51
|
Hochstetter A. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. MICROMACHINES 2020; 11:E468. [PMID: 32365567 PMCID: PMC7281269 DOI: 10.3390/mi11050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
In the last three decades, microfluidics and its applications have been on an exponential rise, including approaches to isolate rare cells and diagnose diseases on the single-cell level. The techniques mentioned herein have already had significant impacts in our lives, from in-the-field diagnosis of disease and parasitic infections, through home fertility tests, to uncovering the interactions between SARS-CoV-2 and their host cells. This review gives an overview of the field in general and the most notable developments of the last five years, in three parts: 1. What can we detect? 2. Which detection technologies are used in which setting? 3. How do these techniques work? Finally, this review discusses potentials, shortfalls, and an outlook on future developments, especially in respect to the funding landscape and the field-application of these chips.
Collapse
Affiliation(s)
- Axel Hochstetter
- Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
52
|
A Review of Secondary Flow in Inertial Microfluidics. MICROMACHINES 2020; 11:mi11050461. [PMID: 32354106 PMCID: PMC7280964 DOI: 10.3390/mi11050461] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
Inertial microfluidic technology, which can manipulate the target particle entirely relying on the microchannel characteristic geometry and intrinsic hydrodynamic effect, has attracted great attention due to its fascinating advantages of high throughput, simplicity, high resolution and low cost. As a passive microfluidic technology, inertial microfluidics can precisely focus, separate, mix or trap target particles in a continuous and high-flow-speed manner without any extra external force field. Therefore, it is promising and has great potential for a wide range of industrial, biomedical and clinical applications. In the regime of inertial microfluidics, particle migration due to inertial effects forms multiple equilibrium positions in straight channels. However, this is not promising for particle detection and separation. Secondary flow, which is a relatively minor flow perpendicular to the primary flow, may reduce the number of equilibrium positions as well as modify the location of particles focusing within channel cross sections by applying an additional hydrodynamic drag. For secondary flow, the pattern and magnitude can be controlled by the well-designed channel structure, such as curvature or disturbance obstacle. The magnitude and form of generated secondary flow are greatly dependent on the disturbing microstructure. Therefore, many inventive and delicate applications of secondary flow in inertial microfluidics have been reported. In this review, we comprehensively summarize the usage of the secondary flow in inertial microfluidics.
Collapse
|
53
|
Differential Sorting of Microparticles Using Spiral Microchannels with Elliptic Configurations. MICROMACHINES 2020; 11:mi11040412. [PMID: 32295138 PMCID: PMC7231368 DOI: 10.3390/mi11040412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022]
Abstract
Label-free, size-dependent cell-sorting applications based on inertial focusing phenomena have attracted much interest during the last decade. The separation capability heavily depends on the precision of microparticle focusing. In this study, five-loop spiral microchannels with a height of 90 µm and a width of 500 µm are introduced. Unlike their original spiral counterparts, these channels have elliptic configurations of varying initial aspect ratios, namely major axis to minor axis ratios of 3:2, 11:9, 9:11, and 2:3. Accordingly, the curvature of these configurations increases in a curvilinear manner through the channel. The effects of the alternating curvature and channel Reynolds number on the focusing of fluorescent microparticles with sizes of 10 and 20 µm in the prepared suspensions were investigated. At volumetric flow rates between 0.5 and 3.5 mL/min (allowing separation), each channel was tested to collect samples at the designated outlets. Then, these samples were analyzed by counting the particles. These curved channels were capable of separating 20 and 10 µm particles with total yields up to approximately 95% and 90%, respectively. The results exhibited that the level of enrichment and the focusing behavior of the proposed configurations are promising compared to the existing microfluidic channel configurations.
Collapse
|
54
|
Lombodorj B, Tseng HC, Chang HY, Lu YW, Tumurpurev N, Lee CW, Ganbat B, Wu RG, Tseng FG. High-Throughput White Blood Cell (Leukocyte) Enrichment from Whole Blood Using Hydrodynamic and Inertial Forces. MICROMACHINES 2020; 11:mi11030275. [PMID: 32155862 PMCID: PMC7143169 DOI: 10.3390/mi11030275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
A microfluidic chip, which can separate and enrich leukocytes from whole blood, is proposed. The chip has 10 switchback curve channels, which are connected by straight channels. The straight channels are designed to permit the inertial migration effect and to concentrate the blood cells, while the curve channels allow the Dean flow to further classify the blood cells based on the cell sizes. Hydrodynamic suction is also utilized to remove smaller blood cells (e.g., red blood cell (RBC)) in the curve channels for higher separation purity. By employing the inertial migration, Dean flow force, and hydrodynamic suction in a continuous flow system, our chip successfully separates large white blood cells (WBCs) from the whole blood with the processing rates as high as 1 × 108 cells/sec at a high recovery rate at 93.2% and very few RBCs (~0.1%).
Collapse
Affiliation(s)
- Batzorig Lombodorj
- School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia;
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.C.T.); (C.-W.L.)
| | - Horas Cendana Tseng
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.C.T.); (C.-W.L.)
| | - Hwan-You Chang
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yen-Wen Lu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (Y.-W.L.); (R.-G.W.); (F.-G.T.)
| | - Namnan Tumurpurev
- Department of Mechanical Engineering, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia;
| | - Chun-Wei Lee
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.C.T.); (C.-W.L.)
| | - Batdemberel Ganbat
- Department of Physics, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia;
| | - Ren-Guei Wu
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.C.T.); (C.-W.L.)
- Correspondence: (Y.-W.L.); (R.-G.W.); (F.-G.T.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.C.T.); (C.-W.L.)
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: (Y.-W.L.); (R.-G.W.); (F.-G.T.)
| |
Collapse
|
55
|
Chen J, Liu CY, Wang X, Sweet E, Liu N, Gong X, Lin L. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens Bioelectron 2020; 150:111900. [DOI: 10.1016/j.bios.2019.111900] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
|
56
|
Shen S, Zhang X, Zhang F, Wang D, Long D, Niu Y. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment. Talanta 2020; 208:120477. [DOI: 10.1016/j.talanta.2019.120477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
57
|
Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N, Hafner M, Reddy R, Kalemkerian GP, Schneider BJ, Hassan KA, Ramnath N, Nagrath S. High-Throughput Label-Free Isolation of Heterogeneous Circulating Tumor Cells and CTC Clusters from Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2020; 12:cancers12010127. [PMID: 31947893 PMCID: PMC7016759 DOI: 10.3390/cancers12010127] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Circulating tumor cell (CTC) clusters are emerging as clinically significant harbingers of metastases in solid organ cancers. Prior to engaging these CTC clusters in animal models of metastases, it is imperative for technology to identify them with high sensitivity. These clusters often present heterogeneous surface markers and current methods for isolation of clusters may fall short. (2) Methods: We applied an inertial microfluidic Labyrinth device for high-throughput, biomarker-independent, size-based isolation of CTCs/CTC clusters from patients with metastatic non-small-cell lung cancer (NSCLC). (3) Results: Using Labyrinth, CTCs (PanCK+/DAPI+/CD45−) were isolated from patients (n = 25). Heterogeneous CTC populations, including CTCs expressing epithelial (EpCAM), mesenchymal (Vimentin) or both markers were detected. CTCs were isolated from 100% of patients (417 ± 1023 CTCs/mL). EpCAM− CTCs were significantly greater than EpCAM+ CTCs. Cell clusters of ≥2 CTCs were observed in 96% of patients—of which, 75% were EpCAM−. CTCs revealed identical genetic aberrations as the primary tumor for RET, ROS1 , and ALK genes using fluorescence in situ hybridization (FISH) analysis. (4) Conclusions: The Labyrinth device recovered heterogeneous CTCs in 100% and CTC clusters in 96% of patients with metastatic NSCLC. The majority of recovered CTCs/clusters were EpCAM−, suggesting that these would have been missed using traditional antibody-based capture methods.
Collapse
Affiliation(s)
- Mina Zeinali
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
- Institute for Medical Technology of Heidelberg University & University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Maggie Lee
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
| | - Arthi Nadhan
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
| | - Anvya Mathur
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
| | - Casey Hedman
- Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, 2220 Biological Science Building, Ann Arbor, MI 48109, USA;
| | - Eric Lin
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
| | - Ramdane Harouaka
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
| | - Lili Zhao
- Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nallasivam Palanisamy
- Department of Urology, Henry Ford Health System, 1 Ford Place, Room 2D26, Detroit, MI 48202, USA;
| | - Mathias Hafner
- Institute for Medical Technology of Heidelberg University & University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Rishindra Reddy
- Department of Surgery, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA;
| | - Gregory P. Kalemkerian
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
| | - Bryan J. Schneider
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
| | - Khaled A. Hassan
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
| | - Nithya Ramnath
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA; (R.H.); (M.S.W.); (G.P.K.); (B.J.S.); (K.A.H.)
- Veterans Administration Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA
- Correspondence: (N.R.); (S.N.); Tel.: +734-936-9015 (N.R.); +734-647-7985 (S.N.)
| | - Sunitha Nagrath
- Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC, Building 20-3rd Floor, Ann Arbor, MI 48109, USA; (M.Z.); (M.L.); (A.N.); (A.M.); (E.L.)
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA
- Correspondence: (N.R.); (S.N.); Tel.: +734-936-9015 (N.R.); +734-647-7985 (S.N.)
| |
Collapse
|
58
|
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019; 3:041504. [PMID: 31832577 PMCID: PMC6906121 DOI: 10.1063/1.5120501] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hua Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
59
|
Wang Y, Wang J, Zhou C, Ding G, Chen M, Zou J, Wang G, Kang Y, Pan X. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. SENSORS 2019; 19:s19224940. [PMID: 31766178 PMCID: PMC6891504 DOI: 10.3390/s19224940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
There are a huge number, and abundant types, of microalgae in the ocean; and most of them have various values in many fields, such as food, medicine, energy, feed, etc. Therefore, how to identify and separation of microalgae cells quickly and effectively is a prerequisite for the microalgae research and utilization. Herein, we propose a microfluidic system that comprised microalgae cell separation, treatment and viability characterization. Specifically, the microfluidic separation function is based on the principle of deterministic lateral displacement (DLD), which can separate various microalgae species rapidly by their different sizes. Moreover, a concentration gradient generator is designed in this system to automatically produce gradient concentrations of chemical reagents to optimize the chemical treatment of samples. Finally, a single photon counter was used to evaluate the viability of treated microalgae based on laser-induced fluorescence from the intracellular chlorophyll of microalgae. To the best of our knowledge, this is the first laboratory prototype system combining DLD separation, concentration gradient generator and chlorophyll fluorescence detection technology for fast analysis and treatment of microalgae using marine samples. This study may inspire other novel applications of micro-analytical devices for utilization of microalgae resources, marine ecological environment protection and ship ballast water management.
Collapse
Affiliation(s)
- Yanjuan Wang
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Software Technology Institute, Dalian Jiaotong University, Dalian 116028, China
| | - Junsheng Wang
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Navigation College, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| | - Chen Zhou
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Gege Ding
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Mengmeng Chen
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Jiang Zou
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Ge Wang
- Center of Microfluidic and Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China; (Y.W.); (C.Z.); (G.D.); (M.C.); (J.Z.); (G.W.)
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing 400715, China;
| | - Xinxiang Pan
- College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
60
|
Suwannaphan T, Srituravanich W, Sailasuta A, Piyaviriyakul P, Bhanpattanakul S, Jeamsaksiri W, Sripumkhai W, Pimpin A. Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array. MICROMACHINES 2019; 10:E772. [PMID: 31726665 PMCID: PMC6915465 DOI: 10.3390/mi10110772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Inertial separation techniques in a microfluidic system have been widely employed in the field of medical diagnosis for a long time. Despite no requirement of external forces, it requires strong hydrodynamic forces that could potentially cause cell damage or loss during the separation process. This might lead to the wrong interpretation of laboratory results since the change of structures and functional characteristics of cells due to the hydrodynamic forces that occur are not taken into account. Therefore, it is important to investigate the cell viability and damage along with the separation efficacy of the device in the design process. In this study, two inertial separation techniques-spiral microchannel and contraction-expansion array (CEA)-were examined to evaluate cell viability, morphology and intracellular structures using a trypan blue assay (TB), Scanning Electron Microscopy (SEM) and Wright-Giemsa stain. We discovered that cell loss was not significantly found in a feeding system, i.e., syringe, needle and tube, but mostly occurred in the inertial separation devices while the change of cell morphology and intracellular structures were found in the feeding system and inertial separation devices. Furthermore, percentage of cell loss was not significant in both devices (7-10%). However, the change of cell morphology was considerably increased (30%) in spiral microchannel (shear stress dominated) rather than in CEA (12%). In contrast, the disruption of intracellular structures was increased (14%) in CEA (extensional and shear stress dominated equally) rather than spiral microchannel (2%). In these experiments, leukocytes of canine were used as samples because their sizes are varied in a range between 7-12 µm, and they are commonly used as a biomarker in many clinical and medical applications.
Collapse
Affiliation(s)
- Thammawit Suwannaphan
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| | - Werayut Srituravanich
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| | - Achariya Sailasuta
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prapruddee Piyaviriyakul
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (S.B.)
| | - Suchaya Bhanpattanakul
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (S.B.)
| | - Wutthinan Jeamsaksiri
- Thailand Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.J.); (W.S.)
| | - Witsaroot Sripumkhai
- Thailand Microelectronic Centre, Ministry of Science and Technology, Chachoengsao 24000, Thailand; (W.J.); (W.S.)
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.S.); (W.S.)
| |
Collapse
|
61
|
Xiang N, Li Q, Shi Z, Zhou C, Jiang F, Han Y, Ni Z. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration. Electrophoresis 2019; 41:875-882. [PMID: 31705675 DOI: 10.1002/elps.201900385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
We developed a low-cost multi-core inertial microfluidic centrifuge (IM-centrifuge) to achieve a continuous-flow cell/particle concentration at a throughput of up to 20 mL/min. To lower the cost of our IM-centrifuge, we clamped a disposable multilayer film-based inertial microfluidic (MFIM) chip with two reusable plastic housings. The key MFIM chip was fabricated in low-cost materials by stacking different polymer-film channel layers and double-sided tape. To increase processing throughput, multiplexing spiral inertial microfluidic channels were integrated within an all-in-one MFIM chip, and a novel sample distribution strategy was employed to equally distribute the sample into each channel layer. Then, we characterized the focusing performance in the MFIM chip over a wide flow-rate range. The experimental results showed that our IM-centrifuge was able to focus various-sized particles/cells to achieve volume reduction. The sample distribution strategy also effectively ensured identical focusing and concentration performances in different cores. Finally, our IM-centrifuge was successfully applied to concentrate microalgae cells with irregular shapes and highly polydisperse sizes. Thus, our IM-centrifuge holds the potential to be employed as a low-cost, high-throughput centrifuge for disposable use in low-resource settings.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhiguo Shi
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Chenguang Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
62
|
Tee CA, Yang Z, Yin L, Wu Y, Han J, Lee EH. Improved zonal chondrocyte production protocol integrating size-based inertial spiral microchannel separation and dynamic microcarrier culture for clinical application. Biomaterials 2019; 220:119409. [DOI: 10.1016/j.biomaterials.2019.119409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
63
|
Dong R, Liu Y, Mou L, Deng J, Jiang X. Microfluidics-Based Biomaterials and Biodevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805033. [PMID: 30345586 DOI: 10.1002/adma.201805033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Indexed: 05/25/2023]
Abstract
The rapid development of microfluidics technology has promoted new innovations in materials science, particularly by interacting with biological systems, based on precise manipulation of fluids and cells within microscale confinements. This article reviews the latest advances in microfluidics-based biomaterials and biodevices, highlighting some burgeoning areas such as functional biomaterials, cell manipulations, and flexible biodevices. These areas are interconnected not only in their basic principles, in that they all employ microfluidics to control the makeup and morphology of materials, but also unify at the ultimate goals in human healthcare. The challenges and future development trends in biological application are also presented.
Collapse
Affiliation(s)
- Ruihua Dong
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
| | - Yong Liu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Mou
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
64
|
Lee SJ, Sim TS, Shin HY, Lee J, Kim MY, Sunoo J, Lee JG, Yea K, Kim YZ, van Noort D, Park SK, Kim WH, Park KW, Kim MS. Microslit on a chip: A simplified filter to capture circulating tumor cells enlarged with microbeads. PLoS One 2019; 14:e0223193. [PMID: 31647823 PMCID: PMC6812780 DOI: 10.1371/journal.pone.0223193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Microchips are widely used to separate circulating tumor cells (CTCs) from whole blood by virtues of sophisticated manipulation for microparticles. Here, we present a chip with an 8 μm high and 27.9 mm wide slit to capture cancer cells bound to 3 μm beads. Apart from a higher purity and recovery rate, the slit design allows for simplified fabrication, easy cell imaging, less clogging, lower chamber pressure and, therefore, higher throughput. The beads were conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) to selectively bind to breast cancer cells (MCF-7) used to spike the whole blood. The diameter of the cell-bead construct was in average 23.1 μm, making them separable from other cells in the blood. As a result, the cancer cells were separated from 5 mL of whole blood with a purity of 52.0% and a recovery rate of 91.1%, and also we confirmed that the device can be applicable to clinical samples of human breast cancer patients. The simple design with microslit, by eliminating any high-aspect ratio features, is expected to reduce possible defects on the chip and, therefore, more suitable for mass production without false separation outputs.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Tae Seok Sim
- Samsung Electronics, Ltd., Maetan3-dong, Youngtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | | | - Jungmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Min Young Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Joseph Sunoo
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jeong-Gun Lee
- Samsung Electronics, Ltd., Maetan3-dong, Youngtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Danny van Noort
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Division of Biotechnology, IFM, Linköping University, Linköping, Sweden
| | - Soo Kyung Park
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Woon-Hae Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Kyun Woo Park
- Daejeon Wellness Hospital, Beon-gil, Dongseo-daero, Daedeok-gu, Daejeon, Republic of Korea
| | - Minseok S. Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Translational Responsive Medicine Center, DGIST, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
65
|
Li Q, Cui S, Xu Y, Wang Y, Jin F, Si H, Li L, Tang B. Consecutive Sorting and Phenotypic Counting of CTCs by an Optofluidic Flow Cytometer. Anal Chem 2019; 91:14133-14140. [DOI: 10.1021/acs.analchem.9b04035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shuang Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuehan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yiguo Wang
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, P.R. China
| | - Feng Jin
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital Affiliated with Shandong University, Jinan, 250013, P.R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
66
|
Exploring contraction–expansion inertial microfluidic‐based particle separation devices integrated with curved channels. AIChE J 2019. [DOI: 10.1002/aic.16741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
67
|
|
68
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
69
|
Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal Chem 2019; 91:10328-10334. [DOI: 10.1021/acs.analchem.9b02863] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jie Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
70
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
71
|
Yin J, Mou L, Yang M, Zou W, Du C, Zhang W, Jiang X. Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. Anal Chim Acta 2019; 1060:133-141. [DOI: 10.1016/j.aca.2019.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
72
|
Insights on CTC Biology and Clinical Impact Emerging from Advances in Capture Technology. Cells 2019; 8:cells8060553. [PMID: 31174404 PMCID: PMC6627072 DOI: 10.3390/cells8060553] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) have been shown to correlate negatively with patient survival. Actual CTC counts before and after treatment can be used to aid in the prognosis of patient outcomes. The presence of circulating tumor materials (CTMat) can advertise the presence of metastasis before clinical presentation, enabling the early detection of relapse. Importantly, emerging evidence is indicating that cancer treatments can actually increase the incidence of CTCs and metastasis in pre-clinical models. Subsequently, the study of CTCs, their biology and function are of vital importance. Emerging technologies for the capture of CTC/CTMs and CTMat are elucidating vitally important biological and functional information that can lead to important alterations in how therapies are administered. This paves the way for the development of a "liquid biopsy" where treatment decisions can be informed by information gleaned from tumor cells and tumor cell debris in the blood.
Collapse
|
73
|
Rafeie M, Hosseinzadeh S, Taylor RA, Warkiani ME. New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption. BIOMICROFLUIDICS 2019; 13:034117. [PMID: 31431813 PMCID: PMC6697030 DOI: 10.1063/1.5109004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 05/08/2023]
Abstract
Inertial microfluidics represents a powerful new tool for accurately positioning cells and microparticles within fluids for a variety of biomedical, clinical, and industrial applications. In spite of enormous advancements in the science and design of these devices, particularly in curved microfluidic channels, contradictory experimental results have confounded researchers and limited progress. Thus, at present, a complete theory which describes the underlying physics is lacking. We propose that this bottleneck is due to one simple mistaken assumption-the locations of inflection points of the Dean velocity profile in curved microchannels are not fixed, but can actually shift with the flow rate. Herein, we propose that the dynamic distance (δ) between the real equilibrium positions and their nearest inflection points can clearly explain several (previously) unexplained phenomena in inertial microfluidic systems. More interestingly, we found that this parameter, δ, is a function of several geometric and operational parameters, all of which are investigated (in detail) here with a series of experiments and simulations of different spiral microchannels. This key piece of understanding is expected to open the door for researchers to develop new and more effective inertial microfluidic designs.
Collapse
Affiliation(s)
- Mehdi Rafeie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shahin Hosseinzadeh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
74
|
Rafeie M, Hosseinzadeh S, Huang J, Mihandoust A, Warkiani ME, Taylor RA. New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections. BIOMICROFLUIDICS 2019; 13:034118. [PMID: 31431814 PMCID: PMC6697028 DOI: 10.1063/1.5109012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/12/2019] [Indexed: 05/09/2023]
Abstract
Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited-even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding "internal" complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex "external" cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 μm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an "additive rule" herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections.
Collapse
Affiliation(s)
- Mehdi Rafeie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shahin Hosseinzadeh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jingrui Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
75
|
Xiang N, Zhang R, Han Y, Ni Z. A Multilayer Polymer-Film Inertial Microfluidic Device for High-Throughput Cell Concentration. Anal Chem 2019; 91:5461-5468. [DOI: 10.1021/acs.analchem.9b01116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Rui Zhang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
76
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
77
|
Shi X, Liu L, Cao W, Zhu G, Tan W. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method. Analyst 2019; 144:5934-5946. [DOI: 10.1039/c9an01070j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interfacial microfluidic device realizing cell separation and washing simultaneously and efficiently.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Liyan Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Wenfeng Cao
- Tianjin Tumor Hospital
- Tianjin Medical University
- Tianjin 300070
- China
| | - Guorui Zhu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Wei Tan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
78
|
Yao J, Chen J, Cao X, Dong H. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta 2018; 196:546-555. [PMID: 30683404 DOI: 10.1016/j.talanta.2018.12.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
Cell sorting from heterogeneous organisms and tissues composed of multi-type cells is of great importance in biological and clinical applications. As promising cell sorting methods, dielectrophoresis (DEP) and hydrodynamics are attracting much attention in recent years. In this paper, we report a novel strategy by coupling DEP unit (3D sidewall electrodes) and hydrodynamic unit (microchannels with contraction/expansion structures) together in one microfluidic chip. Depending on the relative positions of 3D sidewall electrodes and contraction/expansion structure, three microchips (full-coupling, semi-coupling and non-coupling) are developed and their cell sorting performance are compared by isolating lung cancer cells (PC-9 cells) from red blood cells (RBCs). Both finite element simulation and practical cell sorting prove that high cell sorting efficiency (recovery of PC-9 cells: 90.21%, recovery of RBCs: 94.35%) can be achieved in full-coupling microchip, mainly owing to the synergistic effects between DEP sorting and hydrodynamic sorting. i.e., the positive DEP force generated by 3D sidewall electrodes can simultaneously act as an additional shear gradient lift force and thus trigger secondary flow even at low flow velocity. Live/dead cell staining, hemolysis ratio, fluorescence images and CCK-8 assay prove that RBCs and PC-9 cells show no significance difference in cell viability before and after cell sorting. The proposed coupling platform for cell sorting brings on a new pathway to construct integrated microfluidic chips for effective cell sorting and separation.
Collapse
Affiliation(s)
- Jie Yao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jingxuan Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
79
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
80
|
Otsuki H, Ota T, Miki N. Blood-Separating Device Without Energy Source for Implantable Medical Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4661-4664. [PMID: 30441390 DOI: 10.1109/embc.2018.8513160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coagulation of blood inside the implanted medical device is quite a critical problem to limit the lifetime. In this paper, we propose a microfluidic blood separating device using curved and branched channels. It utilizes centrifugal force on curved flow and separates blood flow into blood cell rich and blood cell poor ones at the bifurcation. Though it cannot separate the plasma from blood cells completely, the blood with small concentrations of blood cells will have low coagulatibity and extend the lifetime of the implant medical device. The device does not require any external pumps or valves, i.e., the system does not need any power sources but the blood pressure. We conducted experiments with a titanium foil which contacted to human whole blood with different hematocrit values for 7 days. The device was experimentally characterized with respect to the channel design. The former experiments suggested that lower concentration of blood cells helps avoiding blood coagulations, and the latter showed that the separation by our device is mainly affected by the flow rate and channel curvature.
Collapse
|
81
|
Tian F, Cai L, Chang J, Li S, Liu C, Li T, Sun J. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics. LAB ON A CHIP 2018; 18:3436-3445. [PMID: 30328446 DOI: 10.1039/c8lc00700d] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Label-free, high-throughput, and efficient separation and enrichment of rare tumor cells, such as circulating tumor cells (CTCs), from untreated whole blood is a challenging task, owing to extremely rare events of CTCs and an enormous amount of blood cells. Current strategies for CTC separation always require pre-processing steps including lysis of blood or labeling of CTCs, leading to loss or damage of CTCs. Here, we report an interfacial viscoelastic microfluidic system for size-selective separation of tumor cells directly from whole blood, without the need of cell labeling and other treatments. The sharp flow interfaces between the sample flow and viscoelastic flow (0.05% PEO solutions) in the straight microchannel allow for the penetration of large tumor cells while blocking small blood cells, through exploiting the competition between the inertial lift forces and interfacial elastic lift forces. The microfluidic paradigm does not involve external force fields or complicated fabrication procedures, while achieving 95.1% separation efficiency and 77.5% recovery rate for isolating as few as 50 tumor cells in 1 mL whole blood. The viability of tumor cells after separation is ∼100%, and normal proliferation of separated tumor cells is observed. The interfacial viscoelastic microfluidics holds great promise to facilitate the fundamental and clinical studies of CTCs.
Collapse
Affiliation(s)
- Fei Tian
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | | | | | | | | | | | | |
Collapse
|
82
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
83
|
Pasitka L, van Noort D, Lim W, Park S, Mandenius CF. A Microbore Tubing Based Spiral for Multistep Cell Fractionation. Anal Chem 2018; 90:12909-12916. [DOI: 10.1021/acs.analchem.8b03532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Pasitka
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden
| | - Danny van Noort
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungsu Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | |
Collapse
|
84
|
Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics. MICROMACHINES 2018; 9:mi9090433. [PMID: 30424366 PMCID: PMC6187282 DOI: 10.3390/mi9090433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 01/22/2023]
Abstract
Inertial microfluidics is a promising tool for a label-free particle manipulation for microfluidics technology. It can be utilized for particle separation based on size and shape, as well as focusing of particles. Prediction of particles’ trajectories is essential for the design of inertial microfluidic devices. At this point, numerical modeling is an important tool to understand the underlying physics and assess the performance of devices. A Monte Carlo-type computational model based on a Lagrangian discrete phase model is developed to simulate the particle trajectories in a spiral microchannel for inertial microfluidics. The continuous phase (flow field) is solved without the presence of a discrete phase (particles) using COMSOL Multi-physics. Once the flow field is obtained, the trajectory of particles is determined in the post-processing step via the COMSOL-MATLAB interface. To resemble the operation condition of the device, the random inlet position of the particles, many particles are simulated with random initial locations from the inlet of the microchannel. The applicability of different models for the inertial forces is discussed. The computational model is verified with experimental results from the literature. Different cases in a spiral channel with aspect ratios of 2.0 and 9.0 are simulated. The simulation results for the spiral channel with an aspect ratio of 9.0 are compared against the experimental data. The results reveal that despite certain limitations of our model, the current computational model satisfactorily predicts the location and the width of the focusing streams.
Collapse
|
85
|
Zeng Y, Ren JQ, Shen AG, Hu JM. Splicing Nanoparticles-Based "Click" SERS Could Aid Multiplex Liquid Biopsy and Accurate Cellular Imaging. J Am Chem Soc 2018; 140:10649-10652. [PMID: 29975521 DOI: 10.1021/jacs.8b04892] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, a completely new readout technique, so-called "Click" SERS, has been developed based on Raman scattered light splice derived from nanoparticle (NP) assemblies. The single and narrow (1-2 nm) emission originating from triple bond-containing reporters undergoes dynamic combinatorial output, by means of controllable splice of SERS-active NPs analogous to small molecule units in click chemistry. Entirely different to conventional "sole code related to sole target" readout protocol, the intuitional, predictable and uniquely identifiable "Click" SERS is relies on the number rather than the intensity of combinatorial emissions. By this technique, 10-plex synchronous biomarkers detection under a single scan, and accurate cellular imaging under double exposure have been achieved. "Click" SERS demonstrated multiple single band Raman scattering could be an authentic optical analysis method in biomedicine.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Jia-Qiang Ren
- National & Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources , Hubei University , Wuhan 430062 , China
| | - Ai-Guo Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Ji-Ming Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
86
|
Luan C, Wang H, Han Q, Ma X, Zhang D, Xu Y, Chen B, Li M, Zhao Y. Folic Acid-Functionalized Hybrid Photonic Barcodes for Capture and Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21206-21212. [PMID: 29882648 DOI: 10.1021/acsami.8b06882] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recovery of circulating tumor cells (CTCs) from cancer patients by an efficient CTCs capture and release method can greatly increase their application in diagnostics and treatment of cancers. In this paper, we presented a folic acid (FA)-functionalized hybrid photonic barcode for capture and release of CTCs. The hybrid photonic barcodes were formed by two nano-ordered parts, poly(ethylene glycol) diacrylate (PEGDA) inverse opal structure for sustaining integrity and methacrylated gelatin (GelMA) gel filler for conjugating FA molecules to mediate cell capture. The nano-ordered structures of the hybrid photonic barcodes not only increased contact area, but also decreased steric hindrance among FA molecules. Thus, the topographic interaction between the barcodes and CTCs was greatly enhanced. In addition, GelMA gel was soft and extracellular matrix (ECM) alike, which was beneficial to decrease impairment to CTCs during the CTCs-barcode interaction as well as preserving their viability. Demonstrated by four CTCs types, Hela (epithelial tissue, folate receptor positive, FR+), A02 (bone marrow, FR+), Raji (lymphoid tissue, FR+), and A549 (epithelial tissue, folate receptor negative, FR-), FR+ CTCs could be captured efficiently with reliability and specificity. The captured cells could be controllably released with high viability just by quick trypsinization. The whole processes were simple and efficient. These features indicated that the FA-functionalized hybrid photonic barcodes were promising for full recovery of CTCs from cancer patients, which was important for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Chengxin Luan
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Qi Han
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Xiaoyan Ma
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yueshuang Xu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
| | - Minli Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuanjin Zhao
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine , Southeast University , Nanjing 210009 , China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
87
|
Luo T, Fan L, Zeng Y, Liu Y, Chen S, Tan Q, Lam RHW, Sun D. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. LAB ON A CHIP 2018; 18:1521-1532. [PMID: 29725680 DOI: 10.1039/c8lc00173a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.
Collapse
Affiliation(s)
- Tao Luo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
89
|
Yan S, Li Y, Zhao Q, Yuan D, Yun G, Tang SY, Li W. Enhanced particle self-ordering in a double-layer channel. Biomed Microdevices 2018; 20:23. [PMID: 29476424 DOI: 10.1007/s10544-018-0269-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this work, a novel double-layer microfluidic device for enhancing particle focusing was presented. The double-layer device consists of a channel with expansion-contraction array and periodical slanted grooves. The secondary flows induced by the grooves modulate the flow patterns in the expansion-contraction-array (ECA) channel, further affecting the particle migration. Compared with the single ECA channel, the double-layer channel can focus the particles over a wider range of flow rate. Due to the differentiation of lateral migration, the double-layer channel is able to distinguish the particles with different sizes. Furthermore, the equilibrium positions could be modulated by the orientation of grooves. This work demonstrates the possibility to enhance and adjust the inertial focusing in an ECA channel with the assistance of grooves, which may provide a simple and portable platform for downstream filtration, separation, and detection.
Collapse
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Yuxing Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Qianbin Zhao
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dan Yuan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
90
|
Yuan D, Zhao Q, Yan S, Tang SY, Alici G, Zhang J, Li W. Recent progress of particle migration in viscoelastic fluids. LAB ON A CHIP 2018; 18:551-567. [PMID: 29340388 DOI: 10.1039/c7lc01076a] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
91
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
92
|
Zhou Y, Ma Z, Ai Y. Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures. MICROSYSTEMS & NANOENGINEERING 2018; 4:5. [PMID: 31057895 PMCID: PMC6220157 DOI: 10.1038/s41378-018-0005-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 05/22/2023]
Abstract
Inertial microfluidics utilizing passive hydrodynamic forces has been attracting significant attention in the field of precise microscale manipulation owing to its low cost, simplicity and high throughput. In this paper, we present a novel channel design with a series of reverse wavy channel structures for sheathless inertial particle focusing and cell sorting. A single wavy channel unit consists of four semicircular segments, which produce periodically reversed Dean secondary flow along the cross-section of the channel. The balance between the inertial lift force and the Dean drag force results in deterministic equilibrium focusing positions, which also depends on the size of the flow-through particles and cells. Six sizes of fluorescent microspheres (15, 10, 7, 5, 3 and 1 μm) were used to study the size-dependent inertial focusing behavior. Our novel design with sharp-turning subunits could effectively focus particles as small as 3 μm, the average size of platelets, enabling the sorting of cancer cells from whole blood without the use of sheath flows. Utilizing an optimized channel design, we demonstrated the size-based sorting of MCF-7 breast cancer cells spiked in diluted whole blood samples without using sheath flows. A single sorting process was able to recover 89.72% of MCF-7 cells from the original mixture and enrich MCF-7 cells from an original purity of 5.3% to 68.9% with excellent cell viability.
Collapse
Affiliation(s)
- Yinning Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372 Singapore
| | - Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372 Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372 Singapore
| |
Collapse
|
93
|
Zhao Q, Yan S, Yuan D, Zhang J, Du H, Alici G, Li W. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1406-1412. [PMID: 28809710 DOI: 10.1109/tbcas.2017.2722012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we proposed a microparticle manipulation approach, by which particles are able to be guided to different equilibrium positions through modulating the Reynolds number. In the microchannel with arc-shaped groove arrays, secondary flow vortex arisen due to the pressure gradient varies in the aspects of both magnitude and shape with the increase of Reynolds number. And the variation of secondary flow vortex brings about different focusing modes of microparticles in the microchannel. We investigated the focusing phenomenon experimentally and analyzed the mechanism through numerical simulations. At a high Reynolds number (Re = 127.27), the geometry-induced secondary flow rotates constantly along a direction, and most particles are guided to the equilibrium position near one side of the microchannel. However, at a low Reynolds number (Re = 2.39), the shapes of geometry-induced secondary flow vortices are obviously different, forming a variant Dean-like vortex that consists of two asymmetric counter-rotating streams in cross sections of the straight channel. Because of the periodical effects, suspended particles are concentrated at another equilibrium position on the opposite side of the microchannel. Meanwhile, the effects of particle size influence both the focusing position and quality in regimes.
Collapse
|
94
|
Shen S, Tian C, Li T, Xu J, Chen SW, Tu Q, Yuan MS, Liu W, Wang J. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. LAB ON A CHIP 2017; 17:3578-3591. [PMID: 28975177 DOI: 10.1039/c7lc00691h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Controllable manipulation of fluid flow is crucial for efficient particle separation, which is associated with plenty of biomedical and industrial applications. Microfluidic technologies have achieved promising progress in particle positioning depending on inertial force with or without the help of the Dean effect. Herein, we describe an inertial microfluidic system containing a spiral microchannel for various highly efficient particle separations. We demonstrated that Dean-like secondary flow can be regulated by geometric confinement in the microchannel. On the introduction of a library of micro-obstacles into the spiral microchannels, the resulting linear acceleration of secondary flow can be applied to remarkably enhance particle focusing in time and space. Further, multiple separating and sorting manipulations of particles including polymeric particles, circulating tumor cells, and blood cells, can be successfully accomplished in the dimension-confined spiral channels in a sheathless, high-throughput (typically 3 ml min-1), long-term (at least 4 h), and highly-efficient (up to 99.8% focusing) manner. The methodological achievement pointing to ease-of-use, effective, and high-throughput particle manipulations is useful for both laboratory and commercial developments of microfluidic systems in life and material sciences.
Collapse
Affiliation(s)
- Shaofei Shen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bayat P, Rezai P. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels. Sci Rep 2017; 7:13655. [PMID: 29057886 PMCID: PMC5651805 DOI: 10.1038/s41598-017-13090-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023] Open
Abstract
Curved and spiral microfluidic channels are widely used in particle and cell sorting applications. However, the average Dean velocity of secondary vortices which is an important design parameter in these devices cannot be estimated precisely with the current knowledge in the field. In this paper, we used co-flows of dyed liquids in curved microchannels with different radii of curvatures and monitored the lateral displacement of fluids using optical microscopy. A quantitative Switching Index parameter was then introduced to calculate the average Dean velocity in these channels. Additionally, we developed a validated numerical model to expand our investigations to elucidating the effects of channel hydraulic diameter, width, and height as well as fluid kinematic viscosity on Dean velocity. Accordingly, a non-dimensional comprehensive correlation was developed based on our numerical model and validated against experimental results. The proposed correlation can be used extensively for the design of curved microchannels for manipulation of fluids, particles, and biological substances in spiral microfluidic devices.
Collapse
Affiliation(s)
- Pouriya Bayat
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| |
Collapse
|
96
|
Wang L, Dandy DS. High-Throughput Inertial Focusing of Micrometer- and Sub-Micrometer-Sized Particles Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700153. [PMID: 29051857 PMCID: PMC5644225 DOI: 10.1002/advs.201700153] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2017] [Indexed: 05/13/2023]
Abstract
The ability to study individual bacteria or subcellular organelles using inertial microfluidics is still nascent. This is due, in no small part, to the significant challenges associated with concentrating and separating specific sizes of micrometer and sub-micrometer bioparticles in a microfluidic format. In this study, using a rigid polymeric microfluidic network with optimized microchannel geometry dimensions, it is demonstrated that 2 µm, and even sub-micrometer, particles can be continuously and accurately focused to stable equilibrium positions. Suspensions have been processed at flow rates up to 1400 µL min-1 in an ultrashort 4 mm working channel length. A wide range of suspension concentrations-from 0.01 to 1 v/v%-have been systematically investigated, with yields greater than 97%, demonstrating the potential of this technology for large-scale implementation. Additionally, the ability of this chip to separate micrometer- and sub-micrometer-sized particles and to focus bioparticles (cyanobacteria) has been demonstrated. This study pushes the microfluidic inertial focusing particle range down to sub-micrometer length scales, enabling novel routes for investigation of individual microorganisms and subcellular organelles.
Collapse
Affiliation(s)
- Lei Wang
- School of Biomedical EngineeringColorado State University80523Fort CollinsCOUSA
| | - David S. Dandy
- School of Biomedical EngineeringColorado State University80523Fort CollinsCOUSA
- Chemical and Biological EngineeringColorado State University80523Fort CollinsCOUSA
| |
Collapse
|
97
|
Son J, Samuel R, Gale BK, Carrell DT, Hotaling JM. Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. BIOMICROFLUIDICS 2017; 11:054106. [PMID: 29034050 PMCID: PMC5617737 DOI: 10.1063/1.4994548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 05/21/2023]
Abstract
Microfluidic technology has potential to separate sperm cells from unwanted debris while improving the effectiveness of assisted reproductive technologies (ART). Current clinical protocol limitations regarding the separation of sperm cells from other cells/cellular debris can lead to low sperm recovery when the sample contains a low concentration of mostly low motility sperm cells and a high concentration of unwanted cells/cellular debris, such as in semen samples from patients with pyospermia [high white blood cell (WBC) semen]. This study demonstrates label-free separation of sperm cells from such semen samples using inertial microfluidics. The approach does not require any externally applied forces except the movement of the fluid sample through the instrument. Using this approach, it was possible to recover not only any motile sperm, but also viable less-motile and non-motile sperm cells with high recovery rates. Our results demonstrate the ability of inertial microfluidics to significantly reduce WBC concentration by flow focusing of target WBCs within a spiral channel flow. The estimated sample process time was more rapid (∼5 min) and autonomous than the conventional method (gradient centrifuge sperm wash; ∼1 h). A mixture of sperm/WBC was injected as the device input and 83% of sperm cells and 93% of WBCs were collected separately from two distinct outlets. The results show promise for enhancing sperm samples through inertial flow processing of WBCs and sperm cells that can provide an advantage to ART procedures such as sample preparation for intrauterine insemination.
Collapse
Affiliation(s)
- Jiyoung Son
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Raheel Samuel
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Douglas T Carrell
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | - James M Hotaling
- Urology Division of Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| |
Collapse
|
98
|
|
99
|
Lin E, Rivera-Báez L, Fouladdel S, Yoon HJ, Guthrie S, Wieger J, Deol Y, Keller E, Sahai V, Simeone DM, Burness ML, Azizi E, Wicha MS, Nagrath S. High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells. Cell Syst 2017; 5:295-304.e4. [DOI: 10.1016/j.cels.2017.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/24/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
|
100
|
Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y, Jiang H. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Anal Chem 2017; 89:9583-9592. [PMID: 28783330 DOI: 10.1021/acs.analchem.7b02892] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Continuous dielectrophoretic separation is recognized as a powerful technique for a large number of applications including early stage cancer diagnosis, water quality analysis, and stem-cell-based therapy. Generally, the prefocusing of a particle mixture into a stream is an essential process to ensure all particles are subjected to the same electric field geometry in the separation region. However, accomplishing this focusing process either requires hydrodynamic squeezing, which requires an encumbering peripheral system and a complicated operation to drive and control the fluid motion, or depends on dielectrophoretic forces, which are highly sensitive to the dielectric characterization of particles. An alternative focusing technique, induced charge electro-osmosis (ICEO), has been demonstrated to be effective in focusing an incoming mixture into a particle stream as well as nonselective regarding the particles of interest. Encouraged by these aspects, we propose a hybrid method for microparticle separation based on a delicate combination of ICEO focusing and dielectrophoretic deflection. This method involves two steps: focusing the mixture into a thin particle stream via ICEO vortex flow and separating the particles of differing dielectic properties through dielectrophoresis. To demonstrate the feasibility of the method proposed, we designed and fabricated a microfluidic chip and separated a mixture consisting of yeast cells and silica particles with an efficiency exceeding 96%. This method has good potential for flexible integration into other microfluidic chips in the future.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Weiyu Liu
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Xiangsong Feng
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Yankai Jia
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, People's Republic of China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| |
Collapse
|