51
|
Fleming AM, Alshykhly O, Zhu J, Muller JG, Burrows CJ. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem Res Toxicol 2015; 28:1292-300. [PMID: 25853314 PMCID: PMC4482417 DOI: 10.1021/acs.chemrestox.5b00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The nucleobase guanine in DNA (dG)
and RNA (rG) has the lowest
standard reduction potential of the bases, rendering it a major site
of oxidative damage in these polymers. Mapping the sites at which
oxidation occurs in an oligomer via chemical reagents utilizes hot
piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving
oxidized RNA. In the present studies, a series of time-dependent cleavages
of DNA and RNA strands containing various guanine lesions were examined
to determine the strand scission rate constants. The guanine base
lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin
(Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin
(2Ih) were evaluated in piperidine-treated DNA and aniline-treated
RNA. These data identified wide variability in the chemical lability
of the lesions studied in both DNA and RNA. Further, the rate constants
for cleaving lesions in RNA were generally found to be significantly
smaller than for lesions in DNA. The OG nucleotides were poorly cleaved
in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did
not cleave significantly in RNA; Gh and Z nucleotides cleaved in both
DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved
relatively quickly in both DNA and RNA. The data are compared and
contrasted with respect to future experimental design.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Omar Alshykhly
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
52
|
Fleming AM, Armentrout EI, Zhu J, Muller JG, Burrows CJ. Spirodi(iminohydantoin) products from oxidation of 2'-deoxyguanosine in the presence of NH4Cl in nucleoside and oligodeoxynucleotide contexts. J Org Chem 2015; 80:711-21. [PMID: 25539403 PMCID: PMC4301082 DOI: 10.1021/jo502665p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Upon oxidation of the heterocyclic ring in 2'-deoxyguanosine (dG), the initial electrophilic intermediate displays a wide range of reactivities with nucleophiles leading to many downstream products. In the present study, the product profiles were mapped when aqueous solutions of dG were allowed to react with NH4Cl in the presence of the photooxidants riboflavin and Rose Bengal as well as the diffusible one-electron oxidant Na2IrCl6. Product characterization identified the 2'-deoxyribonucleosides of spiroiminodihydantoin, 5-guanidinohydantoin, and oxazolone resulting from H2O as the nucleophile. When NH3 was the nucleophile, a set of constitutional isomers that are diastereotopic were also observed, giving characteristic masses of dG + 31. ESI(+)-MS/MS of these NH3 adducts identified them to be spirocycles with substitution of either the C5 or C8 carbonyl with an amine. The NH3 adducts exhibit acid-catalyzed hydrolysis to spiroiminodihydantoin. Quantification of the NH3 and H2O adducts resulting from oxidation of dG in the nucleoside, single-stranded, and duplex oligodeoxynucleotide contexts were monitored allowing mechanisms for product formation to be proposed. These data also provide a cautionary note to those who purify their oligonucleotide samples with ammonium salts before oxidation because this will lead to unwanted side reactions in which ammonia participates in product formation.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | | | | | |
Collapse
|
53
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
54
|
Fleming AM, Orendt AM, He Y, Zhu J, Dukor RK, Burrows CJ. Reconciliation of chemical, enzymatic, spectroscopic and computational data to assign the absolute configuration of the DNA base lesion spiroiminodihydantoin. J Am Chem Soc 2013; 135:18191-204. [PMID: 24215588 DOI: 10.1021/ja409254z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diastereomeric spiroiminodihydantoin-2'-deoxyribonucleoside (dSp) lesions resulting from 2'-deoxyguanosine (dG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (dOG) oxidation have generated much attention due to their highly mutagenic nature. Their propeller-like shape leads these molecules to display mutational profiles in vivo that are stereochemically dependent. However, there exist conflicting absolute configuration assignments arising from electronic circular dichroism (ECD) and NOESY-NMR experiments; thus, providing definitive assignments of the 3D structure of these molecules is of great interest. In the present body of work, we present data inconsistent with the reported ECD assignments for the dSp diastereomers in the nucleoside context, in which the first eluting isomer from a Hypercarb HPLC column was assigned to be the S configuration, and the second was assigned the R configuration. The following experiments were conducted: (1) determination of the diastereomer ratio of dSp products upon one-electron oxidation of dG in chiral hybrid or propeller G-quadruplexes that expose the re or si face to solvent, respectively; (2) absolute configuration analysis using vibrational circular dichroism (VCD) spectroscopy; (3) reinterpretation of the ECD experimental spectra using time-dependent density functional theory (TDDFT) with the inclusion of 12 explicit H-bonding waters around the Sp free bases; and (4) reevaluation of calculated specific rotations for the Sp enantiomers using the hydration model in the TDDFT calculations. These new insights provide a fresh look at the absolute configuration assignments of the dSp diastereomers in which the first eluting from a Hypercarb-HPLC column is (-)-(R)-dSp and the second is (+)-(S)-dSp. These assignments now provide the basis for understanding the biological significance of the stereochemical dependence of enzymes that process this form of DNA damage.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | | | | | | | |
Collapse
|
55
|
Wolna AH, Fleming AM, Burrows CJ. Single-molecule detection of a guanine(C8) - thymine(N3) cross-link using ion channel recording. J PHYS ORG CHEM 2013; 27:247-251. [PMID: 25147426 DOI: 10.1002/poc.3240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The capability to identify and sequence DNA damage within the context of the genome is an important goal for medical diagnostics. However, currently available methods are not suitable for this purpose. Ion channel nanopore analysis shows promise as a potential single-molecule method to sequence genomic DNA in such a way that also allows detection of base or backbone modifications. Recent studies in human cell lines demonstrated the occurrence of a new DNA cross-link between guanine(C8) and thymine(N3) (5'-G*CT*-3'). The current work presents immobilization and translocation studies of the 5'-G*CT*-3' cross-link in a single-stranded oligodeoxynucleotide using the α-hemolysin (α-HL) ion channel. A 3'-biotinylated DNA strand containing the 5'-G*CT*-3' cross-link was incubated with streptavidin that allowed immobilization of the DNA in the β-barrel of α-HL. In this experiment, the 5'-G*CT*-3' cross-link was placed near the sensitive constriction zone of α-HL, yielding a 2.5% deeper blockage to the ion current level when compared to the unmodified strand. Next, free translocation of a cross-link-containing strand was studied, and an inverse relationship of the time constant with respect to an increase in the applied voltage was found, indicating that the cross-link can easily fit into the β-barrel and traverse through the ion channel. However, a modulation in the ion current level was not observed. These studies suggest that higher resolution ion channels or mechanisms to slow the translocation process, or both, might ultimately provide a mechanism for single-molecule sequencing for G-T cross-links.
Collapse
Affiliation(s)
- Anna H Wolna
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA,
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA,
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA,
| |
Collapse
|
56
|
Chen X, Fleming AM, Muller JG, Burrows CJ. Endonuclease and Exonuclease Activities on Oligodeoxynucleotides Containing Spiroiminodihydantoin Depend on the Sequence Context and the Lesion Stereochemistry. NEW J CHEM 2013; 37:3440-3449. [PMID: 24563606 PMCID: PMC3929292 DOI: 10.1039/c3nj00418j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (dOG), a well-studied oxidation product of 2'-deoxyguanosine (dG), is prone to facile further oxidation forming spiroiminodihydantoin 2'-deoxyribonucleoside (dSp) in the nucleotide pool and in single-stranded oligodeoxynucleotides (ODNs). Many methods for quantification of damaged lesions in the genome rely on digestion of DNA with exonucleases or endonucleases and dephosphorylation followed by LC-MS analysis of the resulting nucleosides. In this study, enzymatic hydrolysis of dSp-containing ODNs was investigated with snake venom phosphodiesterase (SVPD), spleen phosphodiesterase (SPD) and nuclease P1. SVPD led to formation of a dinucleotide, 5'-d(Np[Sp])-3' (N = any nucleotide) that included the undamaged nucleotide on the 5' side of dSp as the final product. This dinucleotide was a substrate for both SPD and nuclease P1. A kinetic study of the activity of SPD and nuclease P1 showed a sequence dependence on the nucleotide 5' to the lesion with rates in the order dG>dA>dT>dC. In addition, the two diastereomers of dSp underwent digestion at significantly different rates with dSp1>dSp2; nuclease P1 hydrolyzed the 5'-d(Np[Sp1])-3' dinucleotide two- to six-fold faster than the corresponding 5'-d(Np[Sp2])-3', while for SPD the difference was two-fold. These rates are chemically reasoned based on dSp diastereomer differences in the syn vs. anti glycosidic bond orientation. A method for the complete digestion of dSp-containing ODNs is also outlined based on treatment with nuclease P1 and SVPD. These findings have significant impact on the development of methods to detect dSp levels in cellular DNA.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - James G. Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| |
Collapse
|
57
|
Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem Rev 2013; 114:815-62. [DOI: 10.1021/cr400135x] [Citation(s) in RCA: 1128] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlo Santini
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Maura Pellei
- Scuola
di Scienze e Tecnologie−Sez. Chimica, Università di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Valentina Gandin
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| | | | | | - Cristina Marzano
- Dipartimento
di Scienze del Farmaco, Università di Padova, via Marzolo
5, 35131 Padova, Italy
| |
Collapse
|
58
|
Psciuk BT, Schlegel HB. Computational Prediction of One-Electron Reduction Potentials and Acid Dissociation Constants for Guanine Oxidation Intermediates and Products. J Phys Chem B 2013; 117:9518-31. [DOI: 10.1021/jp4062412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian T. Psciuk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
59
|
Fleming AM, Burrows CJ. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol 2013; 26:593-607. [PMID: 23438298 DOI: 10.1021/tx400028y] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K(+)), basket (Na(+)), and propeller (K(+) + 50% CH3CN)) resulting from the sequence 5'-(TAGGGT)4T-3' and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5'-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5'- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3(•-) reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5'-(TAGGGT)8-T-3', and it provided oxidation profiles similar to those of the single G-quadruplex. Lastly, Cu(II)/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) was found to be a major duplex product, while nearly equal yields of 2Ih and Sp were observed in G-quadruplex contexts. These findings indicate that the nature of the secondary structure of folded DNA greatly alters both the reactivity of G toward oxidative stress as well as the product outcome and suggest that recognition of damage in telomeric sequences by repair enzymes may be profoundly different from that of B-form duplex DNA.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
60
|
Cui L, Ye W, Prestwich EG, Wishnok JS, Taghizadeh K, Dedon PC, Tannenbaum SR. Comparative analysis of four oxidized guanine lesions from reactions of DNA with peroxynitrite, singlet oxygen, and γ-radiation. Chem Res Toxicol 2013; 26:195-202. [PMID: 23140136 PMCID: PMC3578445 DOI: 10.1021/tx300294d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Oxidative damage to DNA has many origins, including irradiation,
inflammation, and oxidative stress, but the chemistries are not the
same. The most oxidizable base in DNA is 2-deoxyguanosine (dG), and
the primary oxidation products are 8-oxodG and 2-amino-imidazolone.
The latter rapidly converts to 2,2-diamino-oxazolone (Ox), and 8-oxodG
is further oxidized to spiroiminodihydantoin (Sp) and guanidinohydantoin
(Gh). In this study, we have examined the dose–response relationship
for the formation of the above four products arising in calf thymus
DNA exposed to gamma irradiation, photoactivated rose bengal, and
two sources of peroxynitrite. In order to carry out these experiments,
we developed a chromatographic system and synthesized isotopomeric
internal standards to enable accurate and precise analysis based upon
selected reaction monitoring mass spectrometry. 8-OxodG was the most
abundant products in all cases, but its accumulation was highly dependent
on the nature of the oxidizing agent and the subsequent conversion
to Sp and Gh. Among the other oxidation products, Ox was the most
abundant, and Sp was formed in significantly greater yield than Gh.
Collapse
Affiliation(s)
- Liang Cui
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Tomaszewska A, Mourgues S, Guga P, Nawrot B, Pratviel G. A single nuclease-resistant linkage in DNA as a versatile tool for the characterization of DNA lesions: application to the guanine oxidative lesion "G+34" generated by metalloporphyrin/KHSO(5) reagent. Chem Res Toxicol 2012; 25:2505-12. [PMID: 23025551 DOI: 10.1021/tx300319y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of an oligonucleotide containing a single nuclease-resistant phosphodiester link, a stereoisomerically pure methylphosphonate, by manganese (Mn-TMPyP) or iron (Fe-TMPyP) porphyrin associated to KHSO(5) allowed the isolation and characterization of a guanine lesion corresponding to an increase of mass of 34 amu as compared to guanine ("G+34"), namely, 5-carboxamido-5-formamido-2-iminohydantoin. Enzymatic digestion of the damaged oligonucleotide afforded, apart from the undamaged nucleotide monomer pool, a unique dinucleotide doubly modified with a methylphosphonate and an oxidized guanine base that is suitable for NMR analysis. The method can be applied to the study of any DNA lesion. More importantly, the method can be extended to the analysis of DNA damage in a sequence context. Any preselected residue in a DNA sequence may be individually analyzed by the easy introduction of a single nuclease-resistant link at the 3'- or 5'-position.
Collapse
|
62
|
Banu L, Blagojevic V, Bohme DK. Lead(II)-Catalyzed Oxidation of Guanine in Solution Studied with Electrospray Ionization Mass Spectrometry. J Phys Chem B 2012; 116:11791-7. [DOI: 10.1021/jp302720z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Laura Banu
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| | - Voislav Blagojevic
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| | - Diethard K. Bohme
- Department
of Chemistry and Centre for Research in
Mass Spectrometry, York University, Toronto,
ON, Canada M3J 1P3
| |
Collapse
|
63
|
Fleming AM, Muller JG, Dlouhy AC, Burrows CJ. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing. J Am Chem Soc 2012; 134:15091-102. [PMID: 22880947 DOI: 10.1021/ja306077b] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
8-Oxo-7,8-dihydroguanine (OG) is the most common base damage found in cells, where it resides in many structural contexts, including the nucleotide pool, single-stranded DNA at transcription forks and replication bubbles, and duplex DNA base-paired with either adenine (A) or cytosine (C). OG is prone to further oxidation to the highly mutagenic hydantoin products spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in a sharply pH-dependent fashion within nucleosides. In the present work, studies were conducted to determine how the structural context affects OG oxidation to the hydantoins. These studies revealed a trend in which the Sp yield was greatest in unencumbered contexts, such as nucleosides, while the Gh yield increased in oligodeoxynucleotide (ODN) contexts or at reduced pH. Oxidation of oligomers containing hydrogen-bond modulators (2,6-diaminopurine, N(4)-ethylcytidine) or alteration of the reaction conditions (pH, temperature, and salt) identify base stacking, electrostatics, and base pairing as the drivers of the key intermediate 5-hydroxy-8-oxo-7,8-dihydroguanine (5-HO-OG) partitioning along the two hydantoin pathways, allowing us to propose a mechanism for the observed base-pairing effects. Moreover, these structural effects cause an increase in the effective pK(a) of 5-HO-OG, following an increasing trend from 5.7 in nucleosides to 7.7 in a duplex bearing an OG·C base pair, which supports the context-dependent product yields. The high yield of Gh in ODNs underscores the importance of further study on this lesion. The structural context of OG also determined its relative reactivity toward oxidation, for which the OG·A base pair is ~2.5-fold more reactive than an OG·C base pair, and with the weak one-electron oxidant ferricyanide, the OG nucleoside reactivity is >6000-fold greater than that of OG·C in a duplex, leading to the conclusion that OG in the nucleoside pool should act as a protective agent for OG in the genome.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
64
|
Buchtík R, Trávníček Z, Vančo J. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J Inorg Biochem 2012; 116:163-71. [PMID: 23022693 DOI: 10.1016/j.jinorgbio.2012.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 12/29/2022]
Abstract
Six mixed-ligand copper(II) complexes with the composition [Cu(qui)(L)]BF(4)·xH(2)O (1-6), where Hqui=2-phenyl-3-hydroxy-4(1H)-quinolinone, L=2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), were prepared, fully characterized and studied for their in vitro cytotoxicity on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cancer cell lines. The overall promising results of the cytotoxicity were found for all the complexes, while the best results were achieved for complex 6, with IC(50)=2.6 ± 0.8 μM (HOS), and 1.3 ± 0.5 μM (MCF7). The interactions of the Cu(II) complexes 1-6 with calf thymus DNA were investigated by the UV-visible spectral titration. An agarose-gel electrophoretic method of oxidative damage determination to circular plasmid pUC19 was used to assess the ability of the complexes to act as chemical nucleases. A high effectiveness of DNA cleavage was observed for 2, 4 and 5. In vitro antioxidative activity of the complexes was studied by the superoxide dismutase-mimic (SOD-mimic) method. The best result was afforded by complex 1 with IC(50)=4.7 ± 1.0 μM, which corresponds to 10.2% of the native Cu,Zn-SOD enzyme activity. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry (ESI-MS).
Collapse
Affiliation(s)
- Roman Buchtík
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | | | | |
Collapse
|
65
|
Rokhlenko Y, Geacintov NE, Shafirovich V. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions. J Am Chem Soc 2012; 134:4955-62. [PMID: 22329445 DOI: 10.1021/ja212186w] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.
Collapse
Affiliation(s)
- Yekaterina Rokhlenko
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | | | | |
Collapse
|
66
|
Pratviel G. Oxidative DNA damage mediated by transition metal ions and their complexes. Met Ions Life Sci 2012; 10:201-16. [PMID: 22210340 DOI: 10.1007/978-94-007-2172-2_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage by redox-active metal complexes depends on the interaction of the metal complex with DNA together with the mechanism of oxygen activation. Weak interaction, tight binding, and direct involvement of DNA in the coordination sphere of the metal are described. Metal complexes acting through the production of diffusing radicals and metal complexes oxidizing DNA by metal-centered active species are compared. Metal complexes able to form high-valent metal-oxo species in close contact with DNA and perform DNA oxidation in a way reminiscent of enzymatic chemistry are the most elegant systems.
Collapse
Affiliation(s)
- Geneviève Pratviel
- Laboratoire de Chimie de Coordination, CNRS, 205, Route de Narbonne, Toulouse-Cedex, France.
| |
Collapse
|
67
|
Fleming AM, Kannan A, Muller JG, Liao Y, Burrows CJ. Copper/H2O2-Mediated Oxidation of 2′-Deoxyguanosine in the Presence of 2-Naphthol Leads to the Formation of Two Distinct Isomeric Adducts. J Org Chem 2011; 76:7953-63. [DOI: 10.1021/jo201423n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Arunkumar Kannan
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G. Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yi Liao
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|