51
|
Self-assembly behavior of amphiphilic polyelectrolyte with ultrahigh charge density. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
52
|
Jeon IY, Noh HJ, Baek JB. Hyperbranched Macromolecules: From Synthesis to Applications. Molecules 2018; 23:E657. [PMID: 29538327 PMCID: PMC6017023 DOI: 10.3390/molecules23030657] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/16/2022] Open
Abstract
Hyperbranched macromolecules (HMs, also called hyperbranched polymers) are highly branched three-dimensional (3D) structures in which all bonds converge to a focal point or core, and which have a multiplicity of reactive chain-ends. This review summarizes major types of synthetic strategies exploited to produce HMs, including the step-growth polycondensation, the self-condensing vinyl polymerization and ring opening polymerization. Compared to linear analogues, the globular and dendritic architectures of HMs endow new characteristics, such as abundant functional groups, intramolecular cavities, low viscosity, and high solubility. After discussing the general concepts, synthesis, and properties, various applications of HMs are also covered. HMs continue being materials for topical interest, and thus this review offers both concise summary for those new to the topic and for those with more experience in the field of HMs.
Collapse
Affiliation(s)
- In-Yup Jeon
- Department of Chemical Engineering, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST, Ulsan 44919, Korea.
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST, Ulsan 44919, Korea.
| |
Collapse
|
53
|
Kurmaz SV, Gak VY, Kurmaz VA, Konev DV. Preparation and Properties of Hybrid Nanostructures of Zinc Tetraphenylporphyrinate and an Amphiphilic Copolymer of N-Vinylpyrrolidone in a Neutral Aqueous Buffer Solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418020152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Qi M, Li K, Zheng Y, Rasheed T, Zhou Y. Hyperbranched Multiarm Copolymers with a UCST Phase Transition: Topological Effect and the Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3058-3067. [PMID: 29429347 DOI: 10.1021/acs.langmuir.7b04255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thermoresponsive hyperbranched multiarm copolymer with a hydrophobic hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane] core and many poly(acrylamide- co-acrylonitrile) (P(AAm- co-AN)) arms was for the first time synthesized through a reversible addition-fragmentation chain-transfer polymerization. These copolymers show reversible, sharp, and controlled temperature-responsive phase transitions at the upper critical solution temperature (UCST) in water and electrolyte solution. It is the first report on the hyperbranched copolymers with a UCST transition. Two series copolymers with variable AN content (series A) and variable arm length (series B) were synthesized to study the influence of molecular structure on the UCST transition. It was found that the UCST of copolymers could be raised by increasing the AN content or decreasing the arm length. Most interestingly, the amplification effect of the hyperbranched topological structure leads to a broad change of the UCST from 33.2 to 65.2 °C with the little change of AN content (5.9%). On the basis of variable temperature nuclear magnetic resonance, dynamic light scattering, and transmission electron microscopy, a UCST transition mechanism, in combination with hydrophilic/hydrophobic balance and multimicelle aggregate (MMA), was proposed. This work enriches the UCST copolymer topology and may extend the knowledge on the structure-activity relationship as well as the mechanism of the UCST polymers.
Collapse
Affiliation(s)
- Meiwei Qi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Ke Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
55
|
Huang M, Lu J, Han B, Zhang X, Yang W. Synthesis of hypergrafted poly[4-(N,N-diphenylamino)methylstyrene] through tandem anionic-radical polymerization of radical-inimer. Des Monomers Polym 2018; 20:476-484. [PMID: 29491819 PMCID: PMC5784871 DOI: 10.1080/15685551.2017.1365577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/29/2017] [Indexed: 11/24/2022] Open
Abstract
In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a ‘hyperlinker’ to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.
Collapse
Affiliation(s)
- Minglu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Bingyong Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
56
|
Yang J, Yun L, Zhao G, Zhang F, Chen Y, Wang C. Fabrication of pH-responsive system based on cationic gemini surfactant/sodium octanedioate and its application on controlled release of paclitaxel. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
57
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
58
|
Dinda S, Sarkar S, Das PK. Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chem Commun (Camb) 2018; 54:9929-9932. [DOI: 10.1039/c8cc03599g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glucose oxidase (GOx) mediated targeted cancer-starving therapy, by blocking the energy supply to cancer cells, has been demonstrated using GOx encapsulating monolayer vesicles of a trimesic acid based biotinylated amphiphile (TMB). GOx, loaded within the TMB vesicles, was selectively delivered inside the cancer cells, resulting in ∼6-fold higher killing of cancer cells compared to normal cells.
Collapse
Affiliation(s)
- Soumik Dinda
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| | - Saheli Sarkar
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| | - Prasanta Kumar Das
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata – 700 032
- India
| |
Collapse
|
59
|
Kurmaz SV, Rudneva TN, Sanina NA. New nitric oxide-carrier systems based on an amphiphilic copolymer of N -vinylpyrrolidone with triethylene glycol dimethacrylate. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Canning SL, Ferner JMF, Mangham NM, Wear TJ, Reynolds SW, Morgan J, Fairclough JPA, King SM, Swift T, Geoghegan M, Rimmer S. Highly-ordered onion micelles made from amphiphilic highly-branched copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00800k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform onion micelles formed from up to ten nano-structured polymer layers were produced by the aqueous self-assembly of highly-branched copolymers.
Collapse
Affiliation(s)
- Sarah L. Canning
- Department of Chemistry
- University of Sheffield
- UK
- Department of Physics and Astronomy
- University of Sheffield
| | | | | | | | | | | | | | - Stephen M. King
- ISIS Pulsed Neutron & Muon Source
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Tom Swift
- Department of Chemistry and Biosciences
- University of Bradford
- Bradford BD7 1DP
- UK
| | - Mark Geoghegan
- Department of Physics and Astronomy
- University of Sheffield
- UK
| | - Stephen Rimmer
- Department of Chemistry
- University of Sheffield
- UK
- Department of Chemistry and Biosciences
- University of Bradford
| |
Collapse
|
61
|
Samanta K, Zellermann E, Zähres M, Mayer C, Schmuck C. An inverted supramolecular amphiphile and its step-wise self-assembly into vesicular networks. SOFT MATTER 2017; 13:8108-8112. [PMID: 29075711 DOI: 10.1039/c7sm01641g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A host-guest interaction between a multi-cationic dendrimer 1 functionalized with 16 guanidiniocarbonyl pyrrole (GCP) groups on its surface and naphthalene diimide dicarboxylic acid (NDIDC) in a 1 : 8 ratio leads to the formation of a new type of inverted amphiphile. This amphiphile further self-assembles in a step-wise manner first into reverse micelles and then into reverse vesicles, which adhere to form an extensive 3D network several micrometers in length. Self-assembly is based on the aromatic stacking interactions of the surface-bound NDIDC. Furthermore, these aggregates only form at neutral pH but not in acidic or basic solutions in which no ion pairing between 1 and NDIDC is possible. The step-wise self-assembly process of the inverted amphiphile which follows a theoretical prediction recently proposed for hyperbranched polymers was studied and visualized in detail using atomic force microscopy (AFM) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Krishnananda Samanta
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45141 Essen, Germany.
| | | | | | | | | |
Collapse
|
62
|
Perala SK, Ramakrishnan S. Effect of Spacer Stiffness on the Properties of Hyperbranched Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suresh Kumar Perala
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
63
|
Dinda S, Mandal D, Sarkar S, Das PK. Self-Assembled Vesicle-Carbon Nanotube Conjugate Formation through a Boronate-Diol Covalent Linkage. Chemistry 2017; 23:15194-15202. [DOI: 10.1002/chem.201703452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Soumik Dinda
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Deep Mandal
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Saheli Sarkar
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Prasanta Kumar Das
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| |
Collapse
|
64
|
Tan H, Yu C, Lu Z, Zhou Y, Yan D. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. SOFT MATTER 2017; 13:6178-6188. [PMID: 28798969 DOI: 10.1039/c7sm01170a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembly of amphiphilic hyperbranched multiarm copolymers (HMCs) has shown great potential for preparing all kinds of delicate supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the influencing factors for the self-assembly of HMCs have been greatly lagging behind. The phase diagram of HMCs in selective solvents is very necessary but has not been disclosed up to now. Here, the self-assembly of HMCs with different hydrophilic fractions in various solvents was studied systematically by using dissipative particle dynamics (DPD) simulations. Three morphological phase diagrams are constructed and a rich variety of morphologies, ranging from spherical micelles, worm-like micelles, membranes, vesicles, vesosomes, small micellar aggregates (SMAs), and aggregates of spherical and worm-like micelles to helical micelles, are obtained. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these self-assemblies have been systematically investigated. The simulation results are consistent with available experimental observations. Besides, several novel structures, like aggregates of spherical and worm-like micelles, vesosomes and helical micelles, are firstly discovered for HMC self-assembly. We believe the current work will extend the knowledge on the self-assembly of HMCs, especially on the control of supramolecular structures and on fabricating novel self-assemblies.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | | | | | | | | |
Collapse
|
65
|
Shi Y, Liu L, Zhang F, Niu M, Zhao Y, Fan Y, Liang Y, Liu M, Zhang Z, Wang J. Catalyst System for Hydrogenation Catalysis Based on Multiarm Hyperbranched Polymer Templated Metal (Au, Pt, Pd, Cu) Nanoparticles. Polymers (Basel) 2017; 9:E459. [PMID: 30965762 PMCID: PMC6418630 DOI: 10.3390/polym9090459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023] Open
Abstract
With a hyperbranched poly(amidoamine) core and many water-soluble poly(ethylene glycol) monomethyl ether arms connected by pH-sensitive acylhydrazone bonds, multiarm hyperbranched polymer was used as nanoreactor and reductant to prepare metal nanoparticles endowed with intelligence and biocompatibility. The multiarm hyperbranched polymer encapsulated nanoparticles (NPs) showed excellent catalytic activity for hydrogenation, thus an excellent catalyst system for hydrogenation was established. The rate constants could reach as high as 3.48 L·s-1·m-2, which can be attributed to the lack of surface passivation afforded by the multiarm hyperbranched polymer.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Lixin Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Fengyue Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Mengyuan Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yanzhu Zhao
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yifan Fan
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Yanping Liang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Zhenzhu Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
| | - Junjie Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
66
|
Tochwin A, El-Betany A, Tai H, Chan KY, Blackburn C, Wang W. Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation. Polymers (Basel) 2017; 9:E443. [PMID: 30965746 PMCID: PMC6418797 DOI: 10.3390/polym9090443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs) via one-pot reversible addition-fragmentation chain transfer (RAFT) copolymerisation of poly(ethylene glycol)methyl ether methacrylate (PEGMEMA, Mn = 475 g/mol), poly(propylene glycol)methacrylate (PPGMA, Mn = 375 g/mol), and disulfide diacrylate (DSDA) using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Differential Scanning Calorimetry (DSC) was used to determine lower critical solution temperatures (LCSTs) of these copolymers, which are in the range of 17⁻57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible) and crosslinkable (via thiol-ene click chemistry) properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.
Collapse
Affiliation(s)
- Anna Tochwin
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - Alaa El-Betany
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - Hongyun Tai
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - Kai Yu Chan
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - Chester Blackburn
- School of Chemistry, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - Wenxin Wang
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
67
|
Ge XH, Geng YH, Chen J, Xu JH. Smart Amphiphilic Janus Microparticles: One-Step Synthesis and Self-Assembly. Chemphyschem 2017; 19:2009-2013. [DOI: 10.1002/cphc.201700838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xue-Hui Ge
- The State Key Lab of Chemical Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Yu-Hao Geng
- The State Key Lab of Chemical Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jian Chen
- The State Key Lab of Chemical Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jian-Hong Xu
- The State Key Lab of Chemical Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
68
|
Solubilization of phenols by multimolecular aggregates formed by low molecular weight hyperbranched polyglycidol. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Uner A, Doganci E, Tasdelen MA, Yilmaz F, Gürek AG. Synthesis, characterization and surface properties of star-shaped polymeric surfactants with polyhedral oligomeric silsesquioxane core. POLYM INT 2017. [DOI: 10.1002/pi.5420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Uner
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| | - Erdinc Doganci
- Department of Chemistry and Chemical Processing Technology; Kocaeli University; Kocaeli Turkey
| | | | | | - Ayşe Gül Gürek
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| |
Collapse
|
70
|
Sun M, Yin C, Gu Y, Li Y, Xin Z. Synthesis and characterization of hyperbranched poly(ester-amine) by Michael addition polymerization. Des Monomers Polym 2017; 20:458-467. [PMID: 29491817 PMCID: PMC5784881 DOI: 10.1080/15685551.2017.1351728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/01/2017] [Indexed: 11/21/2022] Open
Abstract
A series of tertiary amine-based hyperbranched poly(amine-ester)s have been synthesized by Michael addition polymerization of trifunctional monomer, TMEA and difunctional monomer, diacylates in chloroform, and the resultant polymers were subsequently treated with mercaptoethenol or 1-dodecanethiol for improving stability in storage. The caption efficiency of mercaptoethanol is much better than that of 1-dodecanthiol. Kinetic study reveals that the thiol group is consumed faster than the acrylate group when the polymerization with feed molar ratio of diacrylate/TMEA = 2/1 was carried out. At initial polymerization, monomer conversion increases fast, but the molecular weights increase slowly and sharp increase of the molecular weight occurs at the final polymerization. The hyperbranched polymers were well characterized by 1H NMR spectra and TD-SEC, and DBs of the polymers obtained are between 0.6 and 0.82, as well as the molar ratios of diacrylate/TMEA in the hyperbranched polymers are between 1.60 and 1.82. The fluorescence efficiency and quantum yields of HypET20, HypHT24 and HypDT24 has the following sequence: HypET20 > HypHT24 > HypDT24.
Collapse
Affiliation(s)
- Miao Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, PR China
| | - Chunxiao Yin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, PR China
| | - Yanan Gu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, PR China
| | - Yun Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, PR China
| | - Zhirong Xin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, PR China
| |
Collapse
|
71
|
Abstract
Drug molecules transformed into nanoparticles or endowed with nanostructures with or without the aid of carrier materials are referred to as "nanomedicines" and can overcome some inherent drawbacks of free drugs, such as poor water solubility, high drug dosage, and short drug half-life in vivo. However, most of the existing nanomedicines possess the drawback of low drug-loading (generally less than 10%) associated with more carrier materials. For intravenous administration, the extensive use of carrier materials might cause systemic toxicity and impose an extra burden of degradation, metabolism, and excretion of the materials for patients. Therefore, on the premise of guaranteeing therapeutic effect and function, reducing or avoiding the use of carrier materials is a promising alternative approach to solve these problems. Recently, high drug-loading nanomedicines, which have a drug-loading content higher than 10%, are attracting increasing interest. According to the fabrication strategies of nanomedicines, high drug-loading nanomedicines are divided into four main classes: nanomedicines with inert porous material as carrier, nanomedicines with drug as part of carrier, carrier-free nanomedicines, and nanomedicines following niche and complex strategies. To date, most of the existing high drug-loading nanomedicines belong to the first class, and few research studies have focused on other classes. In this review, we investigate the research status of high drug-loading nanomedicines and discuss the features of their fabrication strategies and optimum proposal in detail. We also point out deficiencies and developing direction of high drug-loading nanomedicines. We envision that high drug-loading nanomedicines will occupy an important position in the field of drug-delivery systems, and hope that novel perspectives will be proposed for the development of high drug-loading nanomedicines.
Collapse
Affiliation(s)
- Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Youshen Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
72
|
Huang Y, Qiu F, Chen D, Shen L, Xu S, Guo D, Su Y, Yan D, Zhu X. Color-Convertible, Unimolecular, Micelle-Based, Activatable Fluorescent Probe for Tumor-Specific Detection and Imaging In Vitro and In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604062. [PMID: 28383175 DOI: 10.1002/smll.201604062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Recent years have witnessed significant progress in molecular probes for cancer diagnosis. However, the conventional molecular probes are designed to be "always-on" by attachment of tumor-targeting ligands, which limits their abilities to diagnose tumors universally due to the variations of targeting efficiency and complex environment in different cancers. Here, it is proposed that a color-convertible, activatable probe is responding to a universal tumor microenvironment for tumor-specific diagnosis without targeting ligands. Based on the significant hallmark of up-regulated hydrogen peroxide (H2 O2 ) in various tumors, a novel unimolecular micelle constructed by boronate coupling of a hydrophobic hyperbranched poly(fluorene-co-2,1,3-benzothiadiazole) core and many hydrophilic poly(ethylene glycol) arms is built as an H2 O2 -activatable fluorescent nanoprobe to delineate tumors from normal tissues through an aggregation-enhanced fluorescence resonance energy transfer strategy. This color-convertible, activatable nanoprobe is obviously blue-fluorescent in various normal cells, but becomes highly green-emissive in various cancer cells. After intravenous injection to tumor-bearing mice, green fluorescent signals are only detected in tumor tissue. These observations are further confirmed by direct in vivo and ex vivo tumor imaging and immunofluorescence analysis. Such a facile and simple methodology without targeting ligands for tumor-specific detection and imaging is worthwhile to further development.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingyue Shen
- Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongbo Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
73
|
Hou ZL, Huang T, Cai CY, Resheed T, Yu CY, Zhou YF, Yan DY. Polymer vesicle sensor through the self-assembly of hyperbranched polymeric ionic liquids for the detection of SO2 derivatives. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1921-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Huang T, Hou Z, Xu Q, Huang L, Li C, Zhou Y. Polymer Vesicle Sensor for Visual and Sensitive Detection of SO 2 in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:340-346. [PMID: 27992208 DOI: 10.1021/acs.langmuir.6b03869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study reports the first polymer vesicle sensor for the visual detection of SO2 and its derivatives in water. A strong binding ability between tertiary alkanolamines and SO2 has been used as the driving force for the detection by the graft of tertiary amine alcohol (TAA) groups onto an amphiphilic hyperbranched multiarm polymer, which can self-assemble into vesicles with enriched TAA groups on the surface. The polymer vesicles will undergo proton exchange with cresol red (CR) to produce CR-immobilized vesicles (CR@vesicles). Subsequently, through competitive binding with the TAA groups between CR and SO2 or HSO3-, the CR@vesicles (purple) can quickly change into SO2@vesicles (colorless) with the release of protonated CR (yellow). Such a fast purple to yellow transition in the solution allows the visual detection of SO2 or its derivatives in water by the naked eye. A visual test paper for SO2 gas has also been demonstrated by the adsorption of CR@vesicles onto paper. Meanwhile, the detection limit of CR@vesicles for HSO3- is approximately 25 nM, which is improved by approximately 30 times when compared with that of small molecule-based sensors with a similar structure (0.83 μM). Such an enhanced detection sensitivity should be related to the enrichment of TAA groups as well as the CR in CR@vesicles. In addition, the CR@vesicle sensors also show selectivity and specificity for the detection of SO2 or HSO3- among anions such as F-, Br-, Cl-, SO42-, NO2-, C2O42-, S2O32-, SCN-, AcO-, SO32-, S2-, and HCO3-.
Collapse
Affiliation(s)
- Tong Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zhilin Hou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Qingsong Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Huang
- School of Chemical Engineering and Technology, Harbin Institute of Technology , Harbin 150001, PR China
| | - Chuanlong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
75
|
Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
76
|
Zhang B, Zhao SY, Wang HH, Zhao TJ, Liu YX, Lv LB, Wei X, Li XH, Chen JS. The solution-phase process of a g-C3N4/BiVO4 dyad to a large-area photoanode: interfacial synergy for highly efficient water oxidation. Chem Commun (Camb) 2017; 53:10544-10547. [DOI: 10.1039/c7cc05444k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inactive g-C3N4 nanolayers could act as a voltage-driven “pump” to extract electrons from BiVO4 and promote the hole–electron separation efficiency.
Collapse
Affiliation(s)
- Bing Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Shu-Yu Zhao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Hong-Hui Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Tian-Jian Zhao
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yong-Xing Liu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Li-Bing Lv
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xiao Wei
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
77
|
Panja S, Dey G, Bharti R, Mandal P, Mandal M, Chattopadhyay S. Metal Ion Ornamented Ultrafast Light-Sensitive Nanogel for Potential in Vivo Cancer Therapy. CHEMISTRY OF MATERIALS 2016; 28:8598-8610. [DOI: 10.1021/acs.chemmater.6b03440] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudipta Panja
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Goutam Dey
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rashmi Bharti
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Pijush Mandal
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Mahitosh Mandal
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Chattopadhyay
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
78
|
Huang Y, Qiu F, Shen L, Chen D, Su Y, Yang C, Li B, Yan D, Zhu X. Combining Two-Photon-Activated Fluorescence Resonance Energy Transfer and Near-Infrared Photothermal Effect of Unimolecular Micelles for Enhanced Photodynamic Therapy. ACS NANO 2016; 10:10489-10499. [PMID: 27792300 DOI: 10.1021/acsnano.6b06450] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent years have witnessed significant progress in the field of two-photon-activated photodynamic therapy (2P-PDT). However, the traditional photosensitizer (PS)-based 2P-PDT remains a critical challenge in clinics due to its low two-photon absorption (2PA) cross sections. Here, we propose that the therapeutic activity of current PSs can be enhanced through a combination of two-photon excited fluorescence resonance energy transfer (FRET) strategy and photothermal effect of near-infrared (NIR) light. A core-shell unimolecular micelle with a large two-photon-absorbing conjugated polymer core and thermoresponsive shell was constructed as a high two-photon light-harvesting material. After PSs were grafted onto the surface of a unimolecular micelle, the FRET process from the conjugated core to PSs could be readily switched "on" to kill cancer by the collapsed thermoresponsive shell due to the photothermal effect of NIR light. Such NIR-triggered FRET leads to an enhanced 2PA activity of the traditional PSs and, in turn, amplifies their cytotoxic singlet oxygen generation. Eventually, both in vitro and in vivo PDT efficiencies treated with the thermoresponsive micelles were dramatically enhanced under NIR light irradiation, as compared to pure PSs excited by traditional visible light. Such a facile and simple methodology for the enhancement of the photodynamic antitumor effect holds great promises for cancer therapy with further development.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Lingyue Shen
- Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University , 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao Yang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University , 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Bo Li
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University , 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
79
|
Prabakaran P, Prasad E. Janus Dendrimer from Poly(Aryl Ether) Linked PAMAM for Supergelation and Guest Release. ChemistrySelect 2016. [DOI: 10.1002/slct.201601335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palani Prabakaran
- Department of chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Edamana Prasad
- Department of chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
80
|
Dinda S, Ghosh M, Das PK. Spontaneous Formation of a Vesicular Assembly by a Trimesic Acid Based Triple Tailed Amphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6701-6712. [PMID: 27300311 DOI: 10.1021/acs.langmuir.6b01942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Trimesic acid based amino acid functionalized triple tailed amphiphiles (TMA-1 and TMA-2) were synthesized. The triskelion amphiphile TMA-1 with a neutral side chain self-assembled into a vesicle in 2:1 (v/v) DMSO-water, while the ammonium side chain decorated TMA-2 formed vesicles in pure water. Microscopic and spectroscopic characterizations were carried out to confirm the self-aggregated vesicular morphology and its size which is around 250-300 nm in the case of TMA-1 and around 100-150 nm for TMA-2 vesicles. The unique structure of these amphiphiles with an aromatic core and three hydrophilic side chains led to an interlamellar orientation of their hydrophobic (aromatic) domain, while hydrophilic terminals were directed toward the aqueous domain. These amphiphiles formed monolayered vesicles possibly through H-aggregation during the process of self-assembly, which is different from conventional bilayered vesicles formed by twin-chain lipid molecules. The time resolved decay curve of hydrophobic dye entrapped within these vesicles indicated that the hydrophobicity within the microenvironment of TMA-1 and TMA-2 vesicles is higher than that in pure water; however, at the same time, it is comparatively lower than that observed in bilayered phosphocholine vesicles. Furthermore, calcein dye was entrapped within these vesicles to ensure their encapsulation efficiency (65-85%). The ability to entrap dye molecules by these synthesized vesicles was utilized to encapsulate and deliver anticancer drug doxorubicin inside the mammalian cells. A simple synthetic procedure and facile aggregation to vesicular self-assembly with superior dye/drug encapsulation proficiency made these vesicles a potential cellular transporter.
Collapse
Affiliation(s)
- Soumik Dinda
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| | - Moumita Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| | - Prasanta Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science Jadavpur , Kolkata 700 032, India
| |
Collapse
|
81
|
Nie J, Wang Y, Wang W. In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy. Int J Pharm 2016; 509:168-177. [DOI: 10.1016/j.ijpharm.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022]
|
82
|
Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S. Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12063-12074. [PMID: 27128684 DOI: 10.1021/acsami.6b03820] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.
Collapse
Affiliation(s)
- S Panja
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - G Dey
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - R Bharti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - K Kumari
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - T K Maiti
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - M Mandal
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| | - S Chattopadhyay
- Rubber Technology Centre, ‡School of Medical Science and Technology, and §Department of Biotechnology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
83
|
Dai Y, Zhang X, Zhuo R. Amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ϵ-caprolactone): synthesis, self-assembly and application as stabilizer of platinum nanoparticles. POLYM INT 2016. [DOI: 10.1002/pi.5118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Dai
- Faculty of Material Science and Chemistry; China University of Geosciences; Wuhan 430074 China
- Engineering Research Center of Nano-Geo Materials of Ministry of Education; China University of Geosciences; Wuhan 430074 China
| | - Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry, Wuhan University; Wuhan 430072 China
| |
Collapse
|
84
|
Tian N, Ni X, Shen Z. Synthesis of main-chain imidazolium-based hyperbranched polymeric ionic liquids and their application in the stabilization of Ag nanoparticles. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
85
|
Luan J, Lu C, Guo Y, Li F, Wang G. Influence of selective solvents on self-assembly behaviors of amphiphilic hyperbranched poly(aryl ether ketone)-graft-poly(ethylene glycol) rod–coil copolymer. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008316639116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An amphiphilic hyperbranched poly(aryl ether ketone)- graft-poly(ethylene glycol) (HPAEK- graft-PEG) rod–coil copolymer was synthesized by grafting linear PEG onto hydroxyl-terminated HPAEK (OH-HPAEK). The molecular structure, the number-average molecular weight and the thermal properties of HPAEK- graft-PEG were characterized by proton nuclear magnetic resonance and Fourier transform infrared spectroscopies, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, respectively. The self-assembly behaviors of HPAEK- graft-PEG in the mixed solvents were investigated by transmission electron microscopy and scanning electron microscopy. The results demonstrated that the selective solvent in the used mixed solvents exerted remarkable influence on the morphology of the resulting micelles. When the mixed solvents were water/tetrahydrofuran (THF), trichloromethane/THF, and toluene/THF, that is, with the decrease of the selective solvents in polarity, HPAEK- graft-PEG could self-assemble into the regular microspheres with obvious core–shell structure, the similar quadrilateral-shaped micelles with the dimension of about 20 nm and the large complicated clew-shaped micelles, as well as the irregular large compound micelles, respectively. It is worth mentioning that the similar quadrilateral-shaped micelles were different from the toroidal micelles reported already, which had relatively obvious “angle”. The phenomenon may be ascribed that the rigid characteristic of rod HAPEK segment was conducive to the maintenance of the metastable state.
Collapse
Affiliation(s)
- Jiashuang Luan
- College of Chemistry, Engineering Research Center of High Performance Plastics, Ministry of Education, Jilin University, Changchun, China
| | - Chunhua Lu
- Department of Applied Chemical Engineering, Jilin Vocational College of Industry and Technology, Jilin, China
| | - Yunliang Guo
- College of Chemistry, Engineering Research Center of High Performance Plastics, Ministry of Education, Jilin University, Changchun, China
| | - Feng Li
- College of Chemistry, Engineering Research Center of High Performance Plastics, Ministry of Education, Jilin University, Changchun, China
| | - Guibin Wang
- College of Chemistry, Engineering Research Center of High Performance Plastics, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
86
|
Feng A, Liang J, Ji J, Dou J, Wang S, Yuan J. CO2-breathing and piercing polymersomes as tunable and reversible nanocarriers. Sci Rep 2016; 6:23624. [PMID: 27020003 PMCID: PMC4810324 DOI: 10.1038/srep23624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 11/11/2022] Open
Abstract
Despite numerous studies on utilizing polymeric vesicles as nanocapsules, fabrication of tunable molecular pathways on transportable vesicle walls remains challenging. Traditional methods for building penetrated channels on vesicular membrane surface often involve regulating the solvent polarity or photo-cross-linking. Herein, we developed a neat, green approach of stimulation by using CO2 gas as “molecular drill” to pierce macroporous structures on the membrane of polymersomes. By simply introducing CO2/N2 gases into the aqueous solution of self-assemblies without accumulating any byproducts, we observed two processes of polymeric shape transformation: “gas breathing” and “gas piercing.” Moreover, the pathways in terms of dimension and time were found to be adjustable simply by controlling the CO2 stimulation level for different functional encapsulated molecules in accumulation, transport, and releasing. CO2-breathing and piercing of polymersomes offers a promising functionality to tune nanocapsules for encapsulating and releasing fluorescent dyes and bioactive molecules in living systems and also a unique platform to mimic the structural formation of nucleus pore complex and the breathing process in human beings and animals.
Collapse
Affiliation(s)
- Anchao Feng
- Key Lab of Organic Optoelectronics &Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jiamei Liang
- Key Lab of Organic Optoelectronics &Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jinzhao Ji
- Key Lab of Organic Optoelectronics &Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Jinbo Dou
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shanfeng Wang
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics &Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| |
Collapse
|
87
|
Sun M, Yin W, Dong X, Yang W, Zhao Y, Yin M. Fluorescent supramolecular micelles for imaging-guided cancer therapy. NANOSCALE 2016; 8:5302-5312. [PMID: 26881415 DOI: 10.1039/c6nr00450d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xinghua Dong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
88
|
Adachi H, Hirai Y, Ikeda T, Maeda M, Hori R, Kutsumizu S, Haino T. Photoresponsive Toroidal Nanostructure Formed by Self-Assembly of Azobenzene-Functionalized Tris(phenylisoxazolyl)benzene. Org Lett 2016; 18:924-7. [DOI: 10.1021/acs.orglett.5b03622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hiroaki Adachi
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yuko Hirai
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Ikeda
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Makoto Maeda
- Natural
Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Ryo Hori
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Takeharu Haino
- Department
of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
89
|
Huang T, Li H, Huang L, Li S, Li K, Zhou Y. Hybrid Vesicles with Alterable Fully Covered Armors of Nanoparticles: Fabrication, Catalysis, and Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:991-996. [PMID: 26766236 DOI: 10.1021/acs.langmuir.5b04478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work reports on the facile preparation of hybrid polymer vesicles with alterable armors of metal nanoparticles by using a novel hyperbranched polymer vesicle as the templates. The vesicles were prepared through the aqueous self-assembly of a hyperbranched multiarm copolymers with many tertiary amino groups on the surface, which can electrostatically complexed or coordinated with metal ions like AuCl4(-), PtCl6(2-), and Ag(+) ions. Subsequently, the vesicles coated with metal ions can be in situ reduced into metal nanoparticles, through which a series of surface-engineered vesicles (Au@vesicles, Ag@vesicles, Pt@vesicles) with an advantage of fully covered metal nanoparticles on the surface could be readily prepared. The morphologies, structures, and formation mechanism of the as-prepared hybrid vesicles were carefully characterized, and the obtained hybrid vesicles also showed great potentials in catalysis and surface-enhanced Raman scattering (SERS) applications.
Collapse
Affiliation(s)
- Tong Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Huimei Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Huang
- School of Chemical Engineering and Technology, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ke Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
90
|
Liu TT, Tian W, Song YL, Bai Y, Wei PL, Yao H, Yan HX. Reversible Self-Assembly of Backbone-Thermoresponsive Long Chain Hyperbranched Poly( N-Isopropyl Acrylamide). Polymers (Basel) 2016; 8:polym8020033. [PMID: 30979127 PMCID: PMC6432596 DOI: 10.3390/polym8020033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
In this paper, we mainly described the reversible self-assembly of a backbone-thermoresponsive, long-chain, hyperbranched poly(N-isopropyl acrylamide) (LCHBPNIPAM) in aqueous solution. Here, we revealed a reversible self-assembly behavior of LCHBPNIPAM aqueous solution derived from temperature. By controlling the temperature of LCHBPNIPAM aqueous solution, we tune the morphology of the LCHBPNIPAM self-assemblies. When the solution temperature increased from the room temperature to the lower critical solution temperature of PNIPAM segments, LCHBPNIPAM self-assembled from multi-compartment vesicles into solid micelles. The morphology of LCHBPNIPAM self-assemblies changed from solid micelles to multi-compartment vesicles again when the temperature decreased back to the room temperature. The size presented, at first, an increase, and then a decrease, tendency in the heating-cooling process. The above thermally-triggered self-assembly behavior of LCHBPNIPAM aqueous solution was investigated by dynamic/static light scattering, transmission electron microscopy, atomic force microscopy, fluorescence spectroscopy, 1H nuclear magnetic resonance in D2O, and attenuated total reflectance Fourier transform infrared spectroscopy. These results indicated that LCHBPNIPAM aqueous solution presents a reversible self-assembly process. The controlled release behaviors of doxorubicin from the vesicles and micelles formed by LCHBPNIPAM further proved the feasibility of these self-assemblies as the stimulus-responsive drug delivery system.
Collapse
Affiliation(s)
- Ting-Ting Liu
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yan-Li Song
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yang Bai
- Xi'an Mordern Chemistry Research Institute, Xi'an 710065, China.
| | - Peng-Li Wei
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hao Yao
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hong-Xia Yan
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
91
|
Yu C, Ma L, Li K, Li S, Liu Y, Zhou Y, Yan D. Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules. Phys Chem Chem Phys 2016; 18:22446-57. [DOI: 10.1039/c6cp03726g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computer simulation could disclose more details about the conformations of HPGs and their encapsulation behaviors of guest molecules.
Collapse
Affiliation(s)
- Chunyang Yu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Li Ma
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Ke Li
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yannan Liu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
92
|
Huang Y, Yuan R, Xu F, Mai Y, Feng X, Yan D. Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a “rod–coil” graft copolymer with a polyphenylene backbone. Polym Chem 2016. [DOI: 10.1039/c5py01969a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents a unique ultra-large sheet formation through 1D to 2D hierarchical self-assembly of a rod–coil graft copolymer containing a rigid polyphenylene backbone tethered with flexible poly(ethylene oxide) side chains.
Collapse
Affiliation(s)
- Yinjuan Huang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Rui Yuan
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinliang Feng
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- Department of Chemistry and Food Chemistry
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
93
|
Soundarajan K, Periyasamy R, Mohan Das T. Design and synthesis of sugar-benzohydrazides: low molecular weight organogelators. RSC Adv 2016. [DOI: 10.1039/c6ra18715c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel class of methyltriglycol benzohydrazide based N-glycosylamines containing long alkyl chain derivatives were synthesized in good yield and characterized using NMR (1H and 13C) spectral analysis.
Collapse
Affiliation(s)
- Kamalakannan Soundarajan
- Department of Chemistry
- School of Basic and Applied Sciences
- Central University of Tamil Nadu
- Thiruvarur-610101
- India
| | - Rathinam Periyasamy
- Department of Chemistry
- School of Basic and Applied Sciences
- Central University of Tamil Nadu
- Thiruvarur-610101
- India
| | - Thangamuthu Mohan Das
- Department of Chemistry
- School of Basic and Applied Sciences
- Central University of Tamil Nadu
- Thiruvarur-610101
- India
| |
Collapse
|
94
|
Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem 2016. [DOI: 10.1039/c6py01006g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unimolecular micelles have high functionalities, encapsulation capabilities and site specific confinement abilities in various applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
95
|
Wang J, Wang X, Yang F, Shen H, You Y, Wu D. Effect of Topological Structures on the Self-Assembly Behavior of Supramolecular Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13834-13841. [PMID: 26632872 DOI: 10.1021/acs.langmuir.5b03823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three types of azobenzene-based telechelic guest polymers, PEG-azo, azo-PEG-azo, and PEG-azo4, were synthesized by a facile method. Subsequently, a series supramolecular amphiphiles with three distinct topological structures (hemitelechelic, ditelechelic, and quadritelechelic) were constructed through coupling with host polymer β-cyclodextrin-poly(l-lactide) (β-CD-PLLA) by combined host-guest complexation. Research on the self-assembly behavior of these amphiphiles demonstrated that the variation in self-assembly was tuned by the synergistic interaction of hydrophilicity and the curvature of the polymer chains, and very importantly, the topological structure of amphiphiles demonstrated effective control of the self-assembly behavior.
Collapse
Affiliation(s)
- Juan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, P. R. China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
96
|
Zhang M, Liu L, Chang W, Li J. Controllable and Reversible Dimple-Shaped Aggregates Induced by Macrocyclic Recognition Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13581-13589. [PMID: 26609556 DOI: 10.1021/acs.langmuir.5b03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel dimethyl acrylate 18-membered macrocycle (DMECE), acting as both bifunctional monomer and cross-linker, was designed and synthesized, and thus employed to construct a series of macrocycle-containing amphiphilic hyperbranched polymers (HBPs). The macrocyclic recognition effect between the HBPs and alkali metal ions showed that Na(+) was introduced in 1:1 interactive mode, whereas K(+) and Rb(+) were in 2:1 ratio. Through the formation of the DMECE/K(+) = 2:1 rigid "sandwich" complex of amphiphilic hyperbranched polymers, dimple-shaped aggregates were observed by TEM, SEM and AFM. Moreover, the initial concentration, the nature of solvent, the mode and affinity of the macrocyclic recognition effect as well as the amount of K(+), were essential control factors for the formation of dimple-shaped aggregates. Most importantly, the macrocyclic recognition effect endows the reversibility of the dimple-shaped aggregates and the size controllability of its circular opening, which provides a new strategy for design novel macrocycle-containing HBPs and great potential application in the field of capture and release.
Collapse
Affiliation(s)
- Ming Zhang
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Lingyan Liu
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Weixing Chang
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| | - Jing Li
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Weijin Road 94#, Nankai District, Tianjin, P. R. China
| |
Collapse
|
97
|
Abstract
Dendritic molecules are an exciting research topic because of their highly branched architecture, multiple functional groups on the periphery, and very pertinent features for various applications. Self-assembling dendritic amphiphiles have produced different nanostructures with unique morphologies and properties. Since their self-assembly in water is greatly relevant for biomedical applications, researchers have been looking for a way to rationally design dendritic amphiphiles for the last few decades. We review here some recent developments from investigations on the self-assembly of dendritic amphiphiles into various nanostructures in water on the molecular level. The main content of the review is divided into sections according to the different nanostructure morphologies resulting from the dendritic amphiphiles' self-assembly. Finally, we conclude with some remarks that highlight the self-assembling features of these dendritic amphiphiles.
Collapse
Affiliation(s)
- Bala N S Thota
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| |
Collapse
|
98
|
Qiu F, Huang Y, Zhu X. Fluorescent Unimolecular Conjugated Polymeric Micelles for Biological Applications. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P. R. China
| | - Yu Huang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
99
|
Amino acid modified hyperbranched poly(ethylene imine) with disaccharide decoration as anionic core–shell architecture: Influence of the pH and molecular architecture on solution behaviour. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
100
|
Tan H, Wang W, Yu C, Zhou Y, Lu Z, Yan D. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching. SOFT MATTER 2015; 11:8460-8470. [PMID: 26364696 DOI: 10.1039/c5sm01495f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs.
Collapse
Affiliation(s)
- Haina Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Wei Wang
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Zhongyuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, P. R. China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|