new coating solution based on choline-chloride. Coating is verified by current-voltage (I-V) recordings and ultimately tested on a positively charged nanoparticle formulation comprising of siRNA and PEG-PCL-PEI polymer. This coating allows successful size, polydispersity index (PDI) and concentration measurement by tunable resistive pulse sensing of positively charged PEI-based polyplexes. This article provides the foundation for further characterization of polyplexes as well as other positively charged nanoparticle formulations based on particle by particle measurements.
Collapse
Affiliation(s)
- Tobias W M Keil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians Universität München, 81377 Munich, Germany.
| |
Collapse
|
63
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
64
|
Singh R, Jha D, Gautam HK, Kumar P. Supramolecular self-assemblies of engineered polyethylenimines as multifunctional nanostructures for DNA transportation with excellent antimicrobial activity. Bioorg Chem 2020; 106:104463. [PMID: 33213896 DOI: 10.1016/j.bioorg.2020.104463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
In this study, indole-3-butanoic acid (IBA), a biologically and environmentally safe entity, has been grafted onto low and high molecular weight (1.8 and 25 kDa) polyethylenimines (PEI) mainly through primary amines to obtain amphiphilic indole-3-butanoyl-polyethylenimines (IBPs). Two series of IBPs (IBP1.8 and IBP25) were prepared which, on self-assembly in aqueous medium, yielded multifunctional nanomicellar structures (IBP1.8 and IBP25) capable of transporting genetic material in vitro and exhibiting other biological activities. Physicochemical characterization showed the size of IBP1.8 and IBP25 nanostructures in the range of ~332-234 nm and ~283-166 nm, respectively, with zeta potential varying from ~+29-17 mV and ~+37-25 mV. DNA release assay demonstrated higher release of plasmid DNA from IBP nanostructures as compared to native PEIs. Cytotoxicity showed a decreasing pattern with increasing degree of grafting of IBA onto PEIs making these nanostructures non-toxic. pDNA complexes of these nanostructures (both IBPs1.8 and IBPs25) displayed considerably higher transfection efficiency, however, IBP1.8/pDNA complexes performed much better (~7-9 folds) as compared to native PEI/pDNA and Lipofectamine/pDNA complexes on mammalian cells. CLSM analysis revealed that these complexes entered nucleus in sufficient amounts suggesting higher uptake and efficient internalization of the complexes. Besides, these supramolecular nanostructures not only exhibited excellent antimicrobial potential (MIC ~49-100 µg/ml) against clinical as well as resistant pathogenic strains but also found to possess antioxidant property. Overall, the projected low molecular weight PEI-based vectors could serve as more effective multifunctional nanomaterials having promising potential for future gene therapy applications with capability to provide protection against other bacterial infections.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Jha
- Microbial Biotechnology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hemant Kumar Gautam
- Microbial Biotechnology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
65
|
Lauroylated Histidine-Enriched S4 13-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells. Pharm Res 2020; 37:188. [PMID: 32888084 DOI: 10.1007/s11095-020-02904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE This study aimed to endow the cell-penetrating peptide (CPP) S413-PV with adequate features towards a safe and effective application in cancer gene therapy. METHODS Peptide/siRNA complexes were prepared with two new derivatives of the CPP S413-PV, which combine a lauroyl group attached to the N- or C-terminus with a histidine-enrichment in the N-terminus of the S413-PV peptide, being named C12-H5-S413-PV and H5-S413-PV-C12, respectively. Physicochemical characterization of siRNA complexes was performed and their cytotoxicity and efficiency to mediate siRNA delivery and gene silencing in cancer cells were assessed in the absence and presence of serum. RESULTS Peptide/siRNA complexes prepared with the C12-H5-S413-PV derivative showed a nanoscale (ca. 100 nm) particle size, as revealed by TEM, and efficiently mediated gene silencing (37%) in human U87 glioblastoma cells in the presence of 30% serum. In addition, the new C12-H5-S413-PV-based siRNA delivery system efficiently downregulated stearoyl-CoA desaturase-1, a key-enzyme of lipid metabolism overexpressed in cancer, which resulted in a significant decrease in the viability of U87 cells. Importantly, these complexes were able to spare healthy human astrocytes. CONCLUSIONS These encouraging results pave the way for a potential application of the C12-H5-S413-PV peptide as a promising tool in cancer gene therapy.
Collapse
|
66
|
Bodbin SE, Denning C, Mosqueira D. Transfection of hPSC-Cardiomyocytes Using Viafect™ Transfection Reagent. Methods Protoc 2020; 3:E57. [PMID: 32784848 PMCID: PMC7564709 DOI: 10.3390/mps3030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Twenty years since their first derivation, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider realisation of the potential this model system has to offer. We endeavoured to produce a protocol for improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection, (iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy. This protocol greatly adds value to the field by overcoming limited transfection efficiencies of hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.
Collapse
Affiliation(s)
- Sara E. Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
67
|
Elshereef AA, Jochums A, Lavrentieva A, Stuckenberg L, Scheper T, Solle D. High cell density transient transfection of CHO cells for TGF-β1 expression. Eng Life Sci 2020; 19:730-740. [PMID: 32624966 DOI: 10.1002/elsc.201800174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
High cell densities for transient transfection with polyethyleneimine (PEI) can be used for rapid and maximal production of recombinant proteins. High cell densities can be obtained by different cultivation systems, such as batch or perfusion systems. Herein, densities up to 18 million cells/mL were obtained by centrifugation for transfection evaluation. PEI transfection efficiency was easily determined by transfected enhanced green fluorescence protein (EGFP) reporter plasmid DNA (pDNA). A linear correlation between fluorescence intensity and transfection efficiency was improved. The transfection efficiency of PEI was highly dependent on the transfection conditions and directly related to the level of recombinant protein. Several factors were required to optimize the transient transfection process; these factors included the media type (which is compatible with low or high cell density transfection), the preculture CHO-K1 suspension cell density, and the pDNA to PEI level. Based on design of experiment (DoE) analyses, the optimal transfection conditions for 10 × 106 cells/mL in the CHOMACS CD medium achieved 73% transfection efficiency and a cell viability of over 80%. These results were confirmed for the production of transforming growth factor-beta 1 (TGF-β1) in a shake flask. The purified TGF-β1 protein concentration from 60 mL supernatant was 27 µg/mL, and the protein was biologically active.
Collapse
Affiliation(s)
- Abdalla A Elshereef
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany.,Chemistry of Natural and Microbial Products Department Pharmaceutical and Drug Industries Research Division National Research Centre Giza Egypt
| | - André Jochums
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Lena Stuckenberg
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Dörte Solle
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| |
Collapse
|
68
|
Ros S, Freitag JS, Smith DM, Stöver HDH. Charge-Shifting Polycations Based on N, N-(dimethylamino)ethyl Acrylate for Improving Cytocompatibility During DNA Delivery. ACS OMEGA 2020; 5:9114-9122. [PMID: 32363263 PMCID: PMC7191589 DOI: 10.1021/acsomega.9b03734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/11/2020] [Indexed: 05/22/2023]
Abstract
Synthetic polycations are studied extensively as DNA delivery agents because of their ease of production, good chemical stability, and low cost relative to viral vectors. This report describes the synthesis of charge-shifting polycations based on N,N-(dimethylamino)ethyl acrylate (DMAEA) and 3-aminopropylmethacryamide (APM), called PAD copolymers, and their use for in vitro DNA delivery into HeLa cells. PAD copolymers of varying compositions were prepared by RAFT polymerization to yield polymers of controlled molecular weights with low dispersities. Model hydrolysis studies were carried out to assess the rate of charge-shifting of the polycations by loss of the cationic dimethylaminoethanol side chains. They showed reduction in the net cationic charge by about 10-50% depending on composition after 2 days at pH 7, forming polyampholytes comprising permanent cationic groups, residual DMAEA, as well as anionic acrylic acid groups. HeLa cells exposed for 4 h to PAD copolymers with the greatest charge-shifting ability showed comparable or higher viability at high concentrations, relative to the noncharge shifting polycations PAPM and polyethyleneimine (PEI) 2 days post-exposure. Cell uptake efficiency of PAD/60bp-Cy3 DNA polyplexes at 2.5:1 N/P ratio was very high (>95%) for all compositions, exceeding the uptake efficiency of PEI polyplexes of equivalent composition. These results suggest that these PAD copolymers, and in particular PAD80 containing 80 mol % DMAEA, have suitable rates of charge-shifting hydrolysis for DNA delivery, as PAD80 showed reduced cytotoxicity at high concentrations, while still retaining high uptake efficiencies. In addition, the polyampholytes formed during DMAEA hydrolysis in PAD copolymers can offer enhanced long-term cytocompatibility.
Collapse
Affiliation(s)
- Samantha Ros
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Jessica S. Freitag
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - David M. Smith
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Saxony, Germany
| | - Harald D. H. Stöver
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
69
|
Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM. Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells. Biomolecules 2020; 10:biom10040553. [PMID: 32260534 PMCID: PMC7226018 DOI: 10.3390/biom10040553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoscale drug delivery systems exhibit a broad range of applications and promising treatment possibilities for various medical conditions. Nanomedicine is of great interest, particularly for rare diseases still lacking a curative treatment such as cystic fibrosis (CF). CF is defined by a lack of Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) and an increased Na+ absorption mediated by the epithelial sodium channel (ENaC). The imbalanced ion and water transport leads to pathological changes in many organs, particularly in the lung. We developed a non-viral delivery system based on the natural aminopolysaccharide chitosan (CS) for the transport of antisense oligonucleotides (ASO) against ENaC to specifically address Na+ hyperabsorption. CS–ASO electrostatic self-assembled nanocomplexes were formed at varying positive/negative (P/N) charge ratios and characterized for their physicochemical properties. Most promising nanocomplexes (P/N 90) displayed an average size of ~150 nm and a zeta potential of ~+30 mV. Successful uptake of the nanocomplexes by the human airway epithelial cell line NCI-H441 was confirmed by fluorescence microscopy. Functional Ussing chamber measurements of transfected NCI-H441 cells showed significantly decreased Na+ currents, indicating successful downregulation of ENaC. The results obtained confirm the promising characteristics of CS as a non-viral and non-toxic delivery system and demonstrate the encouraging possibility to target ENaC with ASOs to treat abnormal ion transport in CF.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
- Correspondence: ; Tel.: +49-251-832-1784
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| | | | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| |
Collapse
|
70
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
71
|
Heat-shrinking DNA nanoparticles for in vivo gene delivery. Gene Ther 2020; 27:196-208. [PMID: 31900424 DOI: 10.1038/s41434-019-0117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
The particle size of a PEG-peptide DNA nanoparticle is a key determinant of biodistribution following i.v. dosing. DNA nanoparticles of <100 nm in diameter are sufficiently small to cross through fenestrated endothelial cells to target hepatocytes in the liver. In addition, DNA nanoparticles must be close to charge-neutral to avoid recognition and binding to scavenger receptors found on Kupffer cells and endothelial cells in the liver. In the present study, we demonstrate an approach to heat shrink DNA nanoparticles to reduce their size to <100 nm to target hepatocytes. An optimized protocol heated plasmid DNA at 100 °C for 10 min resulting in partial denaturation. The immediate addition of a polyacridine PEG-peptide followed by cooling to room temperature resulted in heat-shrunken DNA nanoparticles that were ~70 nm in diameter compared with 170 nm when heating was omitted. Heat shrinking resulted in the conversion of supercoiled DNA into open circular to remove strain during compaction. Heat-shrunken DNA nanoparticles were stable to freeze-drying and reconstitution in saline. Hydrodynamic dosing established that 70 nm heat-shrunken DNA nanoparticles efficiently expressed luciferase in mouse liver. Biodistribution studies revealed that 70 nm DNA nanoparticles are rapidly and transiently taken up by liver whereas 170 nm DNA nanoparticles avoid liver uptake due to their larger size. The results provide a new approach to decrease the size of polyacridine PEG-peptide DNA nanoparticles to allow penetration of the fenestrated endothelium of the liver for the purpose of transfecting hepatocytes in vivo.
Collapse
|
72
|
Saha R, Bhayye S, Ghosh S, Saha A, Sarkar K. Supramolecular Assembly of Amino Acid Based Cationic Polymer for Efficient Gene Transfection Efficiency in Triple Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2019; 2:5349-5365. [PMID: 35021535 DOI: 10.1021/acsabm.9b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The success of gene therapy is enormously dependent on an efficient gene carrier, and in this context, cationic polymers still continue to play a major role particularly with respect to the safety issue compared to viral vectors. Developing an efficient gene carrier system having promising gene transfection efficiency with low toxicity is the foremost impediment associated with a nonviral carrier. Here, we explored amino acid based biocompatible polymers synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization where glycine (Gly), leucine (Leu), and phenyl alanine (Phe) amino acids were used as the pendent groups of the polymeric brushes. The presence of both a hydrophobic group (long chain aliphatic group associated with the RAFT agent) and hydrophilic amino groups was associated with the supramolecular assembly of the polymeric chain having hydrodynamic sizes within the range of 150-300 nm with a positive zeta potential of 30 ± 5 mV. All polymers showed very low toxicity and possessed >80% cell viability even at a very high concentration of 1000 μg/mL against both normal and cancerous cells. In addition to this, the polymers also showed excellent blood compatibility, and negligible hemolysis was observed at the concentration of 500 μg/mL. All polymers showed efficient DNA complexation capability as well as excellent protection of DNA against highly negatively charged surfactant and enzymatic digestion, although the efficiency was dependent on the N/P ratio of polymer/DNA complexes. Interestingly, the phenyl alanine moiety containing polymer brush P(HEMA-Phe-NH2) showed a hexagonal shaped nanoparticle after complexation with pDNA and consequently showed higher cellular uptake, resulting in a higher transfection efficiency in a triple negative breast cancer cell, the MDA-MB-231 cell. Therefore, the synthesized polymer containing an amino acid pendent group, especially the phenyl alanine moiety, may be a promising nonviral gene carrier system in gene therapy application in the future.
Collapse
|
73
|
Chen X, Sun Z, Zhang H, Onsori S. Effect of metal atoms on the electronic properties of metal oxide nanoclusters for use in drug delivery applications: a density functional theory study. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1692150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoying Chen
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Emergency Medicine, Zhejiang University, Zhejiang, China
| | - Zhangping Sun
- Intensive Care Unit, The Central Hospital of Yingkou, Liaoning, China
| | - Huanran Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Saeid Onsori
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
74
|
Herrera LC, Shastri VP. Silencing of GFP expression in human mesenchymal stem cells using quaternary polyplexes of siRNA-PEI with glycosaminoglycans and albumin. Acta Biomater 2019; 99:397-411. [PMID: 31541736 DOI: 10.1016/j.actbio.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022]
Abstract
In recent years evidence has been mounting for a role for mesenchymal stem cells (MSCs) in immunomodulation, anti-inflammatory processes, and paracrine signaling via secreted extracellular vesicles. In order to exploit these biological functions, systems to efficiently deliver genetic material into MSCs would therefore be highly desirable. In this study, efficient silencing of GFP expression by combining high N/P ratio siRNA and branched PEI (bPEI) polyplexes (siRNA-bPEI) polyplexes with glycosaminoglycans (GAGs), namely hyaluronic acid (HA), chondroitin sulfate (CS) and heparin sulfate (HS), and human serum albumin (HSA) is reported. These quaternary systems were characterized using surface charge, size and morphology and applied to MSCs, which represent a challenge due to their typically low transfection efficiency. The quaternary polyplexes promoted efficient charge shielding and release of siRNA in the cytoplasm with reduced toxicity. A high silencing efficiency of >90% (i.e., less than 10% remaining GFP expression) was achieved with noticeably reduced cellular toxicity, especially with siRNA-bPEI polyplexes modified with HA and HA + HSA. In general addition of GAGs led to more compact polyplexes. Endocytosis studies point to improved endosomal escape at high N/P ratios as a reason for high transfection efficiency and a role for hyaluronic acid in the uptake mechanism likely via CD44 interactions. Co-localization studies showed the polyplexes are stable in the cytosol over time, which correlates with a proper disassembly and subsequent silencing of GFP. Furthermore, GAG containing polyplexes were frequently co-localized with the nucleus. These findings in sum suggest that PEI/HSA/GAG based quaternary polyplexes are promising as transfection agents for MSCs. STATEMENT OF SIGNIFICANCE: Since mesenchymal stem cells (MSCs) are recruited to the site of tissue repair and play a role in immunomodulation, anti-inflammatory processes, and paracrine signaling, they present an excellent target for genetic engineering. However, delivery of genetic material into MSCs is challenging. In this study, >97% silencing of constitutive green fluorescent protein expression in human MSCs (hMSCs) using high N/P ratio polyplexes of branched-PEI-siRNA incorporating glycosaminoglycan as a charge neutralizer and human serum albumin as co-complexing agent is demonstrated. In addition to possessing good cytocompatibility and excellent cytosolic stability; polyplexes incorporating GAGs also showed altered endocytic uptake, with incorporation of hyaluronic acid promoting caveolae-mediated entry. Our system highlights the importance of physiologically derived macromolecules in delivery of genetic material into hMSCs.
Collapse
Affiliation(s)
- Laura C Herrera
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
75
|
Neves AR, Sousa A, Faria R, Albuquerque T, Queiroz JA, Costa D. Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis. Colloids Surf B Biointerfaces 2019; 185:110610. [PMID: 31711736 DOI: 10.1016/j.colsurfb.2019.110610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Cancer gene therapy based on p53 tumor suppressor gene supplementation emerges as one of the most challenging and promising strategies. The development of a suitable gene delivery system is imperative to ensure the feasibility and viability of cancer gene therapy in a clinical setting. The conception of delivery systems based on cell- penetrating peptides may deeply contribute for the evolution of therapy efficacy. In this context, the present work explores the p53 encoding plasmid DNA (pDNA) condensation ability of RALA peptide to produce a suitable intracellular delivery platform. These carriers, formed at several nitrogen to phosphate groups (N/P) ratio, were characterized in terms of morphology, size, surface charges, loading and complexation capacity and the fine structure has been analyzed by Fourier-transformed infrared (FTIR) spectroscopy. Confocal microscopy studies confirmed intracellular localization of nanoparticles, resulting in enhanced sustained pDNA uptake. Moreover, in vitro transfection of HeLa cells mediated by RALA/pDNA vectors allows for gene release and p53 protein expression. From these progresses, apoptosis in cancer cells has been investigated. It was found that N/P ratio strongly tailors gene transfection efficiency and, thus, it can be fine-tuned for desired degree of both protein expression and apoptosis. The great asset of the proposed system relies precisely on the use of N/P ratio as a tailoring parameter that can not only modulate vector´s properties but also the extent of pDNA delivery, protein expression and, consequently, the efficacy of p53 mediated cancer therapy.
Collapse
Affiliation(s)
- A R Neves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - A Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - R Faria
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - T Albuquerque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - D Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
76
|
Hujaya SD, Manninen A, Kling K, Wagner JB, Vainio SJ, Liimatainen H. Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. J Colloid Interface Sci 2019; 553:71-82. [DOI: 10.1016/j.jcis.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 02/01/2023]
|
77
|
Lee GJ, Kim TI. Fluorination effect to intermediate molecular weight polyethylenimine for gene delivery systems. J Biomed Mater Res A 2019; 107:2468-2478. [PMID: 31276293 DOI: 10.1002/jbm.a.36753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
Abstract
Fluorinated intermediate molecular weight polyethylenimine (FP2ks) with various fluorination degrees was synthesized by conjugation with heptafluorobutyric anhydride and the fluorination effect for gene delivery systems was examined. FP2ks could condense pDNA, forming compact, positively charged, and nano-sized spherical particles. It was thought that their decreased electrostatic interaction with pDNA would be compensated by hydrophobic interaction. The cytotoxicity of FP2ks was increased with the increase of fluorination degree, probably due to the cellular membrane disruption via hydrophobic interaction with FP2ks. The transfection efficiency of highly fluorinated FP2ks was not severely affected in serum condition, assuming their good serum-compatibility. Discrepancy between their higher cellular uptake efficiency and lower transfection efficiency than PEI25k was thought to arise from the formation of compact polyplexes followed by the decreased dissociation of pDNA. It was also suggested that multiple energy-dependent cellular uptake mechanisms and endosome buffering would mediate the transfection of FP2ks.
Collapse
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
78
|
Yavvari PS, Verma P, Mustfa SA, Pal S, Kumar S, Awasthi AK, Ahuja V, Srikanth CV, Srivastava A, Bajaj A. A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. NANOSCALE 2019; 11:4970-4986. [PMID: 30839018 DOI: 10.1039/c8nr09599j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poor success rates and challenges associated with the current therapeutic strategies of inflammatory bowel disease (IBD) have accelerated the emergence of gene therapy as an alternative treatment option with great promise. However, oral delivery of nucleic acids (NAs) to an inflamed colon is challenged by multiple barriers presented by the gastrointestinal, extracellular and intracellular compartments. Therefore, we screened a series of polyaspartic acid-derived amphiphilic cationic polymers with varied hydrophobicity for their ability to deliver NAs into mammalian cells. Using the most effective TAC6 polymer, we then engineered biocompatible and stable nanogels composed of polyplexes (TAC6, NA) and an anionic polymer, sodium polyaspartate, that were able to deliver the NAs across mammalian cells using caveolae-mediated cellular uptake. We then utilized these nanogels for oral delivery of PIAS1 (protein inhibitor of activated STAT1), a SUMO 3 ligase, encoding plasmid DNA since PIAS1 is a key nodal therapeutic target for IBD due to its ability to control NF-κB-mediated inflammatory signaling. We show that plasmid delivery using TAC6-derived nanogels diminished gut inflammation in a murine colitis model. Therefore, our study presents engineering of orally deliverable nanogels that can target SUMOylation machinery to combat gut inflammation with very high efficacy.
Collapse
Affiliation(s)
- Prabhu Srinivas Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal-462030, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhang W, Kang X, Yuan B, Wang H, Zhang T, Shi M, Zheng Z, Zhang Y, Peng C, Fan X, Yang H, Shen Y, Huang Y. Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics 2019; 9:1580-1598. [PMID: 31037125 PMCID: PMC6485200 DOI: 10.7150/thno.30302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
Effective delivery is the primary barrier against the clinical translation of gene therapy. Yet there remains too much unknown in the gene delivery mechanisms, even for the most investigated polymeric carrier (i.e., PEI). As a consequence, the conflicting results have been often seen in the literature due to the large variability in the experimental conditions and operations. Therefore, some key parameters should be identified and thus strictly controlled in the formulation process. Methods: The effect of the formulation processing parameters (e.g., concentration or mixture volume) and the resulting nanostructure properties on gene transfection have been rarely investigated. Two types of the PEI/DNA nanoparticles (NPs) were prepared in the same manner with the same dose but at different concentrations. The microstructure of the NPs and the transfection mechanisms were investigated through various microscopic methods. The therapeutic efficacy of the NPs was demonstrated in the cervical subcutaneous xenograft and peritoneal metastasis mouse models. Results: The high-concentration process (i.e., small reaction-volume) for mixture resulted in the large-sized PEI/DNA NPs that had a higher efficiency of gene transfection, compared to the small counterpart that was prepared at a low concentration. The microstructural experiments showed that the prepared small NPs were firmly condensed, whereas the large NPs were bulky and botryoid-shaped. The large NPs entered the tumor cells via the macropinocytosis pathway, and then efficiently dissociated in the cytoplasm and released DNA, thus promoting the intranuclear delivery. The enhanced in vivo therapeutic efficacy of the large NPs was demonstrated, indicating the promise for local-regional administration. Conclusion: This work provides better understanding of the effect of formulation process on nano-structural properties and gene transfection, laying a theoretical basis for rational design of the experimental process.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bo Yuan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingjie Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zening Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanheng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoming Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Youqing Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
80
|
Annenkov VV, Krishnan UM, Pal'shin VA, Zelinskiy SN, Kandasamy G, Danilovtseva EN. Design of Oligonucleotide Carriers: Importance of Polyamine Chain Length. Polymers (Basel) 2018; 10:E1297. [PMID: 30961222 PMCID: PMC6401700 DOI: 10.3390/polym10121297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/05/2023] Open
Abstract
Amine containing polymers are extensively studied as special carriers for short-chain RNA (13⁻25 nucleotides), which are applied as gene silencing agents in gene therapy of various diseases including cancer. Elaboration of the oligonucleotide carriers requires knowledge about peculiarities of the oligonucleotide⁻polymeric amine interaction. The critical length of the interacting chains is an important parameter which allows us to design sophisticated constructions containing oligonucleotide binding segments, solubilizing, protective and aiming parts. We studied interactions of (TCAG)n, n = 1⁻6 DNA oligonucleotides with polyethylenimine and poly(N-(3-((3-(dimethylamino)propyl)(methyl)amino)propyl)-N-methylacrylamide). The critical length for oligonucleotides in interaction with polymeric amines is 8⁻12 units and complexation at these length can be accompanied by "all-or-nothing" effects. New dimethylacrylamide based polymers with grafted polyamine chains were obtained and studied in complexation with DNA and RNA oligonucleotides. The most effective interaction and transfection activity into A549 cancer cells and silencing efficiency against vascular endothelial growth factor (VEGF) was found for a sample with average number of nitrogens in polyamine chain equal to 27, i.e., for a sample in which all grafted chains are longer than the critical length for polymeric amine⁻oligonucleotide complexation.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk 664033, Russia.
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| | - Viktor A Pal'shin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk 664033, Russia.
| | - Stanislav N Zelinskiy
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk 664033, Russia.
| | - Gayathri Kandasamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| | - Elena N Danilovtseva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk 664033, Russia.
| |
Collapse
|
81
|
Attia N, Mashal M, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Grijalvo S, Eritja R, Puras G, Pedraz JL. Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3937-3949. [PMID: 30510402 PMCID: PMC6248232 DOI: 10.2147/dddt.s178532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Gene therapy can be an intriguing therapeutic option in wide-ranging neurological disorders. Though nonviral gene carriers represent a safer delivery system to their viral counterparts, a thorough design of such vehicles is crucial to enhance their transfection properties. Purpose This study evaluated the effects of combined use of two nonionic surfactants, poloxamer 188 (P) and polysorbate 80 (P80) into nanovesicles – based on 2,3-di(tetradecyloxy)propan-1-amine cationic lipid (D) – destined for gene delivery to central nervous system cells. Methods Niosome formulations without and with poloxamer 188 (DP80 and DPP80, respectively) were prepared by the reverse-phase evaporation technique and characterized in terms of size, surface charge, and morphology. After the addition of pCMS-EGFP plasmid, the binding efficiency to the niosomes was evaluated in agarose gel electrophoresis assays. Additionally, transfection efficiency of complexes was also evaluated in in vitro and in vivo conditions. Results In vitro experiments on NT2 cells revealed that the complexes based on a surfactant combination (DPP80) enhanced cellular uptake and viability when compared with the DP80 counterparts. Interestingly, DPP80 complexes showed protein expression in glial cells after administration into the cerebral cortices of rats. Conclusion These data provide new insights for glia-centered approach for gene therapy of nervous system disorders using cationic nanovesicles, where nonionic surfactants play a pivotal role.
Collapse
Affiliation(s)
- Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Medical Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda
| | - Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ;
| | - Cristina Soto-Sánchez
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Gema Martínez-Navarrete
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Eduardo Fernández
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ; .,Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain, ; .,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain, ;
| |
Collapse
|
82
|
Bono N, Pennetta C, Sganappa A, Giupponi E, Sansone F, Volonterio A, Candiani G. Design and synthesis of biologically active cationic amphiphiles built on the calix[4]arene scaffold. Int J Pharm 2018; 549:436-445. [DOI: 10.1016/j.ijpharm.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
|
83
|
The polyplex, protein corona, cell interplay: Tips and drawbacks. Colloids Surf B Biointerfaces 2018; 168:60-67. [DOI: 10.1016/j.colsurfb.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
|
84
|
Trützschler AK, Bus T, Reifarth M, Brendel JC, Hoeppener S, Traeger A, Schubert US. Beyond Gene Transfection with Methacrylate-Based Polyplexes-The Influence of the Amino Substitution Pattern. Bioconjug Chem 2018; 29:2181-2194. [PMID: 29712427 DOI: 10.1021/acs.bioconjchem.8b00074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methacrylate-based polymers represent promising nonviral gene delivery vectors, since they offer a large variety of polymer architectures and functionalities, which are beneficial for specific demands in gene delivery. In combination with controlled radical polymerization techniques, such as the reversible addition-fragmentation chain transfer polymerization, the synthesis of well-defined polymers is possible. In this study we prepared a library of defined linear polymers based on (2-aminoethyl)-methacrylate (AEMA), N-methyl-(2-aminoethyl)-methacrylate (MAEMA), and N,N-dimethyl-(2-aminoethyl)-methacrylate (DMAEMA) monomers, bearing pendant primary, secondary, and tertiary amino groups, and investigated the influence of the substitution pattern on their gene delivery capability. The polymers and the corresponding plasmid DNA complexes were investigated regarding their physicochemical characteristics, cytocompatibility, and transfection performance. The nonviral transfection by methacrylate-based polyplexes differs significantly from poly(ethylene imine)-based polyplexes, as a successful transfection is not affected by the buffer capacity. We observed that polyplexes containing a high content of primary amino groups (AEMA) offered the highest transfection efficiency, whereas polyplexes bearing tertiary amino groups (DMAEMA) exhibited the lowest transfection efficiency. Further insights into the uptake and release mechanisms could be identified by fluorescence and transmission electron microscopy, emphasizing the theory of membrane-pore formation for the time-efficient endosomal release of methacrylate-based vectors.
Collapse
Affiliation(s)
- Anne-Kristin Trützschler
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Tanja Bus
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Martin Reifarth
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology , Albert-Einstein-Strasse 9 , 07745 Jena , Germany
| | - Johannes C Brendel
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Stephanie Hoeppener
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Anja Traeger
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Ulrich S Schubert
- Institue for Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
85
|
Trützschler AK, Bus T, Sahn M, Traeger A, Weber C, Schubert US. The Power of Shielding: Low Toxicity and High Transfection Performance of Cationic Graft Copolymers Containing Poly(2-oxazoline) Side Chains. Biomacromolecules 2018; 19:2759-2771. [PMID: 29791802 DOI: 10.1021/acs.biomac.8b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show the potential of oligo(2-ethyl-2-oxazoline) (Oxn)-shielded graft copolymers of (2-aminoethyl)-methacrylate and N-methyl-(2-aminoethyl)-methacrylate for pDNA delivery in HEK cells. For the effect of grafting density and side chain length concerning improved transfection properties through the concept of shielding to be investigated, copolymers were synthesized via the macromonomer method using a combination of cationic ring opening polymerization and reversible addition-fragmentation chain transfer polymerization to vary the degree of grafting (DG = 10 and 30%) as well as the side chain degree of polymerization (DP = 5 and 20). Investigations of the polyplex formation, in vitro flow cytometry, and confocal laser scanning microscopy measurements on the copolymer library revealed classical shielding properties of the Ox side chains, including highly reduced cytotoxicity and a partial decrease in transfection efficiency, as also reported for polyethylene glycol shielding. In terms of the transfection efficiency, the best performing copolymers (A- g-Ox5(10) and M- g-Ox5(10)) revealed equal or better performances compared to those of the corresponding homopolymers. In particular, the graft copolymers with low DG and side chain DP transfected well with over 10-fold higher IC50 values. In contrast, a DG of 30% resulted in a loss of transfection efficiency due to missing ability for endosomal release, and a side chain DP of 20 hampered the cellular uptake.
Collapse
Affiliation(s)
- Anne-Kristin Trützschler
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Tanja Bus
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
86
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
87
|
Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan Iyer K. Non-viral Methodology for Efficient Co-transfection. Methods Mol Biol 2018. [PMID: 29524139 DOI: 10.1007/978-1-4939-7774-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential impact of CRISPR/Cas9, TALE, and zinc finger technology is immense, both with respect to their use as tools for understanding the roles and functions of the genomic elements and epigenome modifications in an endogenous context and as new methods for treatment of diseases. Application of such technologies has drawn attention, however, to the prevailing lack of effective delivery methods. Promising viral and non-viral methods both currently fall short when the efficient delivery of large plasmids or multiple plasmids is required. Therefore, the use of TALE and CRISPR platforms has been severely limited in applications where selection methods to increase the relative proportion of treated cells are not applicable, and it represents a significant bottleneck in the further application of these tools as therapeutics.The protocol presented here describes the synthesis of a dendronized polymer as a highly efficient and nontoxic transfection agent. Furthermore, the optimization of the polymer as a co-transfection reagent for large and multiple plasmids in cell lines is described, in addition to general considerations for co-transfection experiments. Usage of this method has allowed for significantly improved large plasmid co-transfection efficiency over Lipofectamine 2000 in multiple cell lines, allowing an improved delivery of CRISPR/dCas9 and TALE systems.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
88
|
Giupponi E, Visone R, Occhetta P, Colombo F, Rasponi M, Candiani G. Development of a microfluidic platform for high-throughput screening of non-viral gene delivery vectors. Biotechnol Bioeng 2017; 115:775-784. [DOI: 10.1002/bit.26506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Elisa Giupponi
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
| | - Roberta Visone
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
| | - Paola Occhetta
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
- Department of Biomedicine; University Hospital Basel; University of Basel; Basel Switzerland
| | - Federica Colombo
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
| | - Marco Rasponi
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; Milan Italy
| | - Gabriele Candiani
- Department of Chemistry; Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano; Milan Italy
- “The Protein Factory” Research Centre; Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,”; Politecnico di Milano, and Department of Biotechnology and Life Science - University of Insubria; 20131, Milan Italy
| |
Collapse
|