51
|
Churchill CDM, Healey MA, Preto J, Tuszynski JA, Woodside MT. Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments. Biophys J 2019; 117:1125-1135. [PMID: 31477241 DOI: 10.1016/j.bpj.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of β-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.
Collapse
Affiliation(s)
| | - Mark A Healey
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jordane Preto
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
52
|
Deng Y, Wu T, Wang M, Shi S, Yuan G, Li X, Chong H, Wu B, Zheng P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat Commun 2019; 10:2775. [PMID: 31235796 PMCID: PMC6591319 DOI: 10.1038/s41467-019-10696-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
The recent development of chemical and bio-conjugation techniques allows for the engineering of various protein polymers. However, most of the polymerization process is difficult to control. To meet this challenge, we develop an enzymatic procedure to build polyprotein using the combination of a strict protein ligase OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases 1) and a protease TEV (tobacco etch virus). We firstly demonstrate the use of OaAEP1-alone to build a sequence-uncontrolled ubiquitin polyprotein and covalently immobilize the coupled protein on the surface. Then, we construct a poly-metalloprotein, rubredoxin, from the purified monomer. Lastly, we show the feasibility of synthesizing protein polymers with rationally-controlled sequences by the synergy of the ligase and protease, which are verified by protein unfolding using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides a strategy for polyprotein engineering and immobilization.
Collapse
Affiliation(s)
- Yibing Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengdi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guodong Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hanchung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| |
Collapse
|
53
|
Acharya S, Sharma AK. The Thermodynamic and pH Metric Binding Studies of Cu+2 Ions with Egg Protein by Spectrometric and Diffusion Current Techniques. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Transition metals have unique efficacy in catalyzing various industrial reactions and also in living system, the redox reaction and redox changes in the metal ions catalyzed valence changes in the substrate molecule. The survey of the existing literature revealed that the binding of Molybdenum, Vanadium, Zinc, Cadmium, Copper, Nickel and Cobalt with the protein is well known but no binding studies of copper metal with egg protein are reported. With a view to extend the existing knowledge of ecological nature of metal-protein system, it was thought of interest to investigate the properties of metal-protein mixture. Investigations on the aspects of these binding problems were planned and their bindings constants have been determined using suitable physico-chemical methods. The pH metric, diffusion current measurements, spectrophotometric methods have been used on the binding of copper ions with albumin. The effect of physico-chemical factors on interaction between divalent metal ion i.e. copper with albumin has been discussed. On the basis of observed results, it is found that the binding data were dependent on pH and temperature. From scatchard plots, the intrinsic association constants (k) and the number of binding sites (n) were calculated and found high at lower pH and temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with copper (II) ions. The enthalpy (ΔH), entropy (ΔS) changes, free energy change (ΔG°) have been calculated.
Collapse
Affiliation(s)
- Shveta Acharya
- Department of Chemistry , Government College , Kota-324001, Rajasthan , India
| | - Arun Kumar Sharma
- Department of Chemistry , Government P. G. College , Jhalawar-326001, Rajasthan , India
| |
Collapse
|
54
|
Xiao A, Li H. Direct monitoring of equilibrium protein folding–unfolding by atomic force microscopy: pushing the limit. Chem Commun (Camb) 2019; 55:12920-12923. [DOI: 10.1039/c9cc06293a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the direct observation of equilibrium folding–unfolding dynamics of a mechanically labile, three helix bundle protein GA using a commercial atomic force microscope (AFM).
Collapse
Affiliation(s)
- Adam Xiao
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Hongbin Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
55
|
Plata CA, Guéry-Odelin D, Trizac E, Prados A. Optimal work in a harmonic trap with bounded stiffness. Phys Rev E 2019; 99:012140. [PMID: 30780256 DOI: 10.1103/physreve.99.012140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 06/09/2023]
Abstract
We apply Pontryagin's principle to drive rapidly a trapped overdamped Brownian particle in contact with a thermal bath between two equilibrium states corresponding to different trap stiffness κ. We work out the optimal time dependence κ(t) by minimizing the work performed on the particle under the nonholonomic constraint 0≤κ≤κ_{max}, an experimentally relevant situation. Several important differences arise, as compared with the case of unbounded stiffness that has been analyzed in the literature. First, two arbitrary equilibrium states may not always be connected. Second, depending on the operating time t_{f} and the desired compression ratio κ_{f}/κ_{i}, different types of solutions emerge. Finally, the differences in the minimum value of the work brought about by the bounds may become quite large, which may have a relevant impact on the optimization of heat engines.
Collapse
Affiliation(s)
- Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
- Dipartimento di Fisica e Astronomia "Galileo Galilei", Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - David Guéry-Odelin
- Laboratoire de Collisions Agrégats Réactivité, CNRS, UMR 5589, IRSAMC, France
| | - E Trizac
- LPTMS, UMR 8626, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
56
|
Acharya S, Sharma AK. The Thermodynamic and Binding Studies of Hg+2 Ions with Egg Protein by Polarographic and pH Metric Techniques. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The binding of mercury (II) ion has been studied with egg protein at different pH values and temperatures by the polarographic technique. The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found tobe at the maximum at lower pH and at lower temperatures. The free energy change (ΔG°) of the combining sites were least at the higher pH and highest at the low pH; therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with mercury (II) ions. Statistical effects seem to be more significant at lower mercury (II) ion concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant.
Collapse
Affiliation(s)
- Shveta Acharya
- Department of Chemistry , Government College , Kota, Rajasthan 324001 , India
| | - Arun Kumar Sharma
- Department of Chemistry , Government P. G. College , Jhalawar, Rajasthan 326001 , India
| |
Collapse
|
57
|
Bhattacharya S, Ainavarapu SRK. Mechanical Softening of a Small Ubiquitin-Related Modifier Protein Due to Temperature Induced Flexibility at the Core. J Phys Chem B 2018; 122:9128-9136. [PMID: 30204456 DOI: 10.1021/acs.jpcb.8b06844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the growing interest in the thermal softening of proteins, the mechanistic details of it are far from understood. β-Grasp proteins have globular shape with compact structure and they are mechanically resilient. The β-clamp or mechanical clamp in them formed by the interactions between the terminal β-strands is generally associated with the protein mechanical resistance. Although previous studies showed that temperature can perturb the protein mechanical stability, the structural changes leading to the lowered mechanical resistance are not known. Here, we investigated the temperature dependent mechanical stability of small ubiquitin-related modifier 2 (SUMO2) using single-molecule force spectroscopy (SMFS) and the corresponding conformational changes using ensemble experiments. SMFS studies on the polyprotein of SUMO2 estimate a decrease in the spring constant of the protein from 4.50 to 1.35 N/m upon increasing the temperature from 5 to 45 °C. Interestingly, near-UV circular dichroism spectroscopy reveals a decrease in tertiary structure content while the overall secondary structure of the protein remains unchanged. Steady-state fluorescence and quenching studies on SUMO2 with a tryptophan mutation at the core (F60W) show that the nonpolar environment of the tryptophan is unchanged and the protein core is inaccessible to the bulk solvent, in the same temperature range. We attribute the thermal softening observed in atomic force microscopy (AFM) experiments to the reduction in tertiary structure of SUMO2. Our results provide evidence for the importance of the intramolecular interactions at the protein core along with the β-clamp or mechanical clamp in providing the mechanical resistance as well as in modulating the protein stiffness.
Collapse
Affiliation(s)
- Shrabasti Bhattacharya
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Dr Homi Bhabha Road , Colaba, Mumbai 400005 , India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences , Tata Institute of Fundamental Research , Dr Homi Bhabha Road , Colaba, Mumbai 400005 , India
| |
Collapse
|
58
|
Tych KM, Jahn M, Gegenfurtner F, Hechtl VK, Buchner J, Hugel T, Rief M. Nucleotide-Dependent Dimer Association and Dissociation of the Chaperone Hsp90. J Phys Chem B 2018; 122:11373-11380. [PMID: 30179494 DOI: 10.1021/acs.jpcb.8b07301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hsp90 is an essential molecular chaperone, which has to be in a dimeric form for its correct function. While the affinity of the dimer has previously been measured, little is known about how it associates and dissociates and the factors that influence this. We perform an in-depth single molecule characterization of the C-terminal association and dissociation of Hsp90. We find more than one dissociation rate, indicating that the dimer has a stable and an unstable state. Furthermore, we find that the stability of the C-terminal association is dependent on the presence of ATP, despite the C-terminal dimerization interface being distal to the catalytic site.
Collapse
Affiliation(s)
| | | | | | | | | | - Thorsten Hugel
- Institute of Physical Chemistry , University of Freiburg , Freiburg , Baden-Württemberg 79104 , Germany
| | | |
Collapse
|
59
|
Marcuello C, Foulon L, Chabbert B, Molinari M, Aguié-Béghin V. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9376-9386. [PMID: 30037232 DOI: 10.1021/acs.langmuir.8b01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) experiments with functionalized tips are currently one of the most powerful tools to locally measure adhesion forces via single-molecule force spectroscopy (SMFS) measurements. The main difficulty is to precisely control the attachment of biomolecules to the cantilever. Different chemistry procedures have been developed including the use of spacer molecules. Even if a process works well for small biomolecules such as antibodies, issues remain regarding nanoparticles or larger objects such as cellulose nanocrystals because it is difficult to precisely control their coverage and homogeneity. In this work, an original procedure based on the Langmuir-Blodgett (LB) technique was implemented for lever functionalization with cellulose nanocrystals and compared with classical chemical strategies. LB shows to be almost 6.0-fold more efficient than chemical procedure in terms of cellulose nanocrystals coverage attachment. Moreover, the LB technology provides advantage of not requiring linker molecules, which could have detrimental effects such as overestimation of the interaction force. The structural characterization and SMFS measurements of lignocellulosic polymers show that this strategy enables the precise control of the lever coverage, which improves the accuracy of the adhesion measurements. Such methodology is expected to strongly impact the AFM tip/tipless functionalization and SMFS measurements in different fields.
Collapse
Affiliation(s)
- Carlos Marcuello
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Laurence Foulon
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Brigitte Chabbert
- FARE Laboratory , INRA, Université de Reims Champagne-Ardenne , 51100 , Reims , France
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences LRN EA4682 , Université de Reims Champagne-Ardenne , 51100 , Reims , France
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, 33607 , Pessac , France
| | | |
Collapse
|
60
|
Benedito M, Giordano S. Thermodynamics of small systems with conformational transitions: The case of two-state freely jointed chains with extensible units. J Chem Phys 2018; 149:054901. [DOI: 10.1063/1.5026386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manon Benedito
- Institute of Electronics, Microelectronics and Nanotechnology, UMR 8520, University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, LIA LICS/LEMAC, F-59000 Lille, France
| | - Stefano Giordano
- Institute of Electronics, Microelectronics and Nanotechnology, UMR 8520, University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, LIA LICS/LEMAC, F-59000 Lille, France
| |
Collapse
|
61
|
Abstract
Polyproteins, individual protein units joined covalently in tandem, have evolved as a promising tool for measuring the dynamic folding of biomacromolecules in single-molecule force spectroscopy. However, the synthetic routes to prepare polyproteins have been a bottleneck, and urge development of in vitro methods to knit individual protein units covalently into polyprotein. Employing two enzymes of orthogonal functionalities periodically in sequence, we synthesized monodispersed polyproteins on a solid surface. We used Sortase A (SrtA), the enzyme known for sequence specific transpeptidation, to staple protein units covalently through peptide bonds. Exploiting the sequence-specific peptide cleaving ability of TEV protease, we controlled the progress of the reaction to one attachment at a time. Finally, with unique design of the unit proteins we control the orientation of proteins in polyprotein. This simple conjugation has the potential to staple proteins with different functionalities and from different expression systems, in any number in the polyprotein and, above all, via irreversible peptide bonds. Multiple chimeric constructs can also be synthesized with interchangeable protein units.
Collapse
Affiliation(s)
- S. Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - G. S. Singaraju
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - S. Yenghkom
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - S. Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
62
|
Johnson KC, Thomas WE. How Do We Know when Single-Molecule Force Spectroscopy Really Tests Single Bonds? Biophys J 2018; 114:2032-2039. [PMID: 29742396 PMCID: PMC5961468 DOI: 10.1016/j.bpj.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 01/04/2023] Open
Abstract
Single-molecule force spectroscopy makes it possible to measure the mechanical strength of single noncovalent receptor-ligand-type bonds. A major challenge in this technique is to ensure that measurements reflect bonds between single biomolecules because the molecules cannot be directly observed. This perspective evaluates different methodologies for identifying and reducing the contribution of multiple molecule interactions to single-molecule measurements to help the reader design experiments or assess publications in the single-molecule force spectroscopy field. We apply our analysis to the large body of literature that purports to measure the strength of single bonds between biotin and streptavidin as a demonstration that measurements are only reproducible when the most reliable methods for ensuring single molecules are used.
Collapse
Affiliation(s)
- Keith C Johnson
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
63
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
64
|
Walder R, Van Patten WJ, Adhikari A, Perkins TT. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy. ACS NANO 2018; 12:198-207. [PMID: 29244486 DOI: 10.1021/acsnano.7b05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Ayush Adhikari
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
65
|
Abstract
Single-molecule force spectroscopy by AFM (AFM-SMFS) is an experimental methodology that allows unequivocal sensitivity and control for investigating and manipulating the mechanical properties of single molecules. The past 20 years of AFM-SMFS has provided numerous breakthroughs in the understanding of the mechanical properties and force-induced structural rearrangements of sugars, DNA, and proteins. Here, we focus on the application of AFM-SMFS to study proteins, since AFM-SMFS has succeeded in providing abundant information about protein folding pathways, kinetics, interactions, and misfolding. In this chapter we describe the experimental procedures for conducting a SMFS-AFM experiment-including purification of protein samples, setup and calibration of the AFM instrumentation, and the thorough and unbiased analysis of resulting AFM data.
Collapse
Affiliation(s)
- Zackary N Scholl
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
66
|
Batchelor M, Wolny M, Kurzawa M, Dougan L, Knight PJ, Peckham M. Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy. Methods Mol Biol 2018; 1805:185-211. [PMID: 29971719 DOI: 10.1007/978-1-4939-8556-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable, single α-helical (SAH) domains exist in a number of unconventional myosin isoforms, as well as other proteins. These domains are formed from sequences rich in charged residues (Arg, Lys, and Glu), they can be hundreds of residues long, and in isolation they can tolerate significant changes in pH and salt concentration without loss in helicity. Here we describe methods for the preparation and purification of SAH domains and SAH domain-containing constructs, using the myosin 10 SAH domain as an example. We go on to describe the use of circular dichroism spectroscopy and force spectroscopy with the atomic force microscope for the elucidation of structural and mechanical properties of these unusual helical species.
Collapse
Affiliation(s)
- Matthew Batchelor
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marcin Wolny
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marta Kurzawa
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter J Knight
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
67
|
Meyer H, Voigtmann T, Schilling T. On the non-stationary generalized Langevin equation. J Chem Phys 2017; 147:214110. [DOI: 10.1063/1.5006980] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hugues Meyer
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
- Research Unit in Engineering Science, Université du Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Department of Physics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tanja Schilling
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| |
Collapse
|
68
|
Giordano S. Spin variable approach for the statistical mechanics of folding and unfolding chains. SOFT MATTER 2017; 13:6877-6893. [PMID: 28828447 DOI: 10.1039/c7sm00882a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The force-extension response of chains composed of bistable (or multistable) units strongly depends on the applied boundary conditions. As a matter of fact, isotensional conditions (soft devices) lead to a plateau-like response, whereas isometric conditions (hard devices) lead to a sawtooth-like pattern. We develop an equilibrium statistical mechanics methodology, based on the introduction of a set of discrete or spin variables, which is able to describe the thermal and mechanical properties of a folding and unfolding chain under arbitrary external conditions. In particular, we will work within the Gibbs and Helmholtz ensembles, which correspond to soft and hard devices, respectively. We introduce a one-dimensional system composed of multistable units and a bistable freely jointed chain. For both systems we obtain explicit expressions for the force-extension relation and we study the spinoidal behavior induced by the isometric conditions.
Collapse
Affiliation(s)
- Stefano Giordano
- Institute of Electronics, Microelectronics and Nanotechnology - UMR 8520, LIA LICS, Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, F-59000 Lille, France.
| |
Collapse
|
69
|
Scholl ZN, Yang W, Marszalek PE. Competing Pathways and Multiple Folding Nuclei in a Large Multidomain Protein, Luciferase. Biophys J 2017; 112:1829-1840. [PMID: 28494954 DOI: 10.1016/j.bpj.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/03/2023] Open
Abstract
Proteins obtain their final functional configuration through incremental folding with many intermediate steps in the folding pathway. If known, these intermediate steps could be valuable new targets for designing therapeutics and the sequence of events could elucidate the mechanism of refolding. However, determining these intermediate steps is hardly an easy feat, and has been elusive for most proteins, especially large, multidomain proteins. Here, we effectively map part of the folding pathway for the model large multidomain protein, Luciferase, by combining single-molecule force-spectroscopy experiments and coarse-grained simulation. Single-molecule refolding experiments reveal the initial nucleation of folding while simulations corroborate these stable core structures of Luciferase, and indicate the relative propensities for each to propagate to the final folded native state. Both experimental refolding and Monte Carlo simulations of Markov state models generated from simulation reveal that Luciferase most often folds along a pathway originating from the nucleation of the N-terminal domain, and that this pathway is the least likely to form nonnative structures. We then engineer truncated variants of Luciferase whose sequences corresponded to the putative structure from simulation and we use atomic force spectroscopy to determine their unfolding and stability. These experimental results corroborate the structures predicted from the folding simulation and strongly suggest that they are intermediates along the folding pathway. Taken together, our results suggest that initial Luciferase refolding occurs along a vectorial pathway and also suggest a mechanism that chaperones may exploit to prevent misfolding.
Collapse
Affiliation(s)
- Zackary N Scholl
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada.
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
70
|
Walder R, LeBlanc MA, Van Patten WJ, Edwards DT, Greenberg JA, Adhikari A, Okoniewski SR, Sullan RMA, Rabuka D, Sousa MC, Perkins TT. Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation. J Am Chem Soc 2017; 139:9867-9875. [PMID: 28677396 DOI: 10.1021/jacs.7b02958] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - William J Van Patten
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Devin T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - Ayush Adhikari
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Ruby May A Sullan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - David Rabuka
- Catalent Biologics-West , Emeryville, California 94608, United States
| | | | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
71
|
Zhang S, Qu LJ, Suo T, Liu Z, Yan D. Multiple transitions between various ordered and disordered states of a helical polymer under stretching. J Chem Phys 2017; 146:174904. [DOI: 10.1063/1.4982757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | - Li-Jian Qu
- Institute of Disaster Prevention, Sanhe, Hebei 101601, China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhenxing Liu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
72
|
Chuartzman SG, Nevo R, Waichman S, Shental D, Piehler J, Levy Y, Reich Z, Kapon R. Binding of interferon reduces the force of unfolding for interferon receptor 1. PLoS One 2017; 12:e0175413. [PMID: 28403186 PMCID: PMC5389645 DOI: 10.1371/journal.pone.0175413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Differential signaling of the type I interferon receptor (IFNAR) has been correlated with the ability of its subunit, IFNAR1, to differentially recognize a large spectrum of different ligands, which involves intricate conformational re-arrangements of multiple interacting domains. To shed light onto the structural determinants governing ligand recognition, we compared the force-induced unfolding of the IFNAR1 ectodomain when bound to interferon and when free, using the atomic force microscope and steered molecular dynamics simulations. Unexpectedly, we find that IFNAR1 is easier to mechanically unfold when bound to interferon than when free. Analysis of the structures indicated that the origin of the reduction in unfolding forces is a conformational change in IFNAR1 induced by ligand binding.
Collapse
Affiliation(s)
- Silvia G. Chuartzman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Dalit Shental
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (RK); (ZR)
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (RK); (ZR)
| |
Collapse
|
73
|
Unusually high mechanical stability of bacterial adhesin extender domains having calcium clamps. PLoS One 2017; 12:e0174682. [PMID: 28376122 PMCID: PMC5380327 DOI: 10.1371/journal.pone.0174682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/12/2017] [Indexed: 01/07/2023] Open
Abstract
To gain insight into the relationship between protein structure and mechanical stability, single molecule force spectroscopy experiments on proteins with diverse structure and topology are needed. Here, we measured the mechanical stability of extender domains of two bacterial adhesins MpAFP and MhLap, in an atomic force microscope. We find that both proteins are remarkably stable to pulling forces between their N- and C- terminal ends. At a pulling speed of 1 μm/s, the MpAFP extender domain fails at an unfolding force Fu = 348 ± 37 pN and MhLap at Fu = 306 ± 51 pN in buffer with 10 mM Ca2+. These forces place both extender domains well above the mechanical stability of many other β-sandwich domains in mechanostable proteins. We propose that the increased stability of MpAFP and MhLap is due to a combination of both hydrogen bonding between parallel terminal strands and intra-molecular coordination of calcium ions.
Collapse
|
74
|
da Silva M, Lenton S, Hughes M, Brockwell DJ, Dougan L. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks. Biomacromolecules 2017; 18:636-646. [PMID: 28006103 PMCID: PMC5348097 DOI: 10.1021/acs.biomac.6b01877] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/21/2016] [Indexed: 01/14/2023]
Abstract
The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins.
Collapse
Affiliation(s)
- Marcelo
A. da Silva
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Samuel Lenton
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthew Hughes
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David J. Brockwell
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
75
|
Maki K, Nakao N, Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem Biophys Res Commun 2017; 484:372-377. [PMID: 28131835 DOI: 10.1016/j.bbrc.2017.01.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Abstract
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Nobuhiko Nakao
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
76
|
Lei H, Guo Y, Hu X, Hu C, Hu X, Li H. Reversible Unfolding and Folding of the Metalloprotein Ferredoxin Revealed by Single-Molecule Atomic Force Microscopy. J Am Chem Soc 2017; 139:1538-1544. [DOI: 10.1021/jacs.6b11371] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hai Lei
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yabin Guo
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaodong Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Chunguang Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaotang Hu
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongbin Li
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
77
|
Edwards DT, Perkins TT. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution. J Struct Biol 2017; 197:13-25. [DOI: 10.1016/j.jsb.2016.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
|
78
|
Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: The current toolbox. J Struct Biol 2017; 197:3-12. [DOI: 10.1016/j.jsb.2016.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022]
|
79
|
Lei H, He C, Hu C, Li J, Hu X, Hu X, Li H. Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hai Lei
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chengzhi He
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Jinliang Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Hongbin Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
80
|
Lei H, He C, Hu C, Li J, Hu X, Hu X, Li H. Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2. Angew Chem Int Ed Engl 2016; 56:6117-6121. [DOI: 10.1002/anie.201610648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Hai Lei
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chengzhi He
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Jinliang Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| | - Hongbin Li
- Department of Chemistry; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
- State Key Laboratory of Precision Measurements Technology and Instruments; School of Precision Instrument and Optoelectronics Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
81
|
Pires RH, Saraiva MJ, Damas AM, Kellermayer MSZ. Force spectroscopy reveals the presence of structurally modified dimers in transthyretin amyloid annular oligomers. J Mol Recognit 2016; 30. [PMID: 27808434 DOI: 10.1002/jmr.2587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amyloid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegenerative amyloidogenic disorders. Manipulation was performed in situ, in the absence of molecular handles and using persistence length-fit values to select relevant curves. Force curves reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural intermediates. This is in contrast with the manipulation of native TTR that was more often manipulated over length scales compatible with a TTR monomer and without unfolding intermediates. Imaging and force spectroscopy data suggest that dimers are formed by the assembly of monomers in a head-to-head orientation with a nonnative interface along their β-strands. Furthermore, these dimers stack through nonnative contacts that may enhance the stability of the misfolded structure.
Collapse
Affiliation(s)
- Ricardo H Pires
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Institute for Molecular and Cell Biology (IBMC), Porto, Portugal
| | - Maria J Saraiva
- Institute for Molecular and Cell Biology (IBMC), Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana M Damas
- Institute for Molecular and Cell Biology (IBMC), Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,MTA-SE Molecular Biophysics Research Group, Budapest, Hungary
| |
Collapse
|
82
|
Stauch T, Dreuw A. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis. Chem Rev 2016; 116:14137-14180. [PMID: 27767298 DOI: 10.1021/acs.chemrev.6b00458] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
Collapse
Affiliation(s)
- Tim Stauch
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
83
|
Bowden N, Bryan MT, Duckles H, Feng S, Hsiao S, Kim HR, Mahmoud M, Moers B, Serbanovic-Canic J, Xanthis I, Ridger VC, Evans PC. Experimental Approaches to Study Endothelial Responses to Shear Stress. Antioxid Redox Signal 2016; 25:389-400. [PMID: 26772071 DOI: 10.1089/ars.2015.6553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Shear stress controls multiple physiological processes in endothelial cells (ECs). RECENT ADVANCES The response of ECs to shear has been studied using a range of in vitro and in vivo models. CRITICAL ISSUES This article describes some of the experimental techniques that can be used to study endothelial responses to shear stress. It includes an appraisal of large animal, rodent, and zebrafish models of vascular mechanoresponsiveness. It also describes several bioreactors to apply flow to cells and physical methods to separate mechanoresponses from mass transport mechanisms. FUTURE DIRECTIONS We conclude that combining in vitro and in vivo approaches can provide a detailed mechanistic view of vascular responses to force and that high-throughput systems are required for unbiased assessment of the function of shear-induced molecules. Antioxid. Redox Signal. 25, 389-400.
Collapse
Affiliation(s)
- Neil Bowden
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Matthew T Bryan
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hayley Duckles
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Shuang Feng
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Sarah Hsiao
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hyejeong Rosemary Kim
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Marwa Mahmoud
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Britta Moers
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Ioannis Xanthis
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Victoria C Ridger
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Paul C Evans
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
84
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Hughes ML, Paci E, Brockwell DJ, Dougan L. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7392-7402. [PMID: 27338140 DOI: 10.1021/acs.langmuir.6b01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Matthew Batchelor
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Michael C Wilson
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Megan L Hughes
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
85
|
Scholl ZN, Josephs EA, Marszalek PE. Modular, Nondegenerate Polyprotein Scaffolds for Atomic Force Spectroscopy. Biomacromolecules 2016; 17:2502-5. [PMID: 27276010 PMCID: PMC4940236 DOI: 10.1021/acs.biomac.6b00548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zackary N. Scholl
- Computational Biology and Bioinformatics Program, Edmund
T. Pratt, Jr. School of Engineering, Duke University, Durham, North Carolina, United
States
| | - Eric A. Josephs
- Department of Mechanical Engineering and Materials
Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, North
Carolina, United States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials
Science, Edmund T. Pratt, Jr. School of Engineering, Duke University, Durham, North
Carolina, United States
| |
Collapse
|
86
|
Scholl ZN, Li Q, Yang W, Marszalek PE. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein. J Biol Chem 2016; 291:18263-75. [PMID: 27378818 DOI: 10.1074/jbc.m116.729525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand.
Collapse
Affiliation(s)
| | - Qing Li
- the Department of Mechanical Engineering and Materials Science, and
| | - Weitao Yang
- the Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
87
|
Hughes ML, Dougan L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076601. [PMID: 27309041 DOI: 10.1088/0034-4885/79/7/076601] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.
Collapse
Affiliation(s)
- Megan L Hughes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK. Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
| | | |
Collapse
|
88
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
89
|
Thompson MK, Rojas-Duran MF, Gangaramani P, Gilbert WV. The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. eLife 2016; 5. [PMID: 27117520 PMCID: PMC4848094 DOI: 10.7554/elife.11154] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Translation is a core cellular process carried out by a highly conserved macromolecular machine, the ribosome. There has been remarkable evolutionary adaptation of this machine through the addition of eukaryote-specific ribosomal proteins whose individual effects on ribosome function are largely unknown. Here we show that eukaryote-specific Asc1/RACK1 is required for efficient translation of mRNAs with short open reading frames that show greater than average translational efficiency in diverse eukaryotes. ASC1 mutants in S. cerevisiae display compromised translation of specific functional groups, including cytoplasmic and mitochondrial ribosomal proteins, and display cellular phenotypes consistent with their gene-specific translation defects. Asc1-sensitive mRNAs are preferentially associated with the translational ‘closed loop’ complex comprised of eIF4E, eIF4G, and Pab1, and depletion of eIF4G mimics the translational defects of ASC1 mutants. Together our results reveal a role for Asc1/RACK1 in a length-dependent initiation mechanism optimized for efficient translation of genes with important housekeeping functions. DOI:http://dx.doi.org/10.7554/eLife.11154.001 Ribosomes are structures within cells that are responsible for making proteins. Molecules called messenger RNAs (or mRNAs), which contain genetic information derived from the DNA of a gene, pass through ribosomes that then “translate” that information to build proteins. Although all living cells contain ribosomes, the protein building blocks that make up the structure of the ribosome are not the same in all species. Furthermore, the exact roles that each building block plays during translation are not known. The ribosomes of plants, animals, and budding yeast contain the same protein, known as Asc1 in budding yeast and RACK1 in plants and animals. Thompson et al. have now explored the role of Asc1 in yeast cells by measuring translation in the absence of Asc1 using a technique called ribosome footprint profiling. This analysis revealed that cells lacking Asc1 translate fewer short mRNA molecules than normal cells. Short mRNAs encode small proteins that tend to play important ‘housekeeping’ roles in the cell — by forming the structural building blocks of ribosomes, for example. It has been observed previously that short mRNAs are translated at a higher rate than longer mRNAs on average, although the reasons behind this bias are still mysterious. The findings of Thompson et al. suggest that the ribosome itself may discriminate between short and long mRNAs and that the Asc1 protein is involved in calibrating the ribosome’s preference for short mRNAs. Cells need differing amounts of small proteins in different growth conditions. It will therefore be interesting to investigate whether mRNA length discrimination can be regulated by Asc1 and/or other components of the ribosome to tune gene expression to the environment. DOI:http://dx.doi.org/10.7554/eLife.11154.002
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Paritosh Gangaramani
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
90
|
Mechano-adaptive sensory mechanism of α-catenin under tension. Sci Rep 2016; 6:24878. [PMID: 27109499 PMCID: PMC4843013 DOI: 10.1038/srep24878] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.
Collapse
|
91
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Paci E, Brockwell DJ, Dougan L. Tuning protein mechanics through an ionic cluster graft from an extremophilic protein. SOFT MATTER 2016; 12:2688-2699. [PMID: 26809452 DOI: 10.1039/c5sm02938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins from extremophilic organisms provide excellent model systems to determine the role of non-covalent interactions in defining protein stability and dynamics as well as being attractive targets for the development of robust biomaterials. Hyperthermophilic proteins have a prevalence of salt bridges, relative to their mesophilic homologues, which are thought to be important for enhanced thermal stability. However, the impact of salt bridges on the mechanical properties of proteins is far from understood. Here, a combination of protein engineering, biophysical characterisation, single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations directly investigates the role of salt bridges in the mechanical stability of two cold shock proteins; BsCSP from the mesophilic organism Bacillus subtilis and TmCSP from the hyperthermophilic organism Thermotoga maritima. Single molecule force spectroscopy shows that at ambient temperatures TmCSP is mechanically stronger yet, counter-intuitively, its native state can withstand greater deformation before unfolding (i.e. it is mechanically soft) compared with BsCSP. MD simulations were used to identify the location and quantify the population of salt bridges, and reveal that TmCSP contains a larger number of highly occupied salt bridges than BsCSP. To test the hypothesis that salt-bridges endow these mechanical properties on the hyperthermophilic CSP, a charged triple mutant (CTM) variant of BsCSP was generated by grafting an ionic cluster from TmCSP into the BsCSP scaffold. As expected CTM is thermodynamically more stable and mechanically softer than BsCSP. We show that a grafted ionic cluster can increase the mechanical softness of a protein and speculate that it could provide a mechanical recovery mechanism and that it may be a design feature applicable to other proteins.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
92
|
Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 2016; 44:3617-38. [PMID: 25893228 DOI: 10.1039/c4cs00508b] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.
Collapse
Affiliation(s)
- Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | |
Collapse
|
93
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
94
|
Edwards DT, Faulk JK, Sanders AW, Bull MS, Walder R, LeBlanc MA, Sousa M, Perkins TT. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope. NANO LETTERS 2015; 15:7091-7098. [PMID: 26421945 PMCID: PMC4663051 DOI: 10.1021/acs.nanolett.5b03166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.
Collapse
Affiliation(s)
- Devin T. Edwards
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Jaevyn K. Faulk
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Aric W. Sanders
- Quantum
Electronics and Photonics Division, National
Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Matthew S. Bull
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Robert Walder
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| | - Marc-Andre LeBlanc
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Marcelo
C. Sousa
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| | - Thomas T. Perkins
- JILA, National Institute of
Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental
Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
95
|
Hoffmann T, Tych KM, Crosskey T, Schiffrin B, Brockwell DJ, Dougan L. Rapid and Robust Polyprotein Production Facilitates Single-Molecule Mechanical Characterization of β-Barrel Assembly Machinery Polypeptide Transport Associated Domains. ACS NANO 2015; 9:8811-21. [PMID: 26284289 DOI: 10.1021/acsnano.5b01962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + β topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + β proteins that contain the structural feature of proximal terminal β-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.
Collapse
Affiliation(s)
- Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Thomas Crosskey
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Bob Schiffrin
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| |
Collapse
|
96
|
Walder R, Paik DH, Bull MS, Sauer C, Perkins TT. Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature. OPTICS EXPRESS 2015; 23:16554-16564. [PMID: 26191667 DOI: 10.1364/oe.23.016554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advanced optical traps can probe single molecules with Ångstrom-scale precision, but drift limits the utility of these instruments. To achieve Å-scale stability, a differential measurement scheme between a pair of laser foci was introduced that substantially exceeds the inherent mechanical stability of various types of microscopes at room temperature. By using lock-in detection to measure both lasers with a single quadrant photodiode, we enhanced the differential stability of this optical reference frame and thereby stabilized an optical-trapping microscope to 0.2 Å laterally over 100 s based on the Allan deviation. In three dimensions, we achieved stabilities of 1 Å over 1,000 s and 1 nm over 15 h. This stability was complemented by high measurement bandwidth (100 kHz). Overall, our compact back-scattered detection enables an ultrastable measurement platform compatible with optical traps, atomic force microscopy, and optical microscopy, including super-resolution techniques.
Collapse
|
97
|
Wang Q, Zhou C, Yang X, Liu L, Wang K. Probing interactions between human lung adenocarcinoma A549 cell and its aptamers at single-molecule resolution. J Mol Recognit 2015; 27:676-82. [PMID: 25277092 DOI: 10.1002/jmr.2391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Because cell-specific aptamers have high potential for biomedical applications, investigation of the interaction between cell and its aptamers may be of key importance for an improved understanding of biochemical processes. Herein, the interaction between human lung adenocarcinoma A549 cell and its four aptamers was explored using single-molecule force spectroscopy (SMFS). The values of the unbinding force varied from 117.1 to 171.0 pN at the loading rate of 1.8 × 10(5) pN/s. Based on the dependence of singe molecule force on the atomic force microscopy loading rate, the corresponding kinetic parameters were obtained. The results revealed two activation barriers and two transient states in the unbinding process of aptamer/cell interaction. More importantly, the binding sites on A549 cells with its four aptamers were defined to be different using SMFS and flow cytometry. This work demonstrated that SMFS can be used as a powerful tool for exploring the aptamer/cell binding behavior at the single-molecule level, and may provide valuable information for the design and application of aptamer probes.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, College of Biology, Hunan University, Changsha, 410082, China
| | | | | | | | | |
Collapse
|
98
|
Crépin T, Swale C, Monod A, Garzoni F, Chaillet M, Berger I. Polyproteins in structural biology. Curr Opin Struct Biol 2015; 32:139-46. [PMID: 25996897 PMCID: PMC7125721 DOI: 10.1016/j.sbi.2015.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Structures have been determined for natural and recombinant polyproteins. Native HIV Gag polyprotein architecture was revealed by cryo-EM of immature capsids. Recombinant polyprotein technology has resolved sample preparation bottlenecks. The high-resolution structure of influenza polymerase has been solved. Single-molecule analysis of polyproteins revealed their folding characteristics.
Polyproteins are chains of covalently conjoined smaller proteins that occur in nature as versatile means to organize the proteome of viruses including HIV. During maturation, viral polyproteins are typically cleaved into the constituent proteins with different biological functions by highly specific proteases, and structural analyses at defined stages of this maturation process can provide clues for antiviral intervention strategies. Recombinant polyproteins that use similar mechanisms are emerging as powerful tools for producing hitherto inaccessible protein targets such as the influenza polymerase, for high-resolution structure determination by X-ray crystallography. Conversely, covalent linking of individual protein subunits into single polypeptide chains are exploited to overcome sample preparation bottlenecks. Moreover, synthetic polyproteins provide a promising tool to dissect dynamic folding of polypeptide chains into three-dimensional architectures in single-molecule structure analysis by atomic force microscopy (AFM). The recent use of natural and synthetic polyproteins in structural biology and major achievements are highlighted in this contribution.
Collapse
Affiliation(s)
- Thibaut Crépin
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Christopher Swale
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Alexandre Monod
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frederic Garzoni
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Maxime Chaillet
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France
| | - Imre Berger
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; The European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP181, 38042 Grenoble Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
99
|
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 2015; 6:7093. [PMID: 25963832 PMCID: PMC4432583 DOI: 10.1038/ncomms8093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the open state, but S3 in the closed state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. Cyclic nucleotide gated channels are activated after binding cyclic nucleotides. Here, using single molecule force spectroscopy, the authors reveal that cyclic nucleotide binding causes conformational changes and tighter coupling of the S4 helix to the pore forming domain.
Collapse
|
100
|
Bonilla LL, Carpio A, Prados A. Theory of force-extension curves for modular proteins and DNA hairpins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052712. [PMID: 26066204 DOI: 10.1103/physreve.91.052712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We study a model describing the force-extension curves of modular proteins, nucleic acids, and other biomolecules made out of several single units or modules. At a mesoscopic level of description, the configuration of the system is given by the elongations of each of the units. The system free energy includes a double-well potential for each unit and an elastic nearest-neighbor interaction between them. Minimizing the free energy yields the system equilibrium properties whereas its dynamics is given by (overdamped) Langevin equations for the elongations, in which friction and noise amplitude are related by the fluctuation-dissipation theorem. Our results, both for the equilibrium and the dynamical situations, include analytical and numerical descriptions of the system force-extension curves under force or length control and agree very well with actual experiments in biomolecules. Our conclusions also apply to other physical systems comprising a number of metastable units, such as storage systems or semiconductor superlattices.
Collapse
Affiliation(s)
- L L Bonilla
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - A Carpio
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| |
Collapse
|