51
|
A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci 2015; 16:18149-84. [PMID: 26251901 PMCID: PMC4581240 DOI: 10.3390/ijms160818149] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 01/13/2023] Open
Abstract
Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
Collapse
|
52
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations. Sci Rep 2015; 5:9980. [PMID: 25984707 PMCID: PMC4435023 DOI: 10.1038/srep09980] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells' migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Steven G. Allen
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI
| | - Patrick N. Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Ronald Buckanovich
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sofia D. Merajver
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| |
Collapse
|
54
|
Bersini S, Moretti M. 3D functional and perfusable microvascular networks for organotypic microfluidic models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:180. [PMID: 25893395 DOI: 10.1007/s10856-015-5520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
The metastatic dissemination of cancer cells from primary tumors to secondary loci is a complex and multistep process including local invasion, intravasation, survival in the blood stream and extravasation towards the metastatic site. It is well known cancer metastases follow organ-specific pathways with selected primary tumors mainly metastasizing towards a specific panel of secondary organs (Steven Paget's theory 1889). However, circulatory patterns and microarchitecture of capillary networks play a key role in the metastatic spread as well (James Ewing's theory 1929). Taking into account both these factors would be critical to develop more complex and physiologically relevant in vitro cancer models. This review presents recent advances in the generation of microvascularized systems through microfluidic approaches and discusses promising results achieved by organ-on-a-chip platforms mimicking the pathophysiology of the functional units of specific organs. The combination of physiologically-like microvascular networks and organotypic microenvironments would foster a new generation of in vitro cancer models to more effectively screen new therapeutics, design personalized medicine treatments and investigate molecular pathways involved in cancer metastases.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy,
| | | |
Collapse
|
55
|
Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 2014; 79-80:50-67. [PMID: 25453261 DOI: 10.1016/j.addr.2014.10.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Anti-cancer drug development is inefficient, mostly due to lack of efficacy in human patients. The high fail rate is partly due to the lack of predictive models or the inadequate use of existing preclinical test systems. However, progress has been made and preclinical models were improved or newly developed, which all account for basic features of solid cancers, three-dimensionality and heterotypic cell interaction. Here we give an overview of available in vivo and in vitro models of cancer, which meet the criteria of being 3D and mirroring human tumor-stroma interactions. We only focus on drug response models without touching models for pharmacokinetic and dynamic, toxicity or delivery aspects.
Collapse
|
56
|
Acosta MA, Jiang X, Huang PK, Cutler KB, Grant CS, Walker GM, Gamcsik MP. A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. BIOMICROFLUIDICS 2014; 8:054117. [PMID: 25584114 PMCID: PMC4290574 DOI: 10.1063/1.4898788] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Metastatic cancer cells must traverse a microenvironment ranging from extremely hypoxic, within the tumor, to highly oxygenated, within the host's vasculature. Tumor hypoxia can be further characterized by regions of both chronic and intermittent hypoxia. We present the design and characterization of a microfluidic device that can simultaneously mimic the oxygenation conditions observed within the tumor and model the cell migration and intravasation processes. This device can generate spatial oxygen gradients of chronic hypoxia and produce dynamically changing hypoxic microenvironments in long-term culture of cancer cells.
Collapse
Affiliation(s)
- Miguel A Acosta
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Xiao Jiang
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Pin-Kang Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| | - Kyle B Cutler
- Department of Biomedical Engineering, Beckman Laser Institute, University of California Irvine , 1002 Health Services Road, Irvine, California 92617, USA
| | - Christine S Grant
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Glenn M Walker
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Michael P Gamcsik
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| |
Collapse
|
57
|
Abstract
More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microfluidics in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab's current research is presented in the corresponding sections.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
58
|
Young EWK. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 2014; 5:1096-109. [PMID: 23799587 DOI: 10.1039/c3ib40076j] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transition to increasingly sophisticated microfluidic systems has led to the emergence of "organ-on-chip" technology that can faithfully recapitulate organ-level function. Given the rapid progress at the interface between microfluidics and cell biology, there is need to provide a focused evaluation of the state-of-the-art in microfluidic systems for cancer research to advance development, accelerate discovery of novel insights, and facilitate cooperation between engineers, biologists and oncologists in the clinic. Here, we provide a focused review of microfluidics technology from cells- and tissues- to organs-on-chips with application toward studying the tumor microenvironment. Key aspects of the tumor microenvironment including angiogenesis, hypoxia, biochemical gradients, tumor-stromal interactions, and the extracellular matrix are summarized for both solid tumors and non-solid hematologic malignancies. An overview of microfluidic systems designed specifically to answer questions related to different aspects of the tumor microenvironment is provided, followed by an examination of how these systems offer new opportunities to study outstanding challenges related to the major cancer hallmarks. Challenges also remain for microfluidics engineers, but it is hoped that cooperation between engineers and biologists at the intersection of their respective fields will lead to significant impact on the utility of organs-on-chips in cancer research.
Collapse
Affiliation(s)
- Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, MC314B, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
59
|
Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, Moretti M, Kamm RD. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 2013; 35:2454-61. [PMID: 24388382 DOI: 10.1016/j.biomaterials.2013.11.050] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/17/2013] [Indexed: 01/08/2023]
Abstract
Cancer metastases arise following extravasation of circulating tumor cells with certain tumors exhibiting high organ specificity. Here, we developed a 3D microfluidic model to analyze the specificity of human breast cancer metastases to bone, recreating a vascularized osteo-cell conditioned microenvironment with human osteo-differentiated bone marrow-derived mesenchymal stem cells and endothelial cells. The tri-culture system allowed us to study the transendothelial migration of highly metastatic breast cancer cells and to monitor their behavior within the bone-like matrix. Extravasation, quantified 24 h after cancer cell injection, was significantly higher in the osteo-cell conditioned microenvironment compared to collagen gel-only matrices (77.5 ± 3.7% vs. 37.6 ± 7.3%), and the migration distance was also significantly greater (50.8 ± 6.2 μm vs. 31.8 ± 5.0 μm). Extravasated cells proliferated to form micrometastases of various sizes containing 4 to more than 60 cells by day 5. We demonstrated that the breast cancer cell receptor CXCR2 and the bone-secreted chemokine CXCL5 play a major role in the extravasation process, influencing extravasation rate and traveled distance. Our study provides novel 3D in vitro quantitative data on extravasation and micrometastasis generation of breast cancer cells within a bone-like microenvironment and demonstrates the potential value of microfluidic systems to better understand cancer biology and screen for new therapeutics.
Collapse
Affiliation(s)
- Simone Bersini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20133, Italy; Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, 20161 Italy
| | - Jessie S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20133, Italy
| | - Chiara Arrigoni
- Cell and Tissue Engineering Lab, Gruppo Ospedaliero San Donato Foundation, Milano, Italy
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 136-705, South Korea
| | | | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, 20161 Italy.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
60
|
Bersini S, Jeon JS, Moretti M, Kamm RD. In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov Today 2013; 19:735-42. [PMID: 24361339 DOI: 10.1016/j.drudis.2013.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/15/2013] [Accepted: 12/11/2013] [Indexed: 01/17/2023]
Abstract
A crucial event in the metastatic cascade is the extravasation of circulating cancer cells from blood capillaries to the surrounding tissues. The past 5 years have been characterized by a significant evolution in the development of in vitro extravasation models, which moved from traditional transmigration chambers to more sophisticated microfluidic devices, enabling the study of complex cell-cell and cell-matrix interactions in multicellular, controlled environments. These advanced assays could be applied to screen easily and rapidly a broad spectrum of molecules inhibiting cancer cell endothelial adhesion and extravasation, thus contributing to the design of more focused in vivo tests.
Collapse
Affiliation(s)
- S Bersini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| | - J S Jeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy.
| | - R D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
61
|
Chen MB, Whisler JA, Jeon JS, Kamm RD. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol (Camb) 2013; 5:1262-71. [PMID: 23995847 PMCID: PMC4038741 DOI: 10.1039/c3ib40149a] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A deeper understanding of the mechanisms of tumor cell extravasation is essential in creating therapies that target this crucial step in cancer metastasis. Here, we use a microfluidic platform to study tumor cell extravasation from in vitro microvascular networks formed via vasculogenesis. We demonstrate tight endothelial cell-cell junctions, basement membrane deposition and physiological values of vessel permeability. Employing our assay, we demonstrate impaired endothelial barrier function and increased extravasation efficiency with inflammatory cytokine stimulation, as well as positive correlations between the metastatic potentials of MDA-MB-231, HT-1080, MCF-10A and their extravasation capabilities. High-resolution time-lapse microscopy reveals the highly dynamic nature of extravasation events, beginning with thin tumor cell protrusions across the endothelium followed by extrusion of the remainder of the cell body through the formation of small (~1 μm) openings in the endothelial barrier which grows in size (~8 μm) to allow for nuclear transmigration. No disruption to endothelial cell-cell junctions is discernible at 60×, or by changes in local barrier function after completion of transmigration. Tumor transendothelial migration efficiency is significantly higher in trapped cells compared to non-trapped adhered cells, and in cell clusters versus single tumor cells.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
62
|
Buchanan C, Rylander MN. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 2013; 110:2063-72. [PMID: 23616255 DOI: 10.1002/bit.24944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 02/03/2023]
Abstract
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.
Collapse
Affiliation(s)
- Cara Buchanan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Lab 340 ICTAS Building I, Stanger Street, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
63
|
Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A 2013; 110:E1974-83. [PMID: 23645635 DOI: 10.1073/pnas.1216989110] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seventy-five percent of patients with epithelial ovarian cancer present with advanced-stage disease that is extensively disseminated intraperitoneally and prognosticates the poorest outcomes. Primarily metastatic within the abdominal cavity, ovarian carcinomas initially spread to adjacent organs by direct extension and then disseminate via the transcoelomic route to distant sites. Natural fluidic streams of malignant ascites triggered by physiological factors, including gravity and negative subdiaphragmatic pressure, carry metastatic cells throughout the peritoneum. We investigated the role of fluidic forces as modulators of metastatic cancer biology in a customizable microfluidic platform using 3D ovarian cancer nodules. Changes in the morphological, genetic, and protein profiles of biomarkers associated with aggressive disease were evaluated in the 3D cultures grown under controlled and continuous laminar flow. A modulation of biomarker expression and tumor morphology consistent with increased epithelial-mesenchymal transition, a critical step in metastatic progression and an indicator of aggressive disease, is observed because of hydrodynamic forces. The increase in epithelial-mesenchymal transition is driven in part by a posttranslational up-regulation of epidermal growth factor receptor (EGFR) expression and activation, which is associated with the worst prognosis in ovarian cancer. A flow-induced, transcriptionally regulated decrease in E-cadherin protein expression and a simultaneous increase in vimentin is observed, indicating increased metastatic potential. These findings demonstrate that fluidic streams induce a motile and aggressive tumor phenotype. The microfluidic platform developed here potentially provides a flow-informed framework complementary to conventional mechanism-based therapeutic strategies, with broad applicability to other lethal malignancies.
Collapse
|
64
|
Warkiani ME, Bhagat AAS, Khoo BL, Han J, Lim CT, Gong HQ, Fane AG. Isoporous micro/nanoengineered membranes. ACS NANO 2013; 7:1882-1904. [PMID: 23442009 DOI: 10.1021/nn305616k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isoporous membranes are versatile structures with numerous potential and realized applications in various fields of science such as micro/nanofiltration, cell separation and harvesting, controlled drug delivery, optics, gas separation, and chromatography. Recent advances in micro/nanofabrication techniques and material synthesis provide novel methods toward controlling the detailed microstructure of membrane materials, allowing fabrication of membranes with well-defined pore size and shape. This review summarizes the current state-of-the-art for isoporous membrane fabrication using different techniques, including microfabrication, anodization, and advanced material synthesis. Various applications of isoporous membranes, such as protein filtration, pathogen isolation, cell harvesting, biosensing, and drug delivery, are also presented.
Collapse
Affiliation(s)
- Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.
| | | | | | | | | | | | | |
Collapse
|
65
|
Businaro L, De Ninno A, Schiavoni G, Lucarini V, Ciasca G, Gerardino A, Belardelli F, Gabriele L, Mattei F. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. LAB ON A CHIP 2013; 13:229-39. [PMID: 23108434 DOI: 10.1039/c2lc40887b] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reconstitution of a complex microenvironment on microfluidic chips is one of the cornerstones to demonstrate the improved flexibility of these devices with respect to macroscale in vitro approaches. In this work, we realised an on-chip model to investigate the interactions between cancer and immune system. To this end, we exploited mice deficient (Knock Out, KO) for interferon regulatory factor 8 (IRF-8), a transcription factor essential for the induction of competent immune responses, to investigate how IRF-8 gene expression contributes to regulate immune and melanoma cells crosstalk. In vivo, IRF-8 KO mice are highly permissive to B16 melanoma growth due to failure of immune cells to properly exert immunosurveillance. B16 cells and immune cells isolated from the spleen of wild type (WT) and IRF-8 KO mice were co-cultured for one week in a PDMS platform and monitored by fluorescence microscopy and time-lapse recordings. We observed that WT spleen cells migrated through microchannels connecting the culturing chambers towards B16 cells and tightly interacted with tumor cells, forming clusters of activation. In contrast, IRF-8 KO immune cells poorly interacted with melanoma cells. In parallel, B16 cells were more attracted towards microchannels, acquiring a more invasive behaviour in the presence of IRF-8 KO spleen cells, with respect to WT cells. Our results strongly confirm the in vivo observations and highlight the value of on-chip co-culture systems as a useful in vitro tool to elucidate the reciprocal interactions between cancer cells and host immune system, with relevant impact in the development of more effective anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Luca Businaro
- Italian National Research Council-Institute for Photonics and Nanotechnologies (CNR-IFN), Via Cineto Romano 42, Rome, 00156, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Fu Y, Chin LK, Bourouina T, Liu AQ, VanDongen AMJ. Nuclear deformation during breast cancer cell transmigration. LAB ON A CHIP 2012; 12:3774-8. [PMID: 22864314 DOI: 10.1039/c2lc40477j] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metastasis is the main cause of cancer mortality. During this process, cancer cells dislodge from a primary tumor, enter the circulation and form secondary tumors in distal organs. It is poorly understood how these cells manage to cross the tight syncytium of endothelial cells that lines the capillaries. Such capillary transmigration would require a drastic change in cell shape. We have therefore developed a microfluidic platform to study the transmigration of cancer cells. The device consists of an array of microchannels mimicking the confined spaces encountered. A thin glass coverslip bottom allows high resolution imaging of cell dynamics. We show that nuclear deformation is a critical and rate-limiting step for transmigration of highly metastatic human breast cancer cells. Transmigration was significantly reduced following the treatment with a protein methyltransferase inhibitor, suggesting that chromatin condensation might play an important role. Since transmigration is critical for cancer metastasis, this new platform may be useful for developing improved cancer therapies.
Collapse
Affiliation(s)
- Yi Fu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798
| | | | | | | | | |
Collapse
|
67
|
Zhang Q, Liu T, Qin J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. LAB ON A CHIP 2012; 12:2837-42. [PMID: 22648473 DOI: 10.1039/c2lc00030j] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Circulating tumor aggregates exhibit a high metastatic potential and could potentially serve as an important target for cancer therapies. In this study, we developed a microfluidic model that reconstitutes and is representative of the principal components of biological blood vessels, including vessel cavity, endothelium, and perivascular matrix containing chemokines. Using this model, the transendothelial invasion of tumor aggregates can be observed and recorded in realtime. In this study we analyzed the extravasation process of salivary gland adenoid cystic carcinoma (ACC) cell aggregates. ACC aggregates transmigrated across the endothelium under the stimulation of chemokine CXCL12. The endothelial integrity was irreversibly damaged at the site of transendothelial invasion. The transendothelial invasion of ACC aggregates was inhibited by AMD3100, but the adhesion of ACC aggregates to the endothelium was not affected by the CXCR4 antagonist. This model allows for detailed study of the attachment and transendothelial invasion of tumor aggregates; thus, it would be a useful tool for analysis of the underlying mechanisms of metastasis and for testing novel anti-metastasis agents.
Collapse
Affiliation(s)
- Qian Zhang
- Section of Oral Pathology, College of Stomatology, Dalian Medical University, China
| | | | | |
Collapse
|
68
|
Tanweer F, Louise Green V, David Stafford N, Greenman J. Application of microfluidic systems in management of head and neck squamous cell carcinoma. Head Neck 2012; 35:756-63. [DOI: 10.1002/hed.22906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/16/2011] [Accepted: 11/02/2011] [Indexed: 11/11/2022] Open
|
69
|
Shin MK, Kim SK, Jung H. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. LAB ON A CHIP 2011; 11:3880-7. [PMID: 21975823 DOI: 10.1039/c1lc20671k] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Most studies of cancer metastasis focus on cancer cell invasion utilizing adhesion assays that are performed independently, and are thus limited in their ability to mimic complex cancer metastasis on a chip. Here we report the development of an integrated cell-based microfluidic chip for intra- and extravasation that combines two assays on one chip for the study of the complex cascade of cancer metastasis. This device consists of two parts; one is an intravasation chamber for the three-dimensional (3-D) culture of cancer cells using a Matrigel matrix, and the other is an extravasation chamber for the detection of metastasized cancer cells by adhesion molecules expressed by epithelial cells. In this novel system, the intravasation and extravasation processes of cancer metastasis can be studied simultaneously using four screw valves. Metastatic LOVO and non-metastatic SW480 cells were used in this study, and the invasion of LOVOs was found to be higher compared to SW480. In contrast, invasion of cells treated with metalloproteinase (MMP) inhibitors decreased within the intravasation chamber. Degraded cancer cells from the intravasation chamber were detected within the extravasation chamber under physiological conditions of shear stress, and differences in binding efficiency were also detected when CA19-9 antibody, an inhibitor of cancer cell adhesion, was used to treat degraded cancer cells. Our results support the potential usefulness of this new 3D cell-based microfluidic system as a drug screening tool to select targets for the development of new drugs and to verify their effectiveness.
Collapse
Affiliation(s)
- Min Kyeong Shin
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
70
|
Hattersley SM, Sylvester DC, Dyer CE, Stafford ND, Haswell SJ, Greenman J. A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs. Ann Biomed Eng 2011; 40:1277-88. [PMID: 21997391 DOI: 10.1007/s10439-011-0428-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/01/2011] [Indexed: 12/29/2022]
Abstract
Tumors are heterogeneous masses of cells characterized pathologically by their size and spread. Their chaotic biology makes treatment of malignancies hard to generalize. We present a robust and reproducible glass microfluidic system, for the maintenance and "interrogation" of head and neck squamous cell carcinoma (HNSCC) tumor biopsies, which enables continuous media perfusion and waste removal, recreating in vivo laminar flow and diffusion-driven conditions. Primary HNSCC or metastatic lymph samples were subsequently treated with 5-fluorouracil and cisplatin, alone and in combination, and were monitored for viability and apoptotic biomarker release 'off-chip' over 7 days. The concentration of lactate dehydrogenase was initially high but rapidly dropped to minimally detectable levels in all tumor samples; conversely, effluent concentration of WST-1 (cell proliferation) increased over 7 days: both factors demonstrating cell viability. Addition of cell lysis reagent resulted in increased cell death and reduction in cell proliferation. An apoptotic biomarker, cytochrome c, was analyzed and all the treated samples showed higher levels than the control, with the combination therapy showing the greatest effect. Hematoxylin- and Eosin-stained sections from the biopsy, before and after maintenance, demonstrated the preservation of tissue architecture. This device offers a novel method of studying the tumor environment, and offers a pre-clinical model for creating personalized treatment regimens.
Collapse
Affiliation(s)
- Samantha M Hattersley
- Centre for Biomedical Research, Postgraduate Medical Institute, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK
| | | | | | | | | | | |
Collapse
|
71
|
Choudhury D, Mo X, Iliescu C, Tan LL, Tong WH, Yu H. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. BIOMICROFLUIDICS 2011; 5:22203. [PMID: 21799710 PMCID: PMC3145229 DOI: 10.1063/1.3593407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/02/2011] [Indexed: 05/06/2023]
Abstract
There are a plethora of approaches to construct microtissues as building blocks for the repair and regeneration of larger and complex tissues. Here we focus on various physical and chemical trapping methods for engineering three-dimensional microtissue constructs in microfluidic systems that recapitulate the in vivo tissue microstructures and functions. Advances in these in vitro tissue models have enabled various applications, including drug screening, disease or injury models, and cell-based biosensors. The future would see strides toward the mesoscale control of even finer tissue microstructures and the scaling of various designs for high throughput applications. These tools and knowledge will establish the foundation for precision engineering of complex tissues of the internal organs for biomedical applications.
Collapse
|
72
|
Trillo MA, Cid MA, Martínez MA, Page JE, Esteban J, Úbeda A. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals. Bioelectromagnetics 2011; 32:340-50. [DOI: 10.1002/bem.20643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/02/2010] [Indexed: 12/28/2022]
|
73
|
Ziółkowska K, Kwapiszewski R, Brzózka Z. Microfluidic devices as tools for mimicking the in vivo environment. NEW J CHEM 2011. [DOI: 10.1039/c0nj00709a] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
74
|
Chung BG, Choo J. Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis 2010; 31:3014-27. [PMID: 20734372 DOI: 10.1002/elps.201000137] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Concentration gradients play an important role in controlling biological and pathological processes, such as metastasis, embryogenesis, axon guidance, and wound healing. Microfluidic devices fabricated by photo- and soft lithography techniques can manipulate the fluidic flow and diffusion profile to create biomolecular gradients in a temporal and spatial manner. Furthermore, microfluidic devices enable the control of cell-extracellular microenvironment interactions, including cell-cell, cell-matrix, and cell-soluble factor interaction. In this paper, we review the development of microfluidic-based gradient devices and highlight their biological applications.
Collapse
Affiliation(s)
- Bong Geun Chung
- Department of Bionano Engineering, Hanyang University, Ansan, Korea.
| | | |
Collapse
|
75
|
Wlodkowic D, Cooper JM. Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol 2010; 14:556-67. [PMID: 20832352 DOI: 10.1016/j.cbpa.2010.08.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 01/22/2023]
Abstract
Despite over 2 million papers published on cancer so far, malignancy still remains a puzzlingly complex disease with overall low survival rates. Expanding our knowledge of the molecular mechanisms of malignancy and of resistance to therapy is crucial in guiding the successful design of anti-cancer drugs and new point-of-care diagnostics. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. This review discusses the emerging applications of microfluidic technologies and their advantages for cancer biology and experimental oncology. We also summarize the recent advances in miniaturized systems to study cancer cell microenvironment, cancer cytomics, and real-time (4D) pharmacological screening. Microfabricated systems, such as cell microarrays, together with on-chip label-less cytometry, and micro-sorting technologies, are all highlighted with the view of describing their potential applications in pharmacological screening, drug discovery, and clinical oncology. It is envisaged that microfluidic solutions may well represent the platform of choice for next generation in vitro cancer models.
Collapse
Affiliation(s)
- Donald Wlodkowic
- Auckland Microfabrication Facility, Department of Chemistry, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
76
|
Liu L, Loutherback K, Liao D, Yeater D, Lambert G, Estévez-Torres A, Sturm JC, Getzenberg RH, Austin RH. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. LAB ON A CHIP 2010; 10:1807-13. [PMID: 20424729 PMCID: PMC3248645 DOI: 10.1039/c003509b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate a novel and robust microfluidic chip with combined functions of continuous culture and output of PC-3 prostate cancer cells. With digital controls, polydimethylsiloxane (PDMS) flexible diaphragms are able to apply hydrodynamic shear forces on cultures, detaching a fraction of attached cancer cells from the surface for output while leaving others for reuse in subsequent cultures. The fractions of detached cells and remaining cells can be precisely controlled. The system has not only the advantages of small size, high cell culture efficiency, and digital control, but also of simple fabrication at low cost, easy operation and robust performance. The chip performs 9 passages during 30 days of continuous culture and shows promise as a durable design suitable for long-term cell output.
Collapse
Affiliation(s)
- Liyu Liu
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - Kevin Loutherback
- Dept. of Electrical Engineering, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - David Liao
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - David Yeater
- Dept. of Urology, Oncology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, MD, USA
| | - Guillaume Lambert
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - André Estévez-Torres
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - James C. Sturm
- Dept. of Electrical Engineering, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - Robert H. Getzenberg
- Dept. of Urology, Oncology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, MD, USA
| | - Robert H. Austin
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| |
Collapse
|
77
|
Wlodkowic D, Cooper JM. Microfabricated analytical systems for integrated cancer cytomics. Anal Bioanal Chem 2010; 398:193-209. [DOI: 10.1007/s00216-010-3722-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/29/2010] [Accepted: 04/03/2010] [Indexed: 01/09/2023]
|
78
|
Liu T, Li C, Li H, Zeng S, Qin J, Lin B. A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis 2010; 30:4285-91. [PMID: 20013914 DOI: 10.1002/elps.200900289] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A microfluidic device was developed for the study of directed invasion of cancer cells in 3-D matrix with concentration gradient. This device consists of two parallel perfusion channels connected by two cell culture chambers. To mimic extracellular matrix (ECM), gelled basement membrane extract (BME) was used to support 3-D distribution of breast cancer cells (MCF7) in cell culture chambers. A stable linear concentration gradient of epidermal growth factor (EGF) was generated across the chambers by continuous perfusion. Using the device, we investigated MCF7 cell invasion induced by different concentrations of EGF in 3-D matrix. It was found that cancer cells responded to EGF stimulation with forming cellular protrusions and migrating towards high EGF concentration. We further investigated the anti-invasion effect of GM 6001, a matrix metalloproteinase inhibitor. We identified that matrix metalloproteinase inhibition repressed both cellular protrusion formation and cell migration in 3-D matrix. These findings suggest that EGF is able to induce MCF7 cell invasion in 3-D extracellular matrix and this effect is dependent on proteolytic activity. This device is relatively simple to construct and operate. It should be a useful platform for elucidating the mechanism of cancer invasion and screening anti-invasion drugs for cancer therapy.
Collapse
Affiliation(s)
- Tingjiao Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| | | | | | | | | | | |
Collapse
|
79
|
Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. NANO TODAY 2010; 5:28-47. [PMID: 21152269 PMCID: PMC2998071 DOI: 10.1016/j.nantod.2009.12.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications.
Collapse
Affiliation(s)
| | | | | | - Phong T. Tran
- Institut Curie, UMR 144 CNRS, Paris 75005, France
- University of Pennsylvania, Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
80
|
Microfluidic technology in vascular research. J Biomed Biotechnol 2009; 2009:823148. [PMID: 19911076 PMCID: PMC2775250 DOI: 10.1155/2009/823148] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/03/2009] [Accepted: 08/24/2009] [Indexed: 01/09/2023] Open
Abstract
Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods.
Collapse
|
81
|
Shao J, Wu L, Wu J, Zheng Y, Zhao H, Jin Q, Zhao J. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. LAB ON A CHIP 2009; 9:3118-25. [PMID: 19823728 DOI: 10.1039/b909312e] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For a comprehensive understanding of cells or tissues, it is important to enable multiple studies under the controllable microenvironment of a chip. In this report, we present an integrated microfluidic cell culture platform in which endothelial cells (ECs) are under static conditions or exposed to a pulsatile and oscillatory shear stress. Through the integration of a microgap, self-contained flow loop, pneumatic pumps, and valves, the novel microfluidic chip achieved multiple functions: pulsatile and oscillatory fluid circulation, cell trapping, cell culture, the formation of ECs barrier, and adding shear stress on cells. After being introduced into the chip by gravity, the ECs arranged along the microgap with the help of hydrodynamic forces and grew in the microchannel for more than 7 days. The cells proliferated and migrated to form a barrier at the microgap to mimic the vessel wall, which separated the microenvironment into two compartments, microchannel and microchamber. An optimized pneumatic micropump was embedded to actuate flow circulation in a self-contained loop that induced a pulsatile and oscillatory shear stress at physiological levels on the ECs in the microchannel. All the analyses were performed under either static or dynamic conditions. The performance of the barrier was evaluated by the diffusion and distribution behaviors of fluorescently labeled albumin. The permeability of the barrier was comparable to that in traditional in vitro assays. The concentration gradients of the tracer formed in the microchamber can potentially be used to study cell polarization, migration and communications in the future. Additionally, the morphology and cytoskeleton of the ECs response to the pulsatile and oscillatory shear stress were analyzed. The microfluidic chip provided a multifunctional platform to enable comprehensive studies of blood vessels at the cell or tissue level.
Collapse
Affiliation(s)
- Jianbo Shao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, 865 Changning Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Critical stresses for cancer cell detachment in microchannels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1035-47. [PMID: 19579023 DOI: 10.1007/s00249-009-0506-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/25/2022]
Abstract
We present experiments involving cancer cells adhering to microchannels, subjected to increasing shear stresses (0.1-30 Pa). Morphological studies were carried out at different shear stresses. Cells exhibit spreading patterns similar to those observed under static conditions, as long as the shear stress is not too high. At critical wall shear stresses (around 2-5 Pa), cell-substrate contact area decreases until detachment at the larger stresses. Critical shear stresses are found to be lower for higher confinements (i.e. smaller cell height to channel height ratio). Fluorescent techniques were used to locate focal adhesions (typically 1 lm(2) in size) under various shearing conditions, showing that cells increase the number of focal contacts in the region facing the flow. To analyze such data, we propose a model to determine the critical stress, resulting from the competition between hydrodynamic forces and the adhesive cell resistance. With this model, typical adhesive stresses exerted at each focal contact can be determined and are in agreement with previous works.
Collapse
|
83
|
Kim YC, Park SJ, Park JK. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 2008; 133:1432-9. [PMID: 18810292 DOI: 10.1039/b805355c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a new biomechanical analysis method for discrimination between cancerous and normal cells through compression by poly(dimethylsiloxane) (PDMS) membrane deflection in a microfluidic device. When a cell is compressed, cellular membrane will expand and then small bulges will appear on the peripheral cell membrane beyond the allowable strain. It is well known that the amount of F-actin in cancer cells is less than that of normal cells and bulges occur at the sites where cytoskeleton becomes detached from the membrane bilayer. Accordingly, we have demonstrated the difference of the bulge generation between breast cancer cells (MCF7) and normal cells (MCF10A). After excessive deformation, the bulges generated in MCF7 cells were not evenly distributed on the cell periphery. Contrary to this, the bulges of MCF10A cells showed an even distribution. In addition, the morphologies of bulges of MCF7 and MCF10A cells looked swollen protrusion and tubular protrusion, respectively. Peripheral strains at the moment of the bulge generation were also 72% in MCF7 and 46% in MCF10A. The results show that the bulge generation can be correlated with the cytoskeleton quantity inside the cell, providing the first step of a new biomechanical approach.
Collapse
Affiliation(s)
- Yu Chang Kim
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Korea
| | | | | |
Collapse
|
84
|
Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Int J Radiat Biol 2008; 83:849-71. [PMID: 18058370 DOI: 10.1080/09553000701727531] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). RESULTS AND CONCLUSIONS Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.
Collapse
|