51
|
Fereidouni M, Moossavi M, Kazemi T, Nouranihassankiade S, Asghari A. Association between polymorphisms of VKORC1 and CYP2C9 genes with warfarin maintenance dose in a group of warfarin users in Birjand city, Iran. J Cell Biochem 2018; 120:9588-9593. [PMID: 30525241 DOI: 10.1002/jcb.28235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023]
Abstract
Warfarin is the cardinal anticoagulant drug prescribed around the world. Due to stochastic bleeding in patients, it is essential to adjust the dose for every individual. The aim of the present study was to evaluate the frequency of CYP2C9 and VKORC1 gene polymorphisms and their association with warfarin maintenance dose in a sample of cardiovascular patients in Birjand, South-Khorasan province of Iran. Patients with a history of cardiovascular disorders who take warfarin daily were selected. CYP2C9 and VKORC1 gene polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism in all participants. A total of 114 patients (mean age: 52.7 ± 14.9 years, M/F ratio: 0.76) participated in this study. Regarding CYP2C9 gene polymorphisms, the most frequent genotype was 1*/1* (80.4% in females and 62.5% in males). The frequency of 1*/2* and 2*/2* variants was 13% and 6.5% in females and 25% and 12.5% in males, respectively. The frequency of VKORC1 gene (1639 G > A), was 31.5%, 39.5%, and 29% for GG, GA, and AA in males, respectively. Besides, the mentioned genotype frequencies for females were 50%, 40.5%, and 9.5%, respectively. Moreover, there was a statistically significant correlation between VKORC1 gene -1639 G > A variant and warfarin maintenance dose (P < 0.001) but not for CYP2C9 variants. The results of the current study confirmed that the mutant variants of CYP2C9 are not frequent and do not have any impact on warfarin dose. In the case of VKORC1, the mutant allele (A) showed a positive correlation with warfarin dose adjustment.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Cellular and Molecular Research Center, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Student Research Committee, Birjand University of Medical Science, Birjand, Iran
| | - Touba Kazemi
- Cardiovascular Diseases Research Center, Professor of cardiology, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Arghavan Asghari
- Student Research Committee, Birjand University of Medical Science, Birjand, Iran.,Asthma, Allergy, and Immunology Research Center, Faculty of Medicine, Birjand University of Medical Science, Birjand, Iran
| |
Collapse
|
52
|
CYP2D6 as a treatment decision aid for ER-positive non-metastatic breast cancer patients: a systematic review with accompanying clinical practice guidelines. Breast Cancer Res Treat 2018; 173:521-532. [PMID: 30411242 DOI: 10.1007/s10549-018-5027-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Tamoxifen is one of the principal treatments for estrogen receptor (ER)-positive breast cancer. Unfortunately, between 30 and 50% of patients receiving this hormonal therapy relapse. Since CYP2D6 genetic variants have been reported to play an important role in survival outcomes after treatment with tamoxifen, this study sought to summarize and critically appraise the available scientific evidence on this topic. METHODS A systematic literature review was conducted to identify studies investigating associations between CYP2D6 genetic variation and survival outcomes after tamoxifen treatment. Critical appraisal of the retrieved scientific evidence was performed, and recommendations were developed for CYP2D6 genetic testing in the context of tamoxifen therapy. RESULTS Although conflicting literature exists, the majority of the current evidence points toward CYP2D6 genetic variation affecting survival outcomes after tamoxifen treatment. Of note, review of the CYP2D6 genotyping assays used in each of the studies revealed the importance of comprehensive genotyping strategies to accurately predict CYP2D6 metabolizer phenotypes. CONCLUSIONS AND RECOMMENDATIONS Critical appraisal of the literature provided evidence for the value of comprehensive CYP2D6 genotyping panels in guiding treatment decisions for non-metastatic ER-positive breast cancer patients. Based on this information, it is recommended that alternatives to standard tamoxifen treatments may be considered in CYP2D6 poor or intermediate metabolizers.
Collapse
|
53
|
Piñero J, Gonzalez-Perez A, Guney E, Aguirre-Plans J, Sanz F, Oliva B, Furlong LI. Network, Transcriptomic and Genomic Features Differentiate Genes Relevant for Drug Response. Front Genet 2018; 9:412. [PMID: 30319692 PMCID: PMC6168038 DOI: 10.3389/fgene.2018.00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms underlying drug therapeutic action and toxicity is crucial for the prevention and management of drug adverse reactions, and paves the way for a more efficient and rational drug design. The characterization of drug targets, drug metabolism proteins, and proteins associated to side effects according to their expression patterns, their tolerance to genomic variation and their role in cellular networks, is a necessary step in this direction. In this contribution, we hypothesize that different classes of proteins involved in the therapeutic effect of drugs and in their adverse effects have distinctive transcriptomics, genomics and network features. We explored the properties of these proteins within global and organ-specific interactomes, using multi-scale network features, evaluated their gene expression profiles in different organs and tissues, and assessed their tolerance to loss-of-function variants leveraging data from 60K subjects. We found that drug targets that mediate side effects are more central in cellular networks, more intolerant to loss-of-function variation, and show a wider breadth of tissue expression than targets not mediating side effects. In contrast, drug metabolizing enzymes and transporters are less central in the interactome, more tolerant to deleterious variants, and are more constrained in their tissue expression pattern. Our findings highlight distinctive features of proteins related to drug action, which could be applied to prioritize drugs with fewer probabilities of causing side effects.
Collapse
Affiliation(s)
- Janet Piñero
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Emre Guney
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joaquim Aguirre-Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferran Sanz
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura I Furlong
- Integrative Biomedical Informatics Group, Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
54
|
Wright GEB, Amstutz U, Drögemöller BI, Shih J, Rassekh SR, Hayden MR, Carleton BC, Ross CJD. Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy Implicates Pharmacokinetic and Inherited Neuropathy Genes. Clin Pharmacol Ther 2018; 105:402-410. [PMID: 29999516 PMCID: PMC6519044 DOI: 10.1002/cpt.1179] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Vincristine is an effective chemotherapeutic drug for various cancers, including acute lymphoblastic leukemia (ALL). Unfortunately, clinical utility is restricted by dose‐limiting vincristine‐induced peripheral neuropathies (VIPN). We sought to determine the association of VIPN with a recently identified risk variant, CEP72 rs924607, and drug absorption, distribution, metabolism, and excretion (ADME) gene variants in pediatric ALL. This was followed by a meta‐analysis of pharmacogenomic data from over 500 patients. CEP72 rs924607 was significantly associated with VIPN (P = 0.02; odds ratio (OR) = 3.4). ADME analyses identified associations between VIPN and ABCC1 rs3784867 (P = 5.34 × 10−5; OR = 4.9), and SLC5A7 rs1013940 (P = 9.00 × 10−4; OR= 8.6); genes involved in vincristine transport and inherited neuropathies, respectively. Meta‐analysis identified an association with a variant related to TTPA (rs10504361: P = 6.85 × 10−4; OR = 2.0), a heritable neuropathy‐related gene. This study provides essential corroboratory evidence for CEP72 rs924607 and highlights the importance of drug transporter and inherited neuropathy genes in VIPN.
Collapse
Affiliation(s)
- Galen E B Wright
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ursula Amstutz
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,University Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Britt I Drögemöller
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Shih
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Shahrad R Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
55
|
Lavertu A, McInnes G, Daneshjou R, Whirl-Carrillo M, Klein TE, Altman RB. Pharmacogenomics and big genomic data: from lab to clinic and back again. Hum Mol Genet 2018; 27:R72-R78. [PMID: 29635477 PMCID: PMC5946941 DOI: 10.1093/hmg/ddy116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
The field of pharmacogenomics is an area of great potential for near-term human health impacts from the big genomic data revolution. Pharmacogenomics research momentum is building with numerous hypotheses currently being investigated through the integration of molecular profiles of different cell lines and large genomic data sets containing information on cellular and human responses to therapies. Additionally, the results of previous pharmacogenetic research efforts have been formulated into clinical guidelines that are beginning to impact how healthcare is conducted on the level of the individual patient. This trend will only continue with the recent release of new datasets containing linked genotype and electronic medical record data. This review discusses key resources available for pharmacogenomics and pharmacogenetics research and highlights recent work within the field.
Collapse
Affiliation(s)
- Adam Lavertu
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA
| | - Greg McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA
| | - Roxana Daneshjou
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
56
|
Schärfe CPI, Tremmel R, Schwab M, Kohlbacher O, Marks DS. Genetic variation in human drug-related genes. Genome Med 2017; 9:117. [PMID: 29273096 PMCID: PMC5740940 DOI: 10.1186/s13073-017-0502-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
Background Variability in drug efficacy and adverse effects are observed in clinical practice. While the extent of genetic variability in classic pharmacokinetic genes is rather well understood, the role of genetic variation in drug targets is typically less studied. Methods Based on 60,706 human exomes from the ExAC dataset, we performed an in-depth computational analysis of the prevalence of functional variants in 806 drug-related genes, including 628 known drug targets. We further computed the likelihood of 1236 FDA-approved drugs to be affected by functional variants in their targets in the whole ExAC population as well as different geographic sub-populations. Results We find that most genetic variants in drug-related genes are very rare (f < 0.1%) and thus will likely not be observed in clinical trials. Furthermore, we show that patient risk varies for many drugs and with respect to geographic ancestry. A focused analysis of oncological drug targets indicates that the probability of a patient carrying germline variants in oncological drug targets is, at 44%, high enough to suggest that not only somatic alterations but also germline variants carried over into the tumor genome could affect the response to antineoplastic agents. Conclusions This study indicates that even though many variants are very rare and thus likely not observed in clinical trials, four in five patients are likely to carry a variant with possibly functional effects in a target for commonly prescribed drugs. Such variants could potentially alter drug efficacy. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0502-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotta Pauline Irmgard Schärfe
- Department of Systems Biology, Harvard Medical School, Boston, 02115, Massachusetts, USA.,Center for Bioinformatics, University of Tübingen, 72076, Tübingen, Germany.,pplied Bioinformatics, Department of Computer Science, 72076, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, 72076, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, 72076, Tübingen, Germany. .,pplied Bioinformatics, Department of Computer Science, 72076, Tübingen, Germany. .,Quantitative Biology Center, 72076, Tübingen, Germany. .,Faculty of Medicine, University of Tübingen, 72076, Tübingen, Germany. .,Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| | - Debora Susan Marks
- Department of Systems Biology, Harvard Medical School, Boston, 02115, Massachusetts, USA.
| |
Collapse
|
57
|
Wendt FR, Sajantila A, Moura-Neto RS, Woerner AE, Budowle B. Full-gene haplotypes refine CYP2D6 metabolizer phenotype inferences. Int J Legal Med 2017; 132:1007-1024. [DOI: 10.1007/s00414-017-1709-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
|
58
|
Key Challenges in the Search for Innovative Drug Treatments for Special Populations. Converging Needs in Neonatology, Pediatrics, and Medical Genetics. CHILDREN-BASEL 2017; 4:children4080068. [PMID: 28777308 PMCID: PMC5575590 DOI: 10.3390/children4080068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
The explosion of knowledge concerning the interplay of genetic and environmental factors determining pathophysiology and guiding therapeutic choice has altered the landscape in pediatric clinical pharmacology and pharmacy. The need for innovative research methods and design expertise for small clinical trials to be undertaken in sparse populations has been accentuated. At the same time, shortfalls in critical human resources represent a key challenge, especially in low- and middle-income countries where the need for new research and education directions is greatest. Unless a specific action plan is urgently developed, there will be a continuing gap in availability of the essential expertise needed to address treatment challenges in special patient populations such as neonates, patients suffering from rare or neglected diseases, and children of all ages.
Collapse
|
59
|
African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development. EBioMedicine 2017; 17:67-74. [PMID: 28237373 PMCID: PMC5360579 DOI: 10.1016/j.ebiom.2017.02.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
Genetic diversity is greater in Africa than in other continental populations. Genetic variability in genes encoding drug metabolizing enzymes may contribute to the high numbers of adverse drug reactions reported in Africa. We reviewed publications (1995-April 2016) reporting frequencies of known cytochrome P450 (CYP) variants in African populations. Using principal components analysis (PCA) we identified CYP alleles of potential clinical relevance with a marked difference in distribution in Africa, compared with Asian and Caucasian populations. These were CYP2B6*6, CYP2C8*2, CYP2D6*3, CYP2D6*17, CYP2D6*29, CYP3A5*6, and CYP3A5*7. We show clearly that there is greater diversity in CYP distribution in Africa than in other continental populations and identify a need for optimization of drug therapy and drug development there. Further pharmacogenetic studies are required to confirm the CYP distributions we identified using PCA, to discover uniquely African alleles and to identify populations at a potentially increased risk of drug-induced adverse events or drug inefficacy.
Collapse
|