51
|
A concise and focused overview upon arylglyoxal monohydrates-based one-pot multi-component synthesis of fascinating potentially biologically active pyridazines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
52
|
Zhu YS, Shi L, Fu L, Chen X, Zhu X, Hao XQ, Song MP. Iodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Soares MIL, Cardoso AL, Pinho e Melo TMVD. Diels-Alder Cycloaddition Reactions in Sustainable Media. Molecules 2022; 27:1304. [PMID: 35209094 PMCID: PMC8876200 DOI: 10.3390/molecules27041304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022] Open
Abstract
Diels-Alder cycloaddition reaction is one of the most powerful strategies for the construction of six-membered carbocyclic and heterocyclic systems, in most cases with high regio- and stereoselectivity. In this review, an insight into the most relevant advances on sustainable Diels-Alder reactions since 2010 is provided. Various environmentally benign solvent systems are discussed, namely bio-based derived solvents (such as glycerol and gluconic acid), polyethylene glycol, deep eutectic solvents, supercritical carbon dioxide, water and water-based aqueous systems. Issues such as method's scope, efficiency, selectivity and reaction mechanism, as well as sustainability, advantages and limitations of these reaction media, are addressed.
Collapse
Affiliation(s)
- Maria I. L. Soares
- University of Coimbra, Coimbra Chemistry Centre–Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal;
| | | | - Teresa M. V. D. Pinho e Melo
- University of Coimbra, Coimbra Chemistry Centre–Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal;
| |
Collapse
|
54
|
Devi M, Singh R, Sindhu J, Kumar A, Lal S, Kumar R, Hussain K, Sachdeva M, Singh D, Kumar P. Sonochemical Protocols for Heterocyclic Synthesis: A Representative Review. Top Curr Chem (Cham) 2022; 380:14. [PMID: 35149908 DOI: 10.1007/s41061-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS & H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Guru Jambheshwar University of Science and Technology, Department of Pharmaceutical Sciences, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, 122107, India
| | - Megha Sachdeva
- Department of Chemistry, Center of Advanced Study in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
55
|
Gupta A, Vankar JK, Jadav JP, Gururaja GN. Water Mediated Direct Thioamidation of Aldehydes at Room Temperature. J Org Chem 2022; 87:2410-2420. [PMID: 35133151 DOI: 10.1021/acs.joc.1c02307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild, greener approach toward thioamide synthesis has been developed. Its unique features include water-mediated reaction with no input energy, additives, or catalysts as well. The presented protocol is attractive with readily available starting materials and the use of different array amines, along with a scaled-up method. Biologically active molecules such as thionicotinamide and thioisonicotinamide can be synthesized from this procedure.
Collapse
Affiliation(s)
- Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Jigarkumar K Vankar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Jaydeepbhai P Jadav
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | | |
Collapse
|
56
|
Kamanna K, Amaregouda Y. Synthesis of bioactive scaffolds catalyzed by agro-waste-based solvent medium. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The backbone of synthetic organic chemistry is the formation of carbon–carbon and carbon–heteroatom bonds. Scientists are actively working to develop new methods of bond-forming reactions because it is one of the most useful tools for the development of structurally diverse molecular entities. On the other hand, scientists are constantly discovering chemical processes to make them more sustainable in order to avoid the ever-increasing chemical emission associated with hazards to the environment. Thus, the development of greener catalytic reactions demonstrated a massive uptick in the ability to carry out carbon–carbon and carbon–heteroatom bond-forming reactions under environmentally friendly and simple reaction conditions. Various approaches are demonstrated, namely, solvent-free, microwave irradiation, ionic liquids, ball milling, ultrasound, one-pot, and aqueous-mediated methods under green chemistry protocol. Agro-waste is the postharvest part or agricultural residues derived from various agricultural activities, which has diverse scope and applications. The use of this agro-waste is an eco-friendly and cost-effective process of waste management. Appropriate and optimal utilization of these waste by-products is one of the major challenges in the present days. The recent trend around the globe is to transform waste into wealth concepts to achieve various applications. Agro-waste-derived ashes and extracted medium are successfully studied recently as a heterogeneous- or homogenous-based catalyst in various organic transformations. Agro-waste-derived catalysts are easily available, cost-effective, simple to prepare, nontoxic, easy to handle, biodegradable, and more environmentally benign. This article focuses more on a few instances of agro-waste-based homogeneous and heterogeneous organic synthesis, especially those used in the construction of bioactive molecule synthesis via C–C and C–X bond formation reactions are discussed. The compiled literature in this article is based on keywords used in the search engine on “agro-waste-based catalyst for organic transformations”, and review articles published on this topic, future scope, and summary are discussed.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry , Rani Channamma University , P-B, NH-4 , Belagavi 591156 , Karnataka , India
| | - Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry , Rani Channamma University , P-B, NH-4 , Belagavi 591156 , Karnataka , India
| |
Collapse
|
57
|
Ma WW, Yang C, Xie Q, Xu YH. Dienylation of N-benzoylhydrazones with CF 3-substituted homoallenylboronates in water. Org Biomol Chem 2022; 20:1386-1390. [PMID: 35088801 DOI: 10.1039/d1ob02335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the dienylation of N-benzoylhydrazones in water has been developed. This protocol expanded the synthetic application of functionalized homoallenylboronates to provide the useful 2-aminomethyl-1,3-diene derivatives with high efficiency (up to 99% yield) and stereoselectivity without using any catalyst, additive or inert atmosphere. Furthermore, the transformation of a 2-aminomethyl-1,3-diene derivative to synthesize a functionalized pyrrolidine derivative was also explored.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Qiang Xie
- Department of Nuclear Medicine the First Affiliated Hospital of USTC; the Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China. .,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R China
| |
Collapse
|
58
|
Construction and Aromatization of Hantzsch 1,4‐Dihydropyridines under Microwave Irradiation: A Green Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202104032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
59
|
Panda J, Raiguru BP, Mishra M, Mohapatra S, Nayak S. Recent Advances in the Synthesis of Imidazo[1,2‐
a
]pyridines: A Brief Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
60
|
Velmathi S, Prabhakaran S. Synthesis and Molecular Docking Studies of N,N-Dimethyl Arylpyranopyrimidinedione Derivatives. SYNOPEN 2022. [DOI: 10.1055/s-0040-1719869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractThe synthesis of N,N-dimethyl arylpyranopyrimidinedione derivatives from aromatic aldehydes, N-methyl-1-(methylthio)-2-nitroethamine (NMSM) and 1,3-dimethyl barbituric acid, in the presence of piperidine as a catalyst, is reported. The reaction mechanism involves a Knoevenagel condensation, followed by Michael addition and intramolecular O-cyclization reaction sequence. The synthesized compounds were docked with human kinesin Eg5 protein to calculate binding energy, inhibition constant and H-bond interaction. All the compounds show good binding affinity towards the protein, with significant docking score.
Collapse
|
61
|
Hartwig D, Soares LK, Dapper LH, Nascimento JER, Lenardão EJ. Dicarbonyl compounds in the synthesis of heterocycles under green conditions. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon–carbon and carbon-heteroatom bond forming reactions are strategically employed for the generation of a variety of heterocyclic systems. This class of compounds represents the most general structural unit, present in many natural compounds. They are recognized for their valuable biologically properties and wide range of applications in medicinal, pharmaceutical, and other related fields of chemistry. This is an updated review on the use of dicarbonyl compounds under environmentally friendly conditions to access a series of heterocyclic structures, e.g., quinoxaline, quinazolinones, benzochalcogenazoles, indoles, among others. Synthetic protocols involving copper-catalyzed, multicomponent and cascade reactions, decarboxylative cyclization, recycling of CO2, and electrochemical approaches are presented and discussed.
Collapse
Affiliation(s)
- Daniela Hartwig
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Liane K. Soares
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Luiz H. Dapper
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - José E. R. Nascimento
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas - UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| |
Collapse
|
62
|
Shi W, Yang C, Guo L, Xia W. Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Org Chem Front 2022. [DOI: 10.1039/d2qo01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A photo-induced radical addition–translocation–cyclization (RATC) reaction of terminal alkynes and α-oxocarboxylic acids using water as the reaction medium is reported herein.
Collapse
Affiliation(s)
- Wei Shi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
63
|
Indurthi HK, Das S, Kumar A, Sharma DK. K2S2O8-glucose mediated oxidative coupling of alcohols with indoles for synthesis of Bis(indolyl)methanes in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of inexpensive K2S2O8 in water at room temperature for synthesis of bis(indolyl)methanes (BIMs) from simple indoles and alcohols is reported. The key step involves the conversion of alcohols...
Collapse
|
64
|
Saikia BS, Borpatra PJ, Rahman I, Deb ML, Baruah PK. Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted reactions have proven to be a decent strategy for the synthesis of complex molecules.
Collapse
Affiliation(s)
- B. Shriya Saikia
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Paran J. Borpatra
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Iftakur Rahman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Mohit L. Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| |
Collapse
|
65
|
Mollazehi F. Catalytic nanoparticles and magnetic nanocatalysts in organic reactions: A mini review. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nanocatalysts, as a part of nanotechnology, have been seen very useful for various fileds of applications capturing a large contribution of the world market. Indeed, several unsolved issues of catalysts have been reconsidered by employing the new nanocatalysts including single core metal atoms and ions with surrounding holes. Moreover, it was expected that the future of catalytic reactions, especially those organic ones, will deal with the nanocatalyst applications. To this aim, the features of catalytic nanoparticles and magnetic nanocatalysts regarding evaluation of their advantages and applications in organic reactions were investigated in this work. Developments of catalytic nanoparticles and magnetic nanocatalysts were discussed in this work regarding the novel applications of such materials at the nanoscale for approaching advantageous features. Increased availability, activity, and stability are very important for applications of the catalysts in various organic reactions. Therefore, it is a must to discuss features of such nanocatalytic systems to provide more information about their advantages and even disadvantages of their applications.
Collapse
Affiliation(s)
- Fouziyeh Mollazehi
- Department of Chemistry, Faculty of Science, Saravan Branch, Islamic Azad University, Saravan, Iran
| |
Collapse
|
66
|
Maurya SW, Sagir H, Ansari MD, Siddiqui IR. Magnetically Retrievable Organocatalyst: An Emergent Green Method for The Rapid Formation of Biodynamically Significant Quinolines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Saransh W. Maurya
- Laboratory of Green Synthesis Department of Chemistry University of Allahabad Allahabad 211002 India
| | - Hozeyfa Sagir
- Department of Chemistry Paliwal P.G. College Shikohabad 205135 India
| | - Mohd D. Ansari
- Laboratory of Green Synthesis Department of Chemistry University of Allahabad Allahabad 211002 India
| | - Ibadur R. Siddiqui
- Laboratory of Green Synthesis Department of Chemistry University of Allahabad Allahabad 211002 India
| |
Collapse
|
67
|
Qin F, Wang H, Cao T, Liu Q, Xu Q, Zheng H, Zhu M, Li T, Liu Y, Wei W. Metal‐free Radical Cyclization of Olefinic 1,3‐Dicarbonyls and Olefinic Amides with Nitrile C(sp
3
)−H Bonds in Aqueous Media. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fu‐Hua Qin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hui‐Zhi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Ting‐Ting Cao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qi‐Li Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical Engineering Liaocheng University Liaocheng, Shandong 252059 P. R. China
| | - Meiling Zhu
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering Nanyang Normal University Nanyang, Henan 473061 P. R. China
| | - Yi‐Lin Liu
- College of Chemistry and Materials Engineering Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Huaihua University Huaihua, Hunan 418008 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products School of Materials Science and Chemical Engineering Ningbo University Ningbo, Zhejiang 315211 P. R. China
| |
Collapse
|
68
|
Jeyapalan V, Varadharajan R, Babu Veerakanellore G, Ramamurthy V. Water: An underappreciated reaction medium for photodimerizations. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
69
|
Nazeef M, Shivhare KN, Ali S, Ansari S, Siddiqui IR. Visible-light-mediated one-pot efficient synthesis of 1-aryl-1H,3H-thiazolo[3,4-a]benzimidazoles: a metal-free photochemical approach in aqueous ethanol. Mol Divers 2021; 25:2479-2486. [PMID: 32980996 DOI: 10.1007/s11030-020-10145-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
A new metal-free approach to construct medicinally valuable 1-aryl-1H,3H-thiazolo[3,4-a]benzimidazoles under visible light irradiation in aqueous ethanol medium at room temperature has been developed. The present process was performed with 1,2-phenylenediamines, aromatic aldehydes and 2-mercaptoacetic acid utilizing a simple household 22 W compact fluorescent lamp to generate C-S, C-N bonds through radical intermediates. This visible-light-promoted synthesis provides lower cost, operation simplicity and high functional groups tolerating ability with short reaction time and high yield under mild reaction conditions.
Collapse
Affiliation(s)
- Mohd Nazeef
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Km Neha Shivhare
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Shabir Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Saif Ansari
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - I R Siddiqui
- Laboratory of Green Synthesis, Department of Chemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
70
|
Bashkar M, Bavadi M, Ghaderi E, Niknam K. Synthesis of mono- and bis-spirooxindole derivatives "on water" using double salt of aluminum sulfate-sulfuric acid as a reusable catalyst. Mol Divers 2021; 25:2001-2015. [PMID: 32356162 DOI: 10.1007/s11030-020-10091-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
The preparation of double salt of aluminum sulfate-sulfuric acid (Al4(SO4)6·(H2SO4)·24H2O) by the reaction of aluminum sulfate and sulfuric acid in water is described. Aluminum sulfate-sulfuric acid is characterized via some spectroscopic and microscopic techniques such as infrared spectroscopy (IR), X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which corroborated the structure of the double salt. This double salt is soluble in water and insoluble in organic solvents. It was employed as a new catalyst for the synthesis of spirooxindole compounds on water with good to excellent yields. The double salt could be recycled and reused without appreciable loss of activity.
Collapse
Affiliation(s)
- Mohammad Bashkar
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran
| | - Masoumeh Bavadi
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran
| | - Esmali Ghaderi
- Chemistry Department, Bu-Ali Sina University, Hamadan, Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, 75169, Bushehr, Iran.
| |
Collapse
|
71
|
Rajabi F, Burange AS, Voskressensky LG, Luque R. Supported phosphine free bis-NHC palladium pincer complex: An efficient reusable nanocatalyst for Suzuki-Miyaura coupling reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Al-Zaydi KM, Al-Solami MA, Basudan NS, Elnagdi MH, Elnagdi NMH. An Atom-Economic Synthesis of Functionalized Pyridazines via Multicomponent Reactions Under Pressure and Ultrasonication. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s107042802108011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Yang L, Liu X, Zhang Y, Yang Y, Xue Y. Influence of water content on the [2σ+2σ+2π] cycloaddition of dimethyl azodicarboxylate with quadricyclane in mixed methanol-water solvents from QM/MM Monte Carlo simulations. Phys Chem Chem Phys 2021; 23:20524-20532. [PMID: 34505591 DOI: 10.1039/d1cp01973b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed quantum mechanics/molecular mechanics Monte Carlo (QM/MM/MC) simulations combined with the free energy perturbation (FEP) theory have been performed to investigate the mechanism and solvent effect of the [2σ+2σ+2π] cycloaddition reaction between dimethyl azodicarboxylate and quadricyclanes in the binary mixture solvents of methanol and water by varying the water content from 0 to 100 vol%. The two-dimensional potentials of mean force (2D PMF) calculations demonstrated that the mechanism of the reaction is a collaborative asynchronous procedure. The transition structures do not show large variation among different solvents. The calculated free energies of activation indicated that the QM/MM/MC method reproduced well the tendency of rate enhancement from pure methanol to methanol-water mixtures to "on water" with the water content increasing obtained in the experimental observation. The analyses of the energy pair distribution and radial distribution functions illustrated that hydrogen bonding plays an indispensable role in the stabilization of the transition structures. According to the results in methanol-water mixtures at different volume ratios, it is clear that the site-specific hydrogen bond effects are the central reason which leads to fast rate increases in progressing from a methanol-water volume ratio of 3 : 1 to 1 : 1. This work provides a new insight into the solvent effect for the [2σ+2σ+2π] cycloaddition reaction.
Collapse
Affiliation(s)
- Lian Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Xudong Liu
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yongsheng Yang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
74
|
Nikoofar K, Yielzoleh FM. High-component reactions (HCRs): An overview of MCRs containing seven or more components as versatile tools in organic synthesis. Curr Org Synth 2021; 19:115-147. [PMID: 34515008 DOI: 10.2174/1570179418666210910111208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Recently, multi-component reactions (MCRs) have gained special attention due to their versatility for the synthesis of polycyclic heterocycles. Moreover, their applicability can become more widespread as they can be combined together as a union of MCRs. In this overview, the authors have tried to collect the MCRs containing more than seven components that can lead to effectual heterocycles in organic and/or pharmaceutical chemistry. The review contains papers published up to the end of 2020. The subject is classified based on the number of substrates, such as seven-, eight-, nine-, ten-, and more components. The authors expect their report to be helpful for researchers to clarify their route to significant MCRs.
Collapse
Affiliation(s)
- Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran. Iran
| | | |
Collapse
|
75
|
Līpiņš DD, Jeminejs A, Novosjolova I, Bizdēna Ē, Turks M. Synthesis of Azido and Triazolyl Purine Ribonucleosides. Curr Protoc 2021; 1:e241. [PMID: 34491626 DOI: 10.1002/cpz1.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here, we describe detailed synthetic protocols for preparation of 6-amino/thio-2-triazolylpurine ribonucleosides. First, 9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,6-diazido-9H-purine, to be used as a key starting material, is synthesized in an SN Ar reaction with NaN3 starting from commercially available 9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,6-dichloro-9H-purine. Next, 2,6-bis-triazolylpurine ribonucleoside is obtained in a CuAAC reaction between diazidopurine derivative and phenyl acetylene, and used in SN Ar reactions with N- and S-nucleophiles. In these reactions, the triazolyl ring at the purine C6 position acts as a good leaving group. Cleavage of acetyl protecting groups from the ribosyl moiety is achieved in presence of piperidine. In the SN Ar reaction with amino acid derivatives, the acetyl groups remain intact. Moreover, 9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,6-diazido-9H-purine is selectively reduced at the C6 position using a CuSO4 ·5H2 O/sodium ascorbate system. This provides a straightforward approach for synthesis of 9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-6-amino-2-azido-9H-purine. © 2021 Wiley Periodicals LLC Basic Protocol 1: Synthesis of 6-amino-2-triazolylpurine ribonucleosides Basic Protocol 2: Synthesis of 6-thio-2-triazolylpurine ribonucleosides Basic Protocol 3: Synthesis of 6-amino-2-azidopurine ribonucleoside.
Collapse
Affiliation(s)
- Dāgs Dāvis Līpiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Andris Jeminejs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Ērika Bizdēna
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
76
|
Guanine base stabilized on the magnetic nanoparticles as recyclable catalyst “on water” for the synthesis of spirooxindole derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
77
|
Kohan E, Gholamhosseini-Nazari M, Allahvirdinesbat M, Alemi AA. Green and efficiently synthesized tetrasubstituted imidazole: introduced bismuth oxide co-doped Lu 3+, Er 3+ as a novel reusable heterogeneous nanocatalyst. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1814327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elmira Kohan
- Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | | | | |
Collapse
|
78
|
Laha JK, Hunjan MK. K 2S 2O 8 activation by glucose at room temperature for the synthesis and functionalization of heterocycles in water. Chem Commun (Camb) 2021; 57:8437-8440. [PMID: 34342308 DOI: 10.1039/d1cc03777c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While persulfate activation at room temperature using glucose has primarily been focused on kinetic studies of the sulfate radical anion, the utilization of this protocol in organic synthesis is rarely demonstrated. We reinvestigated selected K2S2O8-mediated known organic reactions that invariably require higher temperatures and an organic solvent. A diverse, mild functionalization and synthesis of heterocycles using the inexpensive oxidant K2S2O8 in water at room temperature is reported, demonstrating the sustainability and broad scope of the method. Unlike traditional methods used for persulfate activation, the current method uses naturally abundant glucose as a K2S2O8 activator, avoiding the use of higher temperature, UV light, transition metals or bases.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
79
|
Chauhan S, Mishra A, Verma P, Srivastava V. Solar Energy Mediated Green Synthesis of Tetrahydrobenzo[b]pyrans Using L-Ascorbic Acid as an Organocatalyst in Aqueous Medium. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1935149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Swati Chauhan
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankush Mishra
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pratibha Verma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
80
|
Németh AG, Marlok B, Domján A, Gao Q, Han X, Keserű GM, Ábrányi‐Balogh P. Convenient Multicomponent One‐Pot Synthesis of 2‐Iminothiazolines and 2‐Aminothiazoles Using Elemental Sulfur Under Aqueous Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Bence Marlok
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Attila Domján
- NMR Research Laboratory Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Qinghe Gao
- School of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan Anhui 243002 P. R. China
| | - György M. Keserű
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| |
Collapse
|
81
|
Shinde RA, Adole VA, Jagdale BS, Pawar TB. Superfast synthesis, antibacterial and antifungal studies of halo-aryl and heterocyclic tagged 2,3-dihydro-1H-inden-1-one candidates. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02772-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Jalili Z, Tayebee R, Zonoz FM. Eco-friendly synthesis of chromeno[4,3- b]chromenes with a new photosensitized WO 3/ZnO@NH 2-EY nanocatalyst. RSC Adv 2021; 11:18026-18039. [PMID: 35480176 PMCID: PMC9033197 DOI: 10.1039/d0ra09737c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
A new heterogeneous photoredox nanocatalyst WO3/ZnO@NH2-EY (EY: eosin Y) was fabricated and characterized employing some instrumental techniques such as XRD, FT-IR, ICP, TGA, and SEM. The photocatalytic efficiency of the prepared material was investigated in the preparation of various chromeno[4,3-b]chromenes via a simple and practical method. The chromene derivatives were prepared through the condensation of aromatic aldehydes, dimedone, and coumarin under an open-air atmosphere in the presence of a green LED under solventless conditions. The significant advantages of this new method include low reaction time, easy work-up, cost-effective, wide substrate scope, excellent yield, and complete atom economy of the final products. Moreover, the prepared photocatalyst could be frequently recovered up to four times with only a little decrease in the catalytic activity. Furthermore, the progress of the condensation reaction is demonstrated to occur via a radical mechanism, which shows that reactive species such as ˙O2− and OH˙ together with h+ would be involved in the photocatalytic process. Stability and reusability studies also warranty good reproducibility of the nanocatalyst for at least 4 runs. Eventually, a hot filtration test ensured that the nanohybrid catalyst is stable in the reaction medium and its catalytic activity originates from the whole undecomposed conjugated composite. WO3/ZnO@NH2-EY is disclosed in the preparation of chromenes under air in the presence of a green LED. ˙O2−, OH˙, and h+ are proposed as reactive species and hot filtration test assured stability and reusability of the nanocatalyst.![]()
Collapse
Affiliation(s)
- Zahra Jalili
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| | - Farrokhzad M Zonoz
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar 96179-76487 Iran
| |
Collapse
|
83
|
Banerjee M, Panjikar PC, Bhutia ZT, Bhosle AA, Chatterjee A. Micellar nanoreactors for organic transformations with a focus on “dehydration” reactions in water: A decade update. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
84
|
Wang Y, Cao X, Ji J, Cui X, Pi C, Zhao L, Wu Y. Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Amaya‐García F, Caldera M, Koren A, Kubicek S, Menche J, Unterlass MM. Green Hydrothermal Synthesis of Fluorescent 2,3-Diarylquinoxalines and Large-Scale Computational Comparison to Existing Alternatives. CHEMSUSCHEM 2021; 14:1853-1863. [PMID: 33662183 PMCID: PMC8252754 DOI: 10.1002/cssc.202100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 06/05/2023]
Abstract
Here, the hydrothermal synthesis (HTS) of 2,3-diarylquinoxalines from 1,2-diketones and o-phenylendiamines (o-PDAs) was achieved. The synthesis is simple, fast, and generates high yields, without requiring any organic solvents, strong acids or toxic catalysts. Reaction times down to <10 min without decrease in yield could be achieved through adding acetic acid as promoter, even for highly apolar biquinoxalines (yield >90 % in all cases). Moreover, it was shown that HTS has high compatibility: (i) hydrochlorides, a standard commercial form of amines, could be used directly as combined amine source and acidic catalyst, and (ii) Boc-diprotected o-PDA could be directly employed as substrate that underwent HT deprotection. A systematic large-scale computational comparison of all reported syntheses of the presented quinoxalines from the same starting compounds showed that this method is more environmentally friendly and less toxic than all existing methods and revealed generic synthetic routes for improving reaction yields. Finally, the application of the synthesized compounds as fluorescent dyes for cell staining was explored.
Collapse
Affiliation(s)
- Fabián Amaya‐García
- Institute of Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/1631060ViennaAustria
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/1651060ViennaAustria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 141090ViennaAustria
- Max Perutz LabsCampus Vienna Biocenter 51030ViennaAustria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 141090ViennaAustria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 141090ViennaAustria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 141090ViennaAustria
- Max Perutz LabsCampus Vienna Biocenter 51030ViennaAustria
| | - Miriam M. Unterlass
- Institute of Applied Synthetic ChemistryTechnische Universität WienGetreidemarkt 9/1631060ViennaAustria
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/1651060ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesLazarettgasse 141090ViennaAustria
| |
Collapse
|
86
|
Khodamorady M, Ghobadi N, Bahrami K. Homoselective synthesis of 5‐substituted 1
H
‐tetrazoles and one‐pot synthesis of 2,4,5‐trisubstuted imidazole compounds using BNPs@SiO
2
‐TPPTSA as a stable and new reusable nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Nazanin Ghobadi
- Department of Chemistry, School of Science Alzahra University Tehran Iran
- Department of Chemistry and Biochemistry Ohio University Athens OH USA
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Nanoscience and Nanotechnology Research Center (NNRC) Razi University Kermanshah Iran
| |
Collapse
|
87
|
Singh B, Sharma V, Gaikwad RP, Fornasiero P, Zbořil R, Gawande MB. Single-Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006473. [PMID: 33624397 DOI: 10.1002/smll.202006473] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro, 3810-193, Portugal
| | - Vikas Sharma
- Centre for Converging Technologies, University of Rajasthan, Jaipur, 302004, India
| | - Rahul P Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, I-34127, Italy
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
88
|
Vankar JK, Gupta A, Jadav JP, Nanjegowda SH, Gururaja GN. The thioamidation of gem-dibromoalkenes in an aqueous medium. Org Biomol Chem 2021; 19:2473-2480. [PMID: 33651057 DOI: 10.1039/d0ob02319a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct integration of sulphur and amine groups with 1,1-dibromoalkenes for thioamide synthesis has been achieved in an aqueous medium. The presented green protocol emphasizes the suitability of aqueous media for the thioamidation reaction and enables greater selectivity with synthetic utility. A wide range of thioamides in moderate to excellent yields has been achieved using readily available starting materials, with the use of no organic solvents, catalysts, or additives.
Collapse
Affiliation(s)
- Jigarkumar K Vankar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | | | | | | | | |
Collapse
|
89
|
Zhou L, Han B, Zhang Y, Li B, Wang L, Wang J, Wang X, Zhu L. Cellulosic CuI Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of α,β-Unsaturated Acceptors in Aqueous Media. Catal Letters 2021. [DOI: 10.1007/s10562-021-03571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Alsalahi W, Trzeciak A. Rhodium-catalyzed hydroformylation under green conditions: Aqueous/organic biphasic, “on water”, solventless and Rh nanoparticle based systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
91
|
Sathish K, Nagaraju S, Kashinath D. Dimethylurea/L-tartaric acid as deep eutectic solvent for one-pot synthesis of 2-(methylamino)-3-nitrospiro-[chromene] and N-methyl-3-nitro-4 H chromen-2-amines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1878225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kota Sathish
- Department of Chemistry, National Institute of Technology, Warangal, India
| | - Sakkani Nagaraju
- Department of Chemistry, National Institute of Technology, Warangal, India
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal, India
| |
Collapse
|
92
|
Baruah B, Deb ML. Catalyst-free and additive-free reactions enabling C-C bond formation: a journey towards a sustainable future. Org Biomol Chem 2021; 19:1191-1229. [PMID: 33480947 DOI: 10.1039/d0ob02149k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the catalyst- and additive-free C-C bond forming reactions reported mostly from the year 2005 to date. C-C bond forming reactions are highly important as large and complex organic molecules can be derived from simpler ones via these reactions. On the other hand, catalyst- and additive-free reactions are economical, environmentally friendly and less sensitive to air/moisture, allow easy separation of products and are operationally simple. Hence, a large number of research articles have been published in this area. Though a few reviews are available on the catalyst-free organic reactions, most of them were published a few years ago. The current review excludes catalysts as well as additives and is specific to only C-C bond formation. Besides many organic name reactions, catalyst/additive-free C-H functionalizations, coupling reactions and UV-visible-light-promoted reactions are also discussed. Undoubtedly, the contents of this review will motivate readers to do more novel work in this area which will accelerate the journey towards a sustainable future.
Collapse
Affiliation(s)
- Biswajita Baruah
- Department of Chemistry, Pandu College, Guwahati-12, Assam, India
| | | |
Collapse
|
93
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. A Review of Recent Advances in the Green Synthesis of Azole- and Pyran-based Fused Heterocycles Using MCRs and Sustainable Catalysts. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201020204620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen, oxygen and sulfur-containing fused heterocycles are of great importance
because of their exciting and diverse biological activities. The construction of the carbonnitrogen
and carbon-oxygen through a multicomponent reaction approach by using ecofriendly
reusable heterogeneous catalysts are of significant importance as it opens avenues for
the introduction of nitrogen and oxygen in organic molecules. Thus, green methodologies
have gained particular significance in this field; today, green chemistry is considered a tool
for introducing sustainable concepts at the fundamental level. This review emphasizes and
discusses the current progress on the applications of eco-friendly, recyclable heterogeneous
catalysts for the synthesis of different heterocyclic fused systems and their green protocols.
We paid particular attention to the specific integration of carbon-nitrogen, and carbon-oxygen
bond-forming fused heterocycles by a one-pot approach by evaluating the literature between 2012 and the middle of
2020. The efficiency of the catalyst is assessed in terms of reaction time, yield and possible reusability. The MCR and
heterogeneous catalyst strategies have demonstrated broader scope, economical and viability for the green and sustainable
processes in the field of synthetic organic chemistry.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| |
Collapse
|
94
|
p-TSA-catalyzed a simple and efficient one-pot eco-friendly synthesis of functionalized new isoxazolyl-4-hydroxyindole-3-carboxylate derivatives in aqueous medium. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1825743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
95
|
Németh AG, Szabó R, Domján A, Keserű GM, Ábrányi‐Balogh P. Chromatography-Free Multicomponent Synthesis of Thioureas Enabled by Aqueous Solution of Elemental Sulfur. ChemistryOpen 2021; 10:16-27. [PMID: 33377316 PMCID: PMC7780808 DOI: 10.1002/open.202000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.
Collapse
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Renáta Szabó
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Attila Domján
- NMR Research LaboratoryResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
96
|
Zuo WF, Zhou J, Wu YL, Fang HY, Lang XJ, Li Y, Zhan G, Han B. Synthesis of spiro(indoline-2,3′-hydropyridazine) via an “on-water” [4 + 2] annulation reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An on-water [4 + 2] annulation reaction between 2-methyl-3H-indolium salt and α-bromo N-acyl hydrazone has been developed. The environmentally friendly strategy provides the first facile access to spiro(indoline-2,3'-hydropyridazine) scaffolds.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Yu-Ling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Hua-Ying Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Xing-Jiang Lang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Ya Li
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- P.R. China
| |
Collapse
|
97
|
Zheng X, Liu Y, Wan JP. Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
98
|
Chandrakar K, Patel JL, Mahapatra SP, Penta S. Recent Advances in On-Water Multicomponent Synthesis of Coumarin Derivatives. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201013164825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coumarin-linked heterocycles represent privileged structural subunits and are welldistributed
in naturally occurring compounds with immense biological activities. Multicomponent
reactions (MCRs) are becoming a valuable tool for synthesizing structurally diverse
molecular entities. On the other hand, the last year has seen a tremendous outburst in modifying
chemical processes to make them sustainable for the betterment of our environment. The
application of aqueous medium in organic synthesis is fulfilling some of the goals of ‘green
and sustainable chemistry’ as it has some advantages over the traditional synthetic methods in
terms of reaction rates, yields, purity of the products, product selectivity, etc. Hence, significant
progress has been made in recent years. In the present review, we provide an overview of
the recent developments of multicomponent synthesis of biologically relevant coumarin
linked and fused heterocyclic compounds carried out from 2015 till today in an aqueous medium.
Collapse
Affiliation(s)
- Komal Chandrakar
- Department of Chemistry, National Institute of Technology Raipur, G. E. Road, Raipur-492010, Chhattisgarh, India
| | - Jeevan Lal Patel
- Department of Chemistry, National Institute of Technology Raipur, G. E. Road, Raipur-492010, Chhattisgarh, India
| | - S. P. Mahapatra
- Department of Chemistry, National Institute of Technology Raipur, G. E. Road, Raipur-492010, Chhattisgarh, India
| | - Santhosh Penta
- Department of Chemistry, National Institute of Technology Raipur, G. E. Road, Raipur-492010, Chhattisgarh, India
| |
Collapse
|
99
|
Tungstate ion (WO42-) confined in hydrophilic/hydrophobic nanomaterials functionalized brönsted acidic ionic liquid as highly active catalyst in the selective aerobic oxidation of alcohols in water. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Borah P, Shivling VD, Banik BK, Sahoo BM. An Overview on Steroids and Microwave Energy in Multi-Component Reactions towards the Synthesis of Novel Hybrid Molecules. Curr Org Synth 2020; 17:594-609. [PMID: 32359339 DOI: 10.2174/1570179417666200503050106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/14/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.
Collapse
Affiliation(s)
| | | | | | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India
| |
Collapse
|