51
|
Semenyuk PI, Muronetz VI, Haertlé T, Izumrudov VA. Effect of poly(phosphate) anions on glyceraldehyde-3-phosphate dehydrogenase structure and thermal aggregation: comparison with influence of poly(sulfoanions). Biochim Biophys Acta Gen Subj 2013; 1830:4800-5. [PMID: 23811344 DOI: 10.1016/j.bbagen.2013.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/09/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well documented that poly(sulfate) and poly(sulfonate) anions suppress protein thermal aggregation much more efficiently than poly(carboxylic) anions, but as a rule, they denature protein molecules. In this work, a polymer of different nature, i.e. poly(phosphate) anion (PP) was used to elucidate the influence of phosphate groups on stability and thermal aggregation of the model enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). METHODS Isothermal titration calorimetry and differential scanning calorimetry were used for studying the protein-polyanion interactions and the influence of bound polyanions on the protein structure. The enzymatic activity of GAPDH and size of the complexes were measured. The aggregation level was determined from the turbidity. RESULTS Highly polymerized PP chains were able to suppress the aggregation completely, but at significantly higher concentrations as compared with poly(styrenesulfonate) (PSS) or dextran sulfate chains of the same degree of polymerization. The effect of PP on the enzyme structure and activity was much gentler as opposed to the binding of dextran sulfate or, especially, PSS that denatured GAPDH molecules with the highest efficacy caused by short PSS chains. These findings agreed well with the enhanced affinity of polysulfoanions to GAPDH. CONCLUSIONS The revealed trends might help to illuminate the mechanism of control of proteins functionalities by insertion of charged groups of different nature through posttranslational modifications. GENERAL SIGNIFICANCE Practical implementation of the results could be the use of PP chains as promising tools to suppress the proteins aggregation without noticeable loss in the enzymatic activity.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow, Russia.
| | | | | | | |
Collapse
|
52
|
Seo JS, Lee S, Poulter CD. Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. J Am Chem Soc 2013; 135:8973-80. [PMID: 23746333 PMCID: PMC3716362 DOI: 10.1021/ja402447g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immobilized antibodies are useful for the detection of antigens in highly sensitive microarray diagnostic applications. Arrays with the antibodies attached regioselectively in a uniform orientation are typically more sensitive than those with random orientations. Direct regioselective immobilization of antibodies on a solid support typically requires a modified form of the protein. We now report a general approach for the regioselective attachment of antibodies to a surface using truncated forms of antibody-binding proteins A, G, and L that retain the structural motifs required for antibody binding. The recombinant proteins have a C-terminal CVIX protein farnesyltransferase recognition motif that allows us to append a bioorthogonal azide or alkyne moiety and use the Cu(I)-catalyzed Huisgen cycloaddition to attach the binding proteins to a suitably modified glass surface. This approach offers several advantages. The recombinant antibody-binding proteins are produced in Escherichia coli, chemoselectively modified posttranslationally in the cell-free homogenate, and directly attached to the glass surface without the need for purification at any stage of the process. Complexes between immobilized recombinant proteins A, G, and L and their respective strongly bound antibodies were stable to repeated washing with PBST buffer at pH 7.2. However, the antibodies could be stripped from the slides by treatment with 0.1 M glycine·HCl buffer, pH 2.6, for 30 min and regenerated by shaking with PBS buffer, pH 7.2, at 4 °C overnight. The recombinant forms of proteins A, G, and L can be used separately or in combination to give glass surfaces capable of binding a wide variety of antibodies.
Collapse
Affiliation(s)
- Jin-soo Seo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112
| | | | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112
| |
Collapse
|
53
|
Abe H, Wakabayashi R, Yonemura H, Yamada S, Goto M, Kamiya N. Split Spy0128 as a Potent Scaffold for Protein Cross-Linking and Immobilization. Bioconjug Chem 2013; 24:242-50. [DOI: 10.1021/bc300606b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Abe
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Hiroaki Yonemura
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Sunao Yamada
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| |
Collapse
|
54
|
Dennler P, Schibli R, Fischer E. Enzymatic antibody modification by bacterial transglutaminase. Methods Mol Biol 2013; 1045:205-15. [PMID: 23913149 DOI: 10.1007/978-1-62703-541-5_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymatic posttranslational modification of proteins permits more precise control over conjugation site than chemical modification of reactive amino acid side chains. Ideally, protein modification by an enzyme yields completely homogeneous conjugates with improved properties for research or therapeutic use. As an example, we here provide a protocol for bacterial transglutaminase (BTGase)-mediated conjugation of cadaverine-derivatized substrates to an IgG1, resulting in stable bond formation between glutamine 295 of the antibody heavy chain and the substrate. This procedure requires enzymatic removal of N-linked glycans from the antibody and yields a defined substrate/antibody ratio of 2:1. Alternatively, a mutant aglycosylated IgG1 variant may be generated by site-directed mutagenesis. The mutation introduces an additional glutamine and yields a substrate/antibody ratio of 4:1 after coupling. Finally, we describe an ESI-TOF mass spectrometry-based method to analyze the uniformity of the resulting conjugates. The presented approach allows the facile generation of homogeneous antibody conjugates and can be applied to any IgG1 and a wide range of cadaverine-derivatized substrates.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | | | | |
Collapse
|
55
|
Trader DJ, Carlson EE. Chemoselective hydroxyl group transformation: an elusive target. MOLECULAR BIOSYSTEMS 2012; 8:2484-93. [PMID: 22695722 PMCID: PMC3430791 DOI: 10.1039/c2mb25122a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described.
Collapse
Affiliation(s)
- Darci J. Trader
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
| | - Erin E. Carlson
- Department of Chemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive Bloomington, IN 47405
| |
Collapse
|
56
|
Minamihata K, Goto M, Kamiya N. Control of a Tyrosyl Radical Mediated Protein Cross-Linking Reaction by Electrostatic Interaction. Bioconjug Chem 2012; 23:1600-9. [DOI: 10.1021/bc300137s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kosuke Minamihata
- Department
of Applied Chemistry, Graduate School of Engineering,
and §Center for Future Chemistry,Kyushu University
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering,
and §Center for Future Chemistry,Kyushu University
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering,
and §Center for Future Chemistry,Kyushu University
| |
Collapse
|
57
|
Chen X, Muthoosamy K, Pfisterer A, Neumann B, Weil T. Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjug Chem 2012; 23:500-8. [PMID: 22339664 DOI: 10.1021/bc200556n] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (19) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Organic Chemistry III, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
58
|
Mizukami S, Watanabe S, Akimoto Y, Kikuchi K. No-Wash Protein Labeling with Designed Fluorogenic Probes and Application to Real-Time Pulse-Chase Analysis. J Am Chem Soc 2012; 134:1623-9. [DOI: 10.1021/ja208290f] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shin Mizukami
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research
Center (IFReC), Osaka University, 3-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Shuji Watanabe
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuri Akimoto
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Division of Advanced Science
and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research
Center (IFReC), Osaka University, 3-1 Yamadaoka,
Suita, Osaka 565-0871, Japan
| |
Collapse
|
59
|
Lin X, Xie J, Chen X. Protein-based tumor molecular imaging probes. Amino Acids 2011; 41:1013-36. [PMID: 20232092 PMCID: PMC3617487 DOI: 10.1007/s00726-010-0545-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging.
Collapse
Affiliation(s)
- Xin Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
60
|
Chen YX, Triola G, Waldmann H. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins. Acc Chem Res 2011; 44:762-73. [PMID: 21648407 DOI: 10.1021/ar200046h] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding protein structure and function is essential for uncovering the secrets of biology, but it remains extremely challenging because of the high complexity of protein networks and their wiring. The daunting task of elucidating these interconnections requires the concerted application of methods emerging from different disciplines. Chemical biology integrates chemistry, biology, and pharmacology and has provided novel techniques and approaches to the investigation of biological processes. Among these, site-specific protein labeling with functional groups such as fluorophors, spin probes, and affinity tags has greatly facilitated both in vitro and in vivo studies of protein structure and function. Bioorthogonal chemical reactions, which enable chemo- and regioselective attachment of small-molecule probes to proteins, are particularly attractive and relevant for site-specific protein labeling. The introduction of powerful labeling techniques also has inspired the development of novel strategies for surface immobilization of proteins to create protein biochips for in vitro characterization of biochemical activities or interactions between proteins. Because this process requires the efficient immobilization of proteins on surfaces while maintaining structure and activity, tailored methods for protein immobilization based on bioorthogonal chemical reactions are in high demand. In this Account, we summarize recent developments and applications of site-specific protein labeling and surface immobilization of proteins, with a special focus on our contributions to these fields. We begin with the Staudinger ligation, which involves the formation of a stable amide bond after the reaction of a preinstalled azide with a triaryl phosphine reagent. We then examine the Diels-Alder reaction, which requires the protein of interest to be functionalized with a diene, enabling conjugation to a variety of dienophiles under physiological conditions. In the oxime ligation, an oxyamine is condensed with either an aldehyde or a ketone to form an oxime; we successfully pursued the inverse of the standard technique by attaching the oxyamine, rather than the aldehyde, to the protein. The click sulfonamide reaction, which involves the Cu(I)-catalyzed reaction of sulfonylazides with terminal alkynes, is then discussed. Finally, we consider in detail the photochemical thiol-ene reaction, in which a thiol adds to an ene group after free radical initiation. Each of these methods has been successfully developed as a bioorthogonal transformation for oriented protein immobilization on chips and for site-specific protein labeling under physiological conditions. Despite the tremendous progress in developing such transformations over the past decade, however, the demand for new bioorthogonal methods with improved kinetics and selectivities remains high.
Collapse
Affiliation(s)
- Yong-Xiang Chen
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Fakultät Chemie, Lehrbereich Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Gemma Triola
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Fakultät Chemie, Lehrbereich Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Fakultät Chemie, Lehrbereich Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
61
|
Hao Z, Hong S, Chen X, Chen PR. Introducing bioorthogonal functionalities into proteins in living cells. Acc Chem Res 2011; 44:742-51. [PMID: 21634380 DOI: 10.1021/ar200067r] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are the workhorses of the cell, playing crucial roles in virtually every biological process. The revolutionary ability to visualize and monitor proteins in living systems, which is largely the result of the development of green fluorescence protein (GFP) and its derivatives, has dramatically expanded our understanding of protein dynamics and function. Still, GFPs are ill suited in many circumstances; one major drawback is their relatively large size, which can significantly perturb the functions of the native proteins to which they are fused. To bridge this gap, scientists working at the chemistry-biology interface have developed methods to install bioorthogonal functional groups into proteins in living cells. The bioorthogonal group is, by definition, a non-native and nonperturbing chemical group. But more importantly, the installed bioorthogonal handle is able to react with a probe bearing a complementary functionality in a highly selective fashion and with the cell operating in its physiological state. Although extensive efforts have been directed toward the development of bioorthogonal chemical reactions, introducing chemical functionalities into proteins in living systems remains an ongoing challenge. In this Account, we survey recent progress in this area, focusing on a genetic code expansion approach. In nature, a cell uses posttranslational modifications to append the necessary functional groups into proteins that are beyond those contained in the canonical 20 amino acids. Taking lessons from nature, scientists have chosen or engineered certain enzymes to modify target proteins with chemical handles. Alternatively, one can use the cell's translational machinery to genetically encode bioorthogonal functionalities, typically in the form of unnatural amino acids (UAAs), into proteins; this can be done in a residue-specific or a site-specific manner. For studying protein dynamics and function in living cells, site-specific modification by means of genetic code expansion is usually favored. A variety of UAAs bearing bioorthogonal groups as well as other functionalities have been genetically encoded into proteins of interest. Although this approach is well established in bacteria, tagging proteins in mammalian cells is challenging. A facile pyrrolysine-based system, which might potentially become the "one-stop shop" for protein modification in both prokaryotic and eukaryotic cells, has recently emerged. This technology can effectively introduce a series of bioorthogonal handles into proteins in mammalian cells for subsequent chemical conjugation with small-molecule probes. Moreover, the method may provide more precise protein labeling than GFP tagging. These advancements build the foundation for studying more complex cellular processes, such as the dynamics of important receptors on living mammalian cell surfaces.
Collapse
Affiliation(s)
- Ziyang Hao
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
| | - Senlian Hong
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
| | - Peng R. Chen
- Beijing National Laboratory for Molecular Sciences and Department of Chemical Biology, College of Chemistry and Molecular Engineering
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
62
|
Site-specific modification of ED-B-targeting antibody using intein-fusion technology. BMC Biotechnol 2011; 11:76. [PMID: 21777442 PMCID: PMC3154154 DOI: 10.1186/1472-6750-11-76] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 07/21/2011] [Indexed: 11/10/2022] Open
Abstract
Background A promising new approach in cancer therapy is the use of tumor specific antibodies coupled to cytotoxic agents. Currently these immunoconjugates are prepared by rather unspecific coupling chemistries, resulting in heterogeneous products. As the drug load is a key parameter for the antitumor activity, site-specific strategies are desired. Expressed protein ligation (EPL) and protein trans-splicing (PTS) are methods for the specific C-terminal modification of a target protein. Both include the expression as an intein fusion protein, followed by the exchange of the intein for a functionalized moiety. Results A full-length IgG specific for fibronectin ED-B was expressed as fusion protein with an intein (Mxe GyrA or Npu DnaE) attached to each heavy chain. In vitro protocols were established to site-specifically modify the antibodies in high yields by EPL or PTS, respectively. Although reducing conditions had to be employed during the process, the integrity or affinity of the antibody was not affected. The protocols were used to prepare immunoconjugates containing two biotin molecules per antibody, attached to the C-termini of the heavy chains. Conclusion Full-length antibodies can be efficiently and site-specifically modified at the C-termini of their heavy chains by intein-fusion technologies. The described protocols can be used to prepare immunoconjugates of high homogeneity and with a defined drug load of two. The attachment to the C-termini is expected to retain the affinity and effector functions of the antibodies.
Collapse
|
63
|
Yamamura Y, Hirakawa H, Yamaguchi S, Nagamune T. Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. Chem Commun (Camb) 2011; 47:4742-4. [PMID: 21409251 DOI: 10.1039/c0cc05334a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Staphylococcus aureus transpeptidase, sortase A (SrtA), catalyzes selective peptide/protein ligations that have been applied to cell imaging and protein engineering, while the ligations do not proceed to completion due to their reversibility. We successfully enhanced SrtA-mediated protein ligation through the formation of a β-hairpin around the ligation site.
Collapse
Affiliation(s)
- Yuichi Yamamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
64
|
Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM. PALM and STORM: unlocking live-cell super-resolution. Biopolymers 2011; 95:322-31. [PMID: 21254001 DOI: 10.1002/bip.21586] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/11/2022]
Abstract
Live-cell fluorescence light microscopy has emerged as an important tool in the study of cellular biology. The development of fluorescent markers in parallel with super-resolution imaging systems has pushed light microscopy into the realm of molecular visualization at the nanometer scale. Resolutions previously only attained with electron microscopes are now within the grasp of light microscopes. However, until recently, live-cell imaging approaches have eluded super-resolution microscopy, hampering it from reaching its full potential for revealing the dynamic interactions in biology occurring at the single molecule level. Here we examine recent advances in the super-resolution imaging of living cells by reviewing recent breakthroughs in single molecule localization microscopy methods such as PALM and STORM to achieve this important goal.
Collapse
Affiliation(s)
- Ricardo Henriques
- Unidade de Biofisica e Expressão Genetica, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | |
Collapse
|
65
|
Filice M, Romero O, Guisan JM, Palomo JM. trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling. Org Biomol Chem 2011; 9:5535-40. [DOI: 10.1039/c1ob05401e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
66
|
Kamiya N, Abe H. New fluorescent substrates of microbial transglutaminase and its application to peptide tag-directed covalent protein labeling. Methods Mol Biol 2011; 751:81-94. [PMID: 21674327 DOI: 10.1007/978-1-61779-151-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transglutaminase (TGase) is an enzyme that catalyzes the post-translational covalent cross-linking of Gln- and Lys-containing peptides and/or proteins according to its substrate specificity. We have recently designed a variety of Gln-donor fluorescent substrates of microbial transglutaminase (MTG) from Streptomyces mobaraensis and evaluated their potential use in MTG-mediated covalent protein labeling. The newly designed substrates are based on the relatively broad substrate recognition of MTG for the substitution of the N-terminal group of a conventional TGase substrate, benzyloxycarbonyl-L-glutaminylglycine (Z-QG). It is revealed that MTG is capable of accepting a diverse range of fluorophores in place of the N-terminal moiety of Z-QG when linked via a suitable linker. Here, we show the potential utility of a new fluorescent substrate for peptide tag-directed covalent protein labeling by employing fluorescein-4-isothiocyanate-β-Ala-QG as a model Gln-donor substrate for MTG.
Collapse
Affiliation(s)
- Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
67
|
A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 2010; 107:10914-9. [PMID: 20534555 DOI: 10.1073/pnas.0914067107] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Biological microscopy would benefit from smaller alternatives to green fluorescent protein for imaging specific proteins in living cells. Here we introduce PRIME (PRobe Incorporation Mediated by Enzymes), a method for fluorescent labeling of peptide-fused recombinant proteins in living cells with high specificity. PRIME uses an engineered fluorophore ligase, which is derived from the natural Escherichia coli enzyme lipoic acid ligase (LplA). Through structure-guided mutagenesis, we created a mutant ligase capable of recognizing a 7-hydroxycoumarin substrate and catalyzing its covalent conjugation to a transposable 13-amino acid peptide called LAP (LplA Acceptor Peptide). We showed that this fluorophore ligation occurs in cells in 10 min and that it is highly specific for LAP fusion proteins over all endogenous mammalian proteins. By genetically targeting the PRIME ligase to specific subcellular compartments, we were able to selectively label spatially distinct subsets of proteins, such as the surface pool of neurexin and the nuclear pool of actin.
Collapse
|
68
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
69
|
Merkel L, Hoesl MG, Albrecht M, Schmidt A, Budisa N. Blue Fluorescent Amino Acids as In Vivo Building Blocks for Proteins. Chembiochem 2010; 11:305-14. [DOI: 10.1002/cbic.200900651] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
70
|
Heal WP, Tate EW. Getting a chemical handle on proteinpost-translational modification. Org Biomol Chem 2010; 8:731-8. [DOI: 10.1039/b917894e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
71
|
Abe H, Goto M, Kamiya N. Enzymatic single-step preparation of multifunctional proteins. Chem Commun (Camb) 2010; 46:7160-2. [DOI: 10.1039/c0cc02133d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|