51
|
Kaushik R, Nehra N, Novakova V, Zimcik P. Near-Infrared Probes for Biothiols (Cysteine, Homocysteine, and Glutathione): A Comprehensive Review. ACS OMEGA 2023; 8:98-126. [PMID: 36643462 PMCID: PMC9835641 DOI: 10.1021/acsomega.2c06218] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Biothiols (cysteine, homocysteine, and glutathione) are an important class of compounds with a free thiol group. These biothiols plays an important role in several metabolic processes in living bodies when present in optimum concentration. Researchers have developed several probes for the detection and quantification of biothiols that can absorb in UV, visible, and near-infrared (NIR) regions of the electromagnetic spectrum. Among them, NIR organic probes have attracted significant attention due to their application in in vivo and in vitro imaging. In this review, we have summarized probes for these biothiols, which could work in the NIR region, and discussed their sensing mechanism and potential applications. Along with focusing on the pros and cons of the reported probes we have classified them according to the fluorophore used and summarized their photophysical and sensing properties (emission, response time, limit of detection).
Collapse
Affiliation(s)
- Rahul Kaushik
- Chemical
Oceanography Division, CSIR National Institute
of Oceanography, Dona Paula 403004, Goa, India
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| | - Nidhi Nehra
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Veronika Novakova
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| | - Petr Zimcik
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Univerzita Karlova v Praze Farmaceuticka fakulta v
Hradci Kralove, Akademika Heyrovského 1203, Hradec
Králové 50005, Czech Republic
| |
Collapse
|
52
|
Selective Determination of Glutathione Using a Highly Emissive Fluorescent Probe Based on a Pyrrolidine-Fused Chlorin. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020568. [PMID: 36677627 PMCID: PMC9862258 DOI: 10.3390/molecules28020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
We report the use of a carboxylated pyrrolidine-fused chlorin (TCPC) as a fluorescent probe for the determination of glutathione (GSH) in 7.4 pH phosphate buffer. TCPC is a very stable, highly emissive molecule that has been easily obtained from meso-tetrakis(4-methoxycarbonylphenyl) porphyrin (TCPP) through a 1,3-dipolar cycloaddition approach. First, we describe the coordination of TCPC with Hg(II) ions and the corresponding spectral changes, mainly characterized by a strong quenching of the chlorin emission band. Then, the TCPC-Hg2+ complex exhibits a significant fluorescence turn-on in the presence of low concentrations of the target analyte GSH. The efficacy of the sensing molecule was tested by using different TCPC:Hg2+ concentration ratios (1:2, 1:5 and 1:10) that gave rise to sigmoidal response curves in all cases with modulating detection limits, being the lowest 40 nM. The experiments were carried out under physiological conditions and the selectivity of the system was demonstrated against a number of potential interferents, including cysteine. Furthermore, the TCPC macrocycle did not showed a significant fluorescent quenching in the presence of other metal ions.
Collapse
|
53
|
Optical and Thermal Investigations of Eutectic Metallomesogen Mixtures Based on Salicylaldiaminates Metal Complexes with a Large Nematic Stability Range. INORGANICS 2023. [DOI: 10.3390/inorganics11010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mesomorphic behavior and the miscibility properties of binary mixtures of a new series of Schiff base metallomesogen (MOM) are evaluated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Nuclear magnetic resonance (NMR), elemental analysis (CHNX), Fourier−transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to certify the molecular structure of the compounds. The results revealed that the studied mixtures are completely miscible throughout the composition field and exhibit a nematic phase which covered the whole composition range. In the mixtures, the stability of the nematic phase varies continuously, and it is possible to highlight the presence of a eutectic composition with a wide mesogenic stability range.
Collapse
|
54
|
Li L, Liu Q, Cai R, Ma Q, Mao G, Zhu N, Liu S. A novel rhodamine-based fluorescent probe for high selectively determining cysteine in lysosomes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
55
|
Cui WL, Wang MH, Yang YH, Wang JY, Zhu X, Zhang H, Ji X. Recent advances and perspectives in reaction-based fluorescent probes for imaging peroxynitrite in biological systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
56
|
Chen Y, Lv M, Zhang Y, Wu Y, Ying L, Tang J, Gong X, Zhou J, Song Z. C-H Diselenation and Monoselenation of Electron-Deficient Alkenes via Radical Coupling at Room Temperature. J Org Chem 2022; 87:16175-16187. [PMID: 36473161 DOI: 10.1021/acs.joc.2c01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new, simple, and metal-free route for the diselenation of maleimides has been first developed employing (bis(trifluoroacetoxy)iodo)benzene (PIFA) at room temperature. The present method is compatible with different functional groups, and various diselenyl maleimides were obtained in moderate to excellent yields. Moreover, this protocol further highlights the unique practical application for the functionalization of biologically relevant molecules and amino acid derivatives. Preliminary mechanism studies suggest that radicals may be involved in this novel transformation. Additionally, this protocol is also applicable for the monoselenation of maleimides by switching the reaction conditions and selenation of other electron-deficient alkenes.
Collapse
Affiliation(s)
- Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengxia Lv
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jianmin Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
57
|
Wu W, Sung YS, Tomat E. Thiol-Reactive Arylsulfonate Masks for Phenolate Donors in Antiproliferative Iron Prochelators. Inorg Chem 2022; 61:19974-19982. [PMID: 36455205 PMCID: PMC10188280 DOI: 10.1021/acs.inorgchem.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tridentate thiosemicarbazones, among several families of iron chelators, have shown promising results in anticancer drug discovery because they target the increased need for iron that characterizes malignant cells. Prochelation strategies, in which the chelator is released under specific conditions, have the potential to avoid off-target metal binding (for instance, in the bloodstream) and minimize unwanted side effects. We report a prochelation approach that employs arylsulfonate esters to mask the phenolate donor of salicylaldehyde-based chelators. The new prochelators liberate a tridentate thiosemicarbazone intracellularly upon reaction with abundant nucleophile glutathione (GSH). A 5-bromo-substituted salicylaldehyde thiosemicarbazone (STC4) was selected for the chelator unit because of its antiproliferative activity at low micromolar levels in a panel of six cancer cell lines. The arylsulfonate prochelators were assessed in vitro with respect to their stability, ability to abolish metal binding, and reactivity in the presence of GSH. Cell-based assays indicated that the arylsulfonate-masked prochelators present higher antiproliferative activities relative to the parent compound after 24 h. The activation and release of the chelator intracellularly were corroborated by assays of cytosolic iron binding and iron supplementation effects as well as cell cycle analysis. This study introduces the 1,3,4-thiadiazole sulfonate moiety to mask the phenolate donor of an iron chelator and impart good solubility and stability to prochelator constructs. The reactivity of these systems can be tuned to release the chelator at high glutathione levels, as encountered in several cancer phenotypes.
Collapse
Affiliation(s)
- Wangbin Wu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
58
|
Sharma S, Srinivas S, Rakshit S, Sengupta S. Aminoindole and naphthalimide based charge transfer fluorescent probes for pH sensing and live cell imaging. Org Biomol Chem 2022; 20:9422-9430. [PMID: 36408696 DOI: 10.1039/d2ob01614a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescent probes are essential for imaging of cancer cells and for tracking organelles inside cells. We have synthesized three molecular rotors AIN, AINP and F-AINP based on 1-aminoindole (AI) as an electron donor and naphthalimide as an electron acceptor. All compounds showed charge transfer (CT) character, aggregation induced emission (AIE) and emission responsiveness towards temperature variation and solvent viscosity. AINP was most sensitive towards viscosity among all molecules with a viscosity sensitivity of ∼0.37. AIN, AINP and F-AINP showed negative temperature coefficients in chloroform with internal sensitivities of -0.04% °C-1, -0.08% °C-1 and -0.1% °C-1, respectively. Furthermore, all the rotors were sensitive towards the pH of the solvent environment as revealed by acid titration and base back-titration and served as colorimetric pH sensors with intriguing photophysical characteristics. Additionally, AINP and F-AINP were used to image the live cancer cell line A549 and the fibroblast cell line L929, and the imaging studies revealed the incorporation of dyes in the cytoplasmic space of the cells except for the nuclei.
Collapse
Affiliation(s)
- Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sai Srinivas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India.
| |
Collapse
|
59
|
Explorations into the meso-substituted BODIPY-based fluorescent probes for biomedical sensing and imaging. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Zhang X, Ivanov M, Wang Z, Bousquet MHE, Liu X, Wan Y, Zhao J, Barbon A, Escudero D, Jacquemin D, Fedin M. Confinement of the Triplet States in π‐Conjugated BODIPY Dimers Linked with Ethynylene or Butadiynylene Bridges: A Different View on the Effect of Symmetry. Angew Chem Int Ed Engl 2022; 61:e202210419. [PMID: 36216789 PMCID: PMC10092165 DOI: 10.1002/anie.202210419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/07/2022]
Abstract
Understanding the impact of the excited state wavefunction confinement is crucial for the engineering of the photophysical properties and applications of organic chromophores. In the present contribution, the localization of the triplet state wavefunctions of some symmetric ethyne/butadiyne bridged BODIPY dimers and asymmetric BODIPY derivatives presenting extended π-conjugation frameworks is studied with time-resolved electron paramagnetic resonance spectroscopy and time-dependent density functional theory computations. Based on the Zero Field Splitting D parameters, we conclude that the triplet state wavefunctions are highly localized on one BODIPY unit in the symmetric dimers, which is consistent with the ab initio modelling that finds delocalized triplet state destabilized by 12-14 kcal mol-1 as compared to its localized counterpart. The result provides a new insight into the study of triplet excited state confinement and the design of molecular wires or photosensitizers for photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Mikhail Ivanov
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | | | - Xi Liu
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Daniel Escudero
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Denis Jacquemin
- Nantes Université CNRS CEISAM UMR 6230 44300 Nantes France
- Institut Universitaire de France 75005 Paris France
| | - Matvey Fedin
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| |
Collapse
|
61
|
Zhang J, Liu S, Liu C, Hu Y, Peng T, He Y. A Novel Ratiometric Fluorescent Probe for Hypobromous Acid Detection in Living Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jin Zhang
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| | - Saiwen Liu
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| | - Changhui Liu
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| | - Yongjun Hu
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| | - Tianying Peng
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| | - Yiyun He
- School of Materials and Chemical Engineering Hunan City University, Yiyang Hunan 413000 People's Republic of China
| |
Collapse
|
62
|
Zhang S, Liao W, Wang X, Wang X, Wang T, Yuan Y, Chen G, Jia X. An indanone-based fluorescent probe for detection and imaging of Cys/Hcy in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121364. [PMID: 35605425 DOI: 10.1016/j.saa.2022.121364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Effective detection of Cys and Hcy plays an important role in the diagnosis of diseases. In this work, a novel indanone-based fluorescent probe INIAc-CN for sensitively and effectively detecting Cys and Hcy was developed. The probe exhibited weak fluorescence, but obvious fluorescent enhancement after reacted with Cys/Hcy. Moreover, the good anti-interference and low cytotoxicity of the probe made it successfully applied for monitoring Cys and Hcy of in living cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
63
|
Liu L, Duan H, Wang H, Miao J, Wu Z, Li C, Lu Y. Lysosome-Targeting Fluorescence Sensor for Sequential Detection and Imaging of Cu 2+ and Homocysteine in Living Cells. ACS OMEGA 2022; 7:34249-34257. [PMID: 36188316 PMCID: PMC9520687 DOI: 10.1021/acsomega.2c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A conjugated polymer-based fluorescence sensor, namely, PTNPy, was constructed on the basis of a polythiophene scaffold coupled with dimethylpyridylamine (DPA) groups in side chains for the consecutive detection and quantification of Cu2+ and Hcy in a perfect aqueous medium. A dramatic fluorescence quenching of PTNPy by the addition of Cu2+ was observed in Tris-HCl buffer solution (2 mM, pH 7.4), demonstrating a quick (<1 min) and highly selective response to Cu2+ with a low limit of detection of 6.79 nM. Subsequently, the Cu2+-quenched fluorescence of PTNPy can be completely recovered by homocysteine (Hcy), showing excellent selectivity to Hcy over other competitive species such as cysteine and glutathione. Thanks to the low cytotoxicity and lysosomal targeting ability of PTNPy, it was further applied as an optical sensor for the sequential imaging of Cu2+ and Hcy in HeLa cells. More importantly, Hcy concentration was linearly related to the fluorescence intensity of PTNPy in living cells, demonstrating huge potential for real-time monitoring the fluctuation of Hcy levels in living cells.
Collapse
Affiliation(s)
- Lihua Liu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hongfei Duan
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Haohui Wang
- College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jieru Miao
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhihui Wu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Chenxi Li
- College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yan Lu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
64
|
A Nile red-based near-infrared fluorescent probe for the detection of superoxide radical anion in living cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Binding interactions and Sensing applications of chromone derived Schiff base chemosensors via absorption and emission studies: A comprehensive review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Chen R, Li W, Li R, Ai S, Zhu H, Lin W. Cysteine-activated fluorescence/photoacoustic integrated probe for non-invasive diagnosis of drug-induced liver injury. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
Peng F, Zhou X, Cheng W, Ma J, Jiang H. A Carbon Dots Probe for Specific Determination of Cysteine based on Inner Filter Effect. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
68
|
Tian Y, Liu S, Cao W, Wu P, Chen Z, Xiong H. H 2O 2-Activated NIR-II Fluorescent Probe with a Large Stokes Shift for High-Contrast Imaging in Drug-Induced Liver Injury Mice. Anal Chem 2022; 94:11321-11328. [PMID: 35938413 DOI: 10.1021/acs.analchem.2c02052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-induced liver injury (DILI) is the most common clinical adverse drug reaction, which is closely associated with the oxidative stress caused by overproduced reactive oxygen species. Hepatic H2O2, as an important biomarker of DILI, plays a crucial role in the progression of DILI. However, there remains a challenge to develop H2O2-activatable second near-infrared (NIR-II, 1000-1700 nm) small molecular probes with both a large Stokes shift and a long emission wavelength beyond 950 nm. Herein, we developed an activatable NIR-II fluorescent probe (IR-990) with an acceptor-π-acceptor (A-π-A) skeleton for real-time detection of H2O2 in vivo. In the presence of H2O2, nonfluorescent probe IR-990 was successfully unlocked by generating a donor-π-acceptor (D-π-A) structure and switched on intense NIR-II fluorescence, exhibiting a peak emission wavelength at 990 nm and a large Stokes shift of 200 nm. Moreover, it was able to detect H2O2 with high sensitivity and selectivity in vitro (LOD = 0.59 μM) and monitor the behavior of endogenous H2O2 in the HepG2 cell model of DILI for the first time. Notably, probe IR-990 was successfully applied in real-time imaging of endogenous H2O2 generation in the DILI mouse model, showing a high signal-to-background ratio of 11.3/1. We envision that IR-990 holds great potential as a powerful diagnosis tool for real-time visualization of H2O2 in vivo and revealing the mechanism of DILI in the future.
Collapse
Affiliation(s)
- Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
69
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022; 61:e202203758. [PMID: 35384206 PMCID: PMC9543469 DOI: 10.1002/anie.202203758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
70
|
A NIR fluorescence probe for monitoring Cys upregulation induced by balsam pear polysaccharide and imaging in zebrafish. Anal Bioanal Chem 2022; 414:6871-6880. [PMID: 35930008 DOI: 10.1007/s00216-022-04252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
Abstract
In this work, we introduced the acrylate recognition group into dicyanoisophorone derivative DCI-C-OH to construct the NIR fluorescent probe DCI-C-Cys with a large Stokes shift (240 nm). DCI-C-Cys could specifically respond to Cys, resulting in a 22-fold increase in fluorescence intensity at 702 nm. Meanwhile, the probe has the advantages of good water solubility, high sensitivity (93 nM), and excellent biocompatibility. Moreover, DCI-C-Cys successfully monitored endogenous and exogenous Cys in HepG2 cells and zebrafish. Most importantly, we found that balsam pear polysaccharide could lead to the increase of intracellular Cys levels, which might be conducive to the further study of the antioxidant mechanism of balsam pear polysaccharide.
Collapse
|
71
|
Saini AK, Sahoo SK. Fluorescent pH sensing and MnO2 nanosphere directed turn-on sensing of glutathione using pyridoxal 5′-phosphate modified polydopamine nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
72
|
Feng L, Zhang L, Chu S, Zhang S, Chen X, Gong Y, Du Z, Mao G, Wang H. One-pot fabrication of nanozyme with 2D/1D heterostructure by in-situ growing MoS2 nanosheets onto single-walled carbon nanotubes with enhanced catalysis for colorimetric detection of glutathione. Anal Chim Acta 2022; 1221:340083. [DOI: 10.1016/j.aca.2022.340083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
|
73
|
Mei Y, Song QH. Real-time, sensitive and simultaneous detection of GSH and Cys/Hcy by 8-substituted phenylselenium BODIPYs: a structure-activity relationship. J Mater Chem B 2022; 10:6009-6017. [PMID: 35880906 DOI: 10.1039/d2tb01189a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time and sensitive detection of biothiols is the key to biomedical research and clinical diagnosis. It is necessary to develop a highly sensitive and selective fluorescent probe for the detection of biothiols. In this paper, we have developed a series of meso-arylselenium BODIPY probes for the rapid and sensitive detection of biothiols and the dual-channel discrimination of GSH and Cys/Hcy. A structure-activity relationship was established from five p-substituted phenylselenium (R = NO2, F, H, OCH3 or N(CH2CH2)2O) BODIPYs. Compared with most reported fluorescent probes, such as meso-BODIPY sulfur ethers, these probes display much lower LODs (∼nM levels) and more rapid responses, which are ascribed to the higher fluorescence efficiencies of the sensing products (Φf = 0.48 for GSH, 0.18 for Cys and 0.14 for Hcy) and the introduction of arylselenium, which is more active than arylthiol. Among them, the best sensing performance is that of probe 2a (R = NO2); therefore, a structure-activity relationship of these fluorescent probes was also obtained. The excellent sensing performance was further revealed in the detection of GSH and Cys/Hcy in live cells.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
74
|
Cao X, Lu H, Wei Y, Jin L, Zhang Q, Liu B. A simple "turn-on" fluorescent probe capable of recognition cysteine with rapid response and high sensing in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121167. [PMID: 35316627 DOI: 10.1016/j.saa.2022.121167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Cysteine (Cys), an essential biological amino acid, participates several crucial functions in various physiological and pathological processes. The sensitive and specific detection of Cys is of great significance for understanding its biological function to disease diagnosis. Herein, we designed and synthesized a simple fluorescence sensor 2-(benzothiophen-2-yl)-4-oxo-4H-chromen-3-yl acrylate (BTCA) composed of a flavonol skeleton as the fluorophore and acrylic ester group as the recognition receptor. Probe BTCA displayed high selectivity and extremely fast response toward Cys in phosphate buffer solution in the presence of other competitive species even Homocysteine (Hcy) and Glutathione (GSH) owing to a specific conjugate addition-cyclization reaction between the acrylate moiety and Cys. The photoluminescence mechanism of probe BTCA toward Cys was modulated by excited state intramolecular proton transfer (ESIPT) process. The sensing property for Cys was studied by UV-Visible, fluorescence spectrophotometric analyses and time-dependent density functional theory (TD-DFT) calculations, those results indicated that probe BTCA possessed excellent sensitivity, higher specificity, dramatically "naked-eye" fluorescence enhancement (30-fold), high anti-interference ability, especially immediate response speed (within 40 s). Additionally, the practicability of sensor BTCA in exogenous and endogenous Cys imaging in living cells and zebrafish was elucidated as well, suggesting that it has remarkedly diagnostic significance in physiological and pathological process.
Collapse
Affiliation(s)
- Xiaoyan Cao
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Yifan Wei
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Lingxia Jin
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Qiang Zhang
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Bo Liu
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| |
Collapse
|
75
|
Ma J, Lu Z, Li C, Luo Y, Shi YE, Alam P, Lam JW, Wang Z, Tang BZ. Fluorescence ratiometric assay for discriminating GSH and Cys based on the composites of UiO-66-NH2 and Cu nanoclusters. Biosens Bioelectron 2022; 215:114582. [DOI: 10.1016/j.bios.2022.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
76
|
Liu N, Lv X, Xiao B, Kuzuhara D, Mei P, Aratani N, Yamada H, Qiu F, Pan J, Xue S. A porphyrin(2.1.2.1) bis-boron complex as a deep-red AIE luminophore induced by intermolecular F-π interaction. Dalton Trans 2022; 51:9606-9610. [PMID: 35687010 DOI: 10.1039/d2dt01289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mono-/diboron complexes with saddle-shaped molecular conformations were synthesized from porphyrins(2.1.2.1). The boron complexes have unique structure-dependent photophysical properties: (a) monoboron complexes 2a and 2b are not emissive in solution and the solid state, (b) diboron complex 3a shows red emission in toluene, and (c) diboron complex 3b shows aggregation-induced emission (AIE) in the deep-red region due to intermolecular secondary interactions (F-π). This is the first case of a boron porphyrinoid complex that shows AIE emission in the deep-red region in decades.
Collapse
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Bentian Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
| | - Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
77
|
Tang J, Li F, Liu C, Shu J, Yue J, Xu B, Liu X, Zhang K, Jiang W. Attractive benzothiazole-based fluorescence probe for the highly efficient detection of hydrogen peroxide. Anal Chim Acta 2022; 1214:339939. [DOI: 10.1016/j.aca.2022.339939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
|
78
|
An JM, Suh J, Kim J, Kim Y, Chung JY, Kim HS, Cho SY, Ku JH, Kwak C, Kim HH, Jeong CW, Kim D. First-in-Class: Cervical cancer diagnosis based on a urine test with fluorescent cysteine probe. SENSORS AND ACTUATORS B: CHEMICAL 2022; 360:131646. [DOI: 10.1016/j.snb.2022.131646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
|
79
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
80
|
Han Y, Li X, Li D, Chen C, Zhang QW, Tian Y. Selective, Rapid, and Ratiometric Fluorescence Sensing of Homocysteine in Live Neurons via a Reaction-Kinetics/Sequence-Differentiation Strategy Based on a Small Molecular Probe. ACS Sens 2022; 7:1036-1044. [PMID: 35316602 DOI: 10.1021/acssensors.1c02684] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecular biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play essential roles in maintaining the redox homeostasis of biological systems, the disorders of which are closely associated with neuropathology. To date, many probes have been developed to identify Cys and GSH; however, due to the relatively low content and the high structural homology with Cys, there is still a lack of effective strategies to design probes enabling Hcy detection in physiological environments with high selectivity, high sensitivity, and rapid response. Herein, we developed a reaction-kinetics/sequence-differentiation strategy based on a dual-binding-site boron-dipyrrin (BODIPY) fluorophore, which was able to selectively distinguish Hcy from Cys and GSH within 50 s though a ratiometric fluorescence response mode. Benefiting from these features, the probe is capable of real-time imaging and quantitative analysis of intracellular Hcy in living neurons. Moreover, results of the disease-model experiments at the cellular level indicated a gradual increase of the Hcy level in neurons during the processes of aggregated amyloid-β (Aβ) peptide or ischemia treatment, which would further promote the neuron apoptosis. These findings provide the first direct experimental evidence for the impact of Alzheimer's disease and ischemic stroke on the Hcy metabolism of brain neurons and the associated neuron injury.
Collapse
Affiliation(s)
- Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Xushan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Dong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
81
|
Chen X, Sukhanov AA, Yan Y, Bese D, Bese C, Zhao J, Voronkova VK, Barbon A, Yaglioglu HG. Long‐Lived Charge‐Transfer State in Spiro Compact Electron Donor–Acceptor Dyads Based on Pyromellitimide‐Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrey A. Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Yuxin Yan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Damla Bese
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| | - Cagri Bese
- Department of Physics Engineering Hacettepe University 06800 Beytepe Ankara Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Violeta K. Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of Russian Academy of Sciences Kazan 420029 Russia
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Halime Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100, Beşevler Ankara Turkey
| |
Collapse
|
82
|
Kariapper FS, Thanzeel FY, Zandi LS, Wolf C. Selective chiroptical sensing of D/L-cysteine. Org Biomol Chem 2022; 20:3056-3060. [PMID: 35343543 DOI: 10.1039/d2ob00198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation.
Collapse
Affiliation(s)
- F Safia Kariapper
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - F Yushra Thanzeel
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Lily S Zandi
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
83
|
Akrivi EA, Vlessidis AG, Kourkoumelis N, Giokas DL, Tsogas GZ. Gold-activated luminol chemiluminescence for the selective determination of cysteine over homocysteine and glutathione. Talanta 2022; 245:123464. [PMID: 35460979 DOI: 10.1016/j.talanta.2022.123464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022]
Abstract
This work reports a chemiluminescence assay for the highly selective determination of cysteine in biological fluids without separation techniques. The method is based on the ability of cysteine to selectively enhance the metal-catalyzed chemiluminescence generated by the oxidation of luminol from gold tetrachloride anions under alkaline conditions. The selectivity of the method stems from the fact that, under strongly alkaline conditions, the formation of the four-membered ring transition state of cysteine is less favorable as compared to the formation of the respective 5- and 9- membered ring transition states of homocysteine and glutathione, respectively. These transition states exert stronger hindrance and hydrophobic interactions repelling the negatively charged luminol dianion and possibly exhibit lower reducing ability for dissolved oxygen, towards the formation of superoxide radicals, thus reducing the oxidation of luminol. Under the optimum experimental conditions, the linear range of the method extended from 0.5 to 20 μΜ while cysteine could be determined at concentrations as low as 0.5 μM, with good reproducibility (<3.5%) and recoveries between 80 and 93% in artificial and real biological fluids.
Collapse
Affiliation(s)
- E A Akrivi
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece; Neurology Clinic, University Hospital of Ioannina, 45110, Ioannina, Greece
| | - A G Vlessidis
- Department of Chemistry, School of Natural Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - N Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - D L Giokas
- Department of Chemistry, School of Natural Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - G Z Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
84
|
Deep-Red Emissive Fluorescent Probe for Sensitive Detection of Cysteine in Milk and Living Cells. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
85
|
|
86
|
Chen J, Hu S, Cai Y, Liu X, Wu Y, Dai Y, Wang Z. Co-N/C-900 metal-organic framework-derived nanozyme as a H 2O 2-free oxidase mimic for the colorimetric sensing of L-cysteine. Analyst 2022; 147:915-922. [PMID: 35142762 DOI: 10.1039/d1an02179f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanozymes have attracted considerable attention as a new type of promising artificial enzyme in recent years. Here, an oxidase-like cobalt-nitrogen-carbon (Co-N/C-900) nanozyme with well-regulated metal atom spatial distribution has been derived from Co-Zn bimetal zeolitic imidazolate framework precursors and used to develop a facile colorimetric sensing method for L-cysteine. With the aid of Co-N/C-900, the colorless 3,3',5,5'-tetramethylbenzidine (TMB) was oxidized to blue oxidized TMB in the absence of H2O2. However, the oxidation was inhibited after the addition of L-cysteine, and the blue color faded to colorless. Thus, Co-N/C-900 exhibited quite good oxidase-like activity with high catalytic efficiency. Therefore, a facile and efficient colorimetric method to sensitively determine L-cysteine with a low detection limit of 33 nM (S/N = 3) has been developed. Furthermore, favorable selectivity and anti-interference ability towards the determination of L-cysteine based on this approach have also been achieved. It is believed that this colorimetric method for the detection of L-cysteine based on Co-N/C-900 will show potential applications in bioscience and bioengineering.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Song Hu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Yongliang Cai
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Xia Liu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Yueqi Wu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Yihu Dai
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Zhijuan Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| |
Collapse
|
87
|
Kwon N, Lim CS, Lee D, Ko G, Ha J, Cho M, Swamy KMK, Lee EY, Lee DJ, Nam SJ, Zhou X, Kim HM, Yoon J. A coumarin-based reversible two-photon fluorescence probe for imaging glutathione near N-methyl-D-aspartate (NMDA) receptors. Chem Commun (Camb) 2022; 58:3633-3636. [PMID: 35202451 DOI: 10.1039/d1cc05512g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutathione (GSH) is known to play a key role in the modulation of the redox environment in N-methyl-d-aspartate (NMDA) receptors. Coumarin derivative 1 bearing cyanoacrylamide and ifenprodil moieties was synthesized and reported to monitor GSH near NMDA receptors. The cyanoacrylamide moiety allows probe 1 to monitor GSH reversibly at pH 7.4 and the ifenprodil group acts as a directing group for NMDA receptors. Two-photon fluorescence microscopy allows probe 1 to successfully sense endogenous GSH in neuronal cells and hippocampal tissues with excitation at 750 nm. Furthermore, the addition of H2O2 and GSH induced a decrease and an increase in fluorescence emission. Probe 1 can serve as a potential practical imaging tool to get important information on GSH in the brain.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Chang Su Lim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Dayoung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Gyeongju Ko
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea. .,Department of Pharmaceutical Chemistry, V. L. College of Pharmacy, Raichur 584103, India
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Xin Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
88
|
Mamgain R, Singh FV. Selenium-Based Fluorescence Probes for the Detection of Bioactive Molecules. ACS ORGANIC & INORGANIC AU 2022; 2:262-288. [PMID: 36855593 PMCID: PMC9954296 DOI: 10.1021/acsorginorgau.1c00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemistry of organoselenium reagents have now become an important tool of synthetic organic and medicinal chemistry. These reagents activate the olefinic double bonds and used to archive the number of organic transformations under mild reaction conditions. A number of organoselenium compounds have been identified as potent oxidants. Recently, various organoselenium species have been employed as chemical sensors for detecting toxic metals. Moreover, a number of selenium-based fluorescent probes have been developed for detecting harmful peroxides and ROS. In this review article, the synthesis of selenium-based fluorescent probes will be covered including their application in the detection of toxic metals and harmful peroxides including ROS.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India
| | - Fateh V. Singh
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India,
| |
Collapse
|
89
|
Zhu Q, Du J, Feng S, Li J, Yang R, Qu L. Highly selective and sensitive detection of glutathione over cysteine and homocysteine with a turn-on fluorescent biosensor based on cysteamine-stabilized CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120492. [PMID: 34666265 DOI: 10.1016/j.saa.2021.120492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In this work, cysteamine (CA) stabilized CdTe quantum dots (QDs) (CA-CdTe QDs) and sodium citrate stabilized gold nanoparticles (AuNPs) were prepared. Because of the strong electrostatic interaction and spectral overlap of emission spectrum of CA-CdTe QDs and absorption spectrum of AuNPs, a highly effective fluorescence resonance energy transfer (FRET) system was formed and the fluorescence of CA-CdTe QDs was strongly quenched. The synthesized CA-CdTe and AuNPs were self-assembled to large clusters due to the electrostatic attraction and the fluorescence of CA-CdTe was sharply quenched as a result of FRET. Under the optimum pH of 5.5, the positive GSH could assemble with negative AuNPs through electrostatic interaction and destroy the FRET system of CA-CdTe and AuNPs, due to the red shift of absorption wavelength of AuNPs caused by aggregation. The fluorescence of CA-CdTe recovered, and the recovered fluorescence efficiency shows a linear function against the GSH concentrations from 6.7 nM to 0.40 μM, with a detecting limit of 3.3 nM. The quenched emission of CA-CdTe could be recovered attributed to the aggregation of AuNPs by GSH. Under optimal conditions, the sensing system was successfully applied in the detection of GSH in real human blood plasma samples with a recovery of 99.5-102.3%, showing a promising future for the highly sensitive and selective GSH detection in the human blood plasma samples.
Collapse
Affiliation(s)
- Qianqian Zhu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Du
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| |
Collapse
|
90
|
Tu YX, Vijay N, Ko HX, Lo YP, Velmathi S, Wu SP. Specific two-photon fluorescent probe for cysteine detection in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120521. [PMID: 34717199 DOI: 10.1016/j.saa.2021.120521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Cysteine (Cys), an essential amino acid, plays several crucial functions in numerous biological processes. Notably, the detection of Cys is critical to disease diagnosis. Fluorescent probes that can quickly detect Cys will help to study the mechanism of certain diseases. Herein, a new fluorescent probe, ANP, which is based on 6-acetyl-N-methyl-2-naphthyl amine, has been developed for Cys detection over Hcy and GSH in vivo. The addition of thiol on α,β-unsaturated ketone promotes 87-fold fluorescence turn-on response with a 65 nM limit of detection. The high two-photon efficiency of the probe ANP (cross-section = 22.3) makes it a suitable probe for evaluating Cys in living cells without background fluorescence interference. Its application was extended to monitor the Cys distribution in live cells and tissues.
Collapse
Affiliation(s)
- Yu-Xu Tu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Han-Xiang Ko
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yuan-Pin Lo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
91
|
Bao L, Liu S. A dual-emission polymer carbon nanoparticles for ratiometric and visual detection of pH value and bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120513. [PMID: 34695677 DOI: 10.1016/j.saa.2021.120513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a novel fluorescent polymer carbon nanoparticles by polymerizing dopamine (DA) and o-phenylenediamine (OPD) through oxidation of hydrogen peroxide. In a neutral environment, the synthesized fluorescent polymer carbon nanoparticles (PDA-OPD) exhibited two emission peaks at 460 nm and 540 nm with 400 nm excitation wavelength. In an acidic environment, the fluorescence emission peaks of PDA-OPD at 540 nm showed an obvious fluorescence quenching, and there existed a good linear relationship between the fluorescence ratio F540/F460 and environment pH value. In an alkaline environment, the fluorescence emission peak at 460 nm showed obvious fluorescence quenching after the addition of bilirubin, while a novel fluorescence emission peak at 560 nm emerged gradually. The PDA-OPD could be also used to detect bilirubin in the range of 0-400 μmol·L-1.
Collapse
Affiliation(s)
- Lijun Bao
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110000, China.
| |
Collapse
|
92
|
Generation and Characterization of Stable Redox-Reporter Mammalian Cell Lines of Biotechnological Relevance. SENSORS 2022; 22:s22041324. [PMID: 35214226 PMCID: PMC8963081 DOI: 10.3390/s22041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Cellular functions such as DNA replication and protein translation are influenced by changes in the intracellular redox milieu. Exogenous (i.e., nutrients, deterioration of media components, xenobiotics) and endogenous factors (i.e., metabolism, growth) may alter the redox homeostasis of cells. Thus, monitoring redox changes in real time and in situ is deemed essential for optimizing the production of recombinant proteins. Recently, different redox-sensitive variants of green fluorescent proteins (e.g., rxYFP, roGFP2, and rxmRuby2) have been engineered and proved suitable to detect, in a non-invasive manner, perturbations in the pool of reduced and oxidized glutathione, the major low molecular mass thiol in mammals. In this study, we validate the use of cytosolic rxYFP on two cell lines widely used in biomanufacturing processes, namely, CHO-K1 cells expressing the human granulocyte macrophage colony-stimulating factor (hGM-CSF) and HEK-293. Flow cytometry was selected as the read-out technique for rxYFP signal given its high-throughput and statistical robustness. Growth kinetics and cellular metabolism (glucose consumption, lactate and ammonia production) of the redox reporter cells were comparable to those of the parental cell lines. The hGM-CSF production was not affected by the expression of the biosensor. The redox reporter cell lines showed a sensitive and reversible response to different redox stimuli (reducing and oxidant reagents). Under batch culture conditions, a significant and progressive oxidation of the biosensor occurred when CHO-K1-hGM-CSF cells entered the late-log phase. Medium replenishment restored, albeit partially, the intracellular redox homeostasis. Our study highlights the utility of genetically encoded redox biosensors to guide metabolic engineering or intervention strategies aimed at optimizing cell viability, growth, and productivity.
Collapse
|
93
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
94
|
Zhang L, Chen M, Li Z, Teng Y, Wang G, Xue Y. Photophysical properties and sensing mechanism of fluorescent coumarin–chalcone hybrid for biothiols: A theoretical study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi Jiangsu China
| | - Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Yangxin Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Guirong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy Xuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
95
|
A new simple ESIPT-based fluorescent probe for rapid detection of cysteine with high sensitivity and specificity and bioimaging in living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
96
|
Guo X, Gao W, Cheng ZZ, Huang YY, Yao ZY, Li QZ, Qiao X, Xie CZ, Xu JY. Highly selective fluorescent detection platform based on isoquinoline Schiff base ligand monitors glutathione in biological systems. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
97
|
Wang Z, Zhang Y, Liang Y, Li M, Meng Z, Yang Y, Xu X, Wang S. Novel Bis-Camphor-Derived Colorimetric and Fluorescent Probe for Rapid and Visual Detection of Cysteine and Its Versatile Applications in Food Analysis and Biological Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:669-679. [PMID: 35012314 DOI: 10.1021/acs.jafc.1c06294] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new colorimetric and fluorescent turn-on probe named 2,4-bis(camphor-3-methylene)phenylacrylate (BCP-Cys) was designed for highly sensitive and specific monitoring of cysteine (Cys). The probe BCP-Cys was strategically constructed by employing a new bis-camphor-derived scaffold (BCP-OH) as the fluorophore and an acrylate group as the recognition site and fluorescence quencher. The acrylate group of BCP-Cys could be exclusively cleaved by Cys and release the fluorophore BCP-OH, thereby causing a significantly enhanced red fluorescence and a naked-eye colorimetric change from colorless to yellow. The probe BCP-Cys exhibited promising sensing performances for Cys including large Stokes shift (184 nm), fast response time (<1 min), wide linear range (0-100 nM), and low detection limit (0.0728 μM). Moreover, the probe BCP-Cys could be utilized as a powerful tool for real-time determination of Cys levels within different food samples, such as onion, cabbage, broccoli, garlic, cauliflower, and bamboo sprout. In addition, this probe was also capable of imaging endogenous and exogenous Cys in living cells.
Collapse
Affiliation(s)
- Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yan Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
98
|
General Applicability of High-Resolution Continuum-Source Graphite Furnace Molecular Absorption Spectrometry to the Quantification of Oligopeptides Using the Example of Glutathione. ANALYTICA 2022. [DOI: 10.3390/analytica3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This communication introduces the first-time application of high-resolution continuum-source molecular absorption spectrometry (HR CS MAS) for the quantification of a peptide. The graphite furnace technique was employed and the tripeptide glutathione (GSH) served as a model compound. Based on measuring sulfur in terms of carbon monosulfide (CS), a method was elaborated to analyze aqueous solutions of GSH. The most prominent wavelength of the CS molecule occurred at 258.0560 nm and was adduced for monitoring. The methodological development covered the optimization of the pyrolysis and vaporization temperatures. These were found optimally to be 250 °C and 2250 °C, respectively. Moreover, the effect of modifiers (zirconium, calcium, magnesium, palladium) on the absorption signals was investigated. The best results were obtained after permanent coating of the graphite tube with zirconium (total amount of 400 μg) and adding a combination of palladium (10 µL, 10 g L−1) and calcium (2 µL, 1 g L−1) as a chemical modifier to the probes (10 µL). Aqueous standard samples of GSH were used for the calibration. It showed a linear range of 2.5–100 µg mL−1 sulfur contained in GSH with a correlation coefficient R2 > 0.997. The developed method exhibited a limit of detection (LOD) and quantification (LOQ) of 2.1 µg mL−1 and 4.3 µg mL−1 sulfur, respectively. The characteristic mass accounted for 5.9 ng sulfur. The method confirmed the general suitability of MAS for the analysis of an oligopeptide. Thus, this study serves as groundwork for further development in order to extend the application of classical atomic absorption spectrometry (AAS).
Collapse
|
99
|
Liu S, Wang J, Shi YE, Zhai Y, Lv YK, Zhang P, Wang Z. Glutathione modulated fluorescence quenching of sulfur quantum dots by Cu 2O nanoparticles for sensitive assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120365. [PMID: 34509893 DOI: 10.1016/j.saa.2021.120365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfur quantum dots (S-dots) show great potential for applications in various field, due to their favorable biocompatibility, high stability, and antibacterial properties. However, the use of S-dots in chemical sensing is limited by the lack of functional groups on the surface. In this work, a fluorescence glutathione (GSH) assay is developed based on the GSH modulated quenching effect of Cu2O nanoparticles (NP) on S-dots. The fluorescence of S-dots is effectively quenched after forming complex with Cu2O NP through a static quenching effect (SQE). Introducing of GSH can trigger the decomposition of Cu2O NP into GSH-Cu(I) complex, which leads to the weaken of SQE and the partial recover of the fluorescence. The intensity of recovered fluorescence shows a positive correlation with the concentration of GSH in the concentration range of 20 to 500 μM. The fluorescence GSH assay shows excellent selectivity and robustness towards various interferences and high concentration salt, which endow the successful detection of GSH in human blood sample. The presented results provide a new door for the design of fluorescence assays, which also provides a platform for the applications in nanomedicine and environmental science.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jianwen Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Yongqing Zhai
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Peng Zhang
- Shenzhen Luohu people's hospital, No. 47 Youyi Rd, Luohu, Shenzhen, China.
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
100
|
Qiao L, Yang Y, Cai J, Lv X, Hao J, Li Y. Long wavelength emission fluorescent probe for highly selective detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120247. [PMID: 34399295 DOI: 10.1016/j.saa.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
We developed a fluorescent probe, named 2-(4-(acryloyloxy) phenyl)-4-(2-carboxyphenyl)-7-(diethylamino) chromenylium (PA-A), for detecting Cys using the -OH protection/deprotection strategy, which can react with Cys to form a red-emitting anthocyanidin derivative fluorophore. The probe has high selectivity to Cys over Hcy and GSH in phosphate buffer solution (PBS, 10 mM, pH = 7.4), high sensitivity, a low detection limit of 4.48 × 10-8 mol/L, and it can be recognized with the naked eye. Fluorescence imaging experiment of Cys with PA-A at the cellular successfully showed excellent tissue penetration.
Collapse
Affiliation(s)
- Liuqi Qiao
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Yongxing Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China.
| | - Jianhua Cai
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Xin Lv
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Junsheng Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China.
| |
Collapse
|