51
|
Bi H, Jing C, Hasch P, Gong Y, Gerster D, Barth JV, Reichert J. Single Molecules in Strong Optical Fields: A Variable-Temperature Molecular Junction Spectroscopy Setup. Anal Chem 2021; 93:9853-9859. [PMID: 34229433 DOI: 10.1021/acs.analchem.1c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to advance the development of molecular electronic devices, it is mandatory to improve the understanding of electron transport and functionalities in single molecules, integrated in a well-defined environment. However, limited information can be obtained by solely analyzing I-V characteristics, whence multiparameter studies are required to obtain more information on such systems including chemical bonds, geometry, and intramolecular strain. Therefore, we developed an analytical method incorporating an optical near-field technique, which allows us to investigate single-molecule junctions at variable temperatures in strong optical fields. An apertureless near-field emitter acts as a counter electrode and a plasmonic waveguide to focus surface plasmon polaritons into the molecular junctions, where a strongly enhanced evanescent field is confined to only a few nanometers around the apex of the tip. The proof of concept, even at low temperatures, is demonstrated by simultaneously investigating electronic and optical features of the molecule p-terphenyl-4,4″-dithiol in dependence of its charge state. This multichannel method can be employed to analyze a variety of nearly unexplored properties in single-molecule junctions such as photoconductance and photocurrent generation and allows a characterization of the molecular junctions by spectroscopic means as well.
Collapse
Affiliation(s)
- Hai Bi
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Chao Jing
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany.,Department of Hydrogen Technique, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, 201800 Shanghai, China.,School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
| | - Peter Hasch
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Yuxiang Gong
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Daniel Gerster
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Johannes V Barth
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Joachim Reichert
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
52
|
Lenz J, Seiler AM, Geisenhof FR, Winterer F, Watanabe K, Taniguchi T, Weitz RT. High-Performance Vertical Organic Transistors of Sub-5 nm Channel Length. NANO LETTERS 2021; 21:4430-4436. [PMID: 33956451 DOI: 10.1021/acs.nanolett.1c01144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Miniaturization of electronic circuits increases their overall performance. So far, electronics based on organic semiconductors has not played an important role in the miniaturization race. Here, we show the fabrication of liquid electrolyte gated vertical organic field effect transistors with channel lengths down to 2.4 nm. These ultrashort channel lengths are enabled by using insulating hexagonal boron nitride with atomically precise thickness and flatness as a spacer separating the vertically aligned source and drain electrodes. The transistors reveal promising electrical characteristics with output current densities of up to 2.95 MA cm-2 at -0.4 V bias, on-off ratios of up to 106, a steep subthreshold swing of down to 65 mV dec-1 and a transconductance of up to 714 S m-1. Realizing channel lengths in the sub-5 nm regime and operation voltages down to 100 μV proves the potential of organic semiconductors for future highly integrated or low power electronics.
Collapse
Affiliation(s)
- Jakob Lenz
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Anna Monika Seiler
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37077, Germany
| | - Fabian Rudolf Geisenhof
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Felix Winterer
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Ralf Thomas Weitz
- AG Physics of Nanosystems, Faculty of Physics, Ludwig-Maximilians-University, Munich, Munich 80799, Germany
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen 37077, Germany
| |
Collapse
|
53
|
Otsuka K, Fang N, Yamashita D, Taniguchi T, Watanabe K, Kato YK. Deterministic transfer of optical-quality carbon nanotubes for atomically defined technology. Nat Commun 2021; 12:3138. [PMID: 34035306 PMCID: PMC8149403 DOI: 10.1038/s41467-021-23413-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
When continued device scaling reaches the ultimate limit imposed by atoms, technology based on atomically precise structures is expected to emerge. Device fabrication will then require building blocks with identified atomic arrangements and assembly of the components without contamination. Here we report on a versatile dry transfer technique for deterministic placement of optical-quality carbon nanotubes. Single-crystalline anthracene is used as a medium which readily sublimes by mild heating, leaving behind clean nanotubes and thus enabling bright photoluminescence. We are able to position nanotubes of a desired chirality with a sub-micron accuracy under in-situ optical monitoring, thereby demonstrating deterministic coupling of a nanotube to a photonic crystal nanobeam cavity. A cross junction structure is also designed and constructed by repeating the nanotube transfer, where intertube exciton transfer is observed. Our results represent an important step towards development of devices consisting of atomically precise components and interfaces. As device fabrication reach atomic scales, assembly of atomically defined components becomes crucial. Here, the authors demonstrate a low contamination transfer technique, using single-crystalline anthracene as medium, for placement of structure-specific carbon nanotubes with submicron accuracy.
Collapse
Affiliation(s)
- Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan. .,Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
| | - Nan Fang
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Daiki Yamashita
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Yuichiro K Kato
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan. .,Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.
| |
Collapse
|
54
|
Kalla M, Chebrolu NR, Chatterjee A. Quantum transport in a single molecular transistor at finite temperature. Sci Rep 2021; 11:10458. [PMID: 34001930 PMCID: PMC8128889 DOI: 10.1038/s41598-021-89436-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
We study quantum transport in a single molecular transistor in which the central region consists of a single-level quantum dot and is connected to two metallic leads that act as a source and a drain respectively. The quantum dot is considered to be under the influence of electron-electron and electron-phonon interactions. The central region is placed on an insulating substrate that acts as a heat reservoir that interacts with the quantum dot phonon giving rise to a damping effect to the quantum dot. The electron-phonon interaction is decoupled by applying a canonical transformation and then the spectral density of the quantum dot is calculated from the resultant Hamiltonian by using Keldysh Green function technique. We also calculate the tunneling current density and differential conductance to study the effect of quantum dissipation, electron correlation and the lattice effects on quantum transport in a single molecular transistor at finite temperature.
Collapse
Affiliation(s)
- Manasa Kalla
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | | | - Ashok Chatterjee
- School of Physics, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
55
|
Nan N, Li W, Wang PC, Hu YJ, Tan GL, Xiong YC. Kondo effect and RKKY interaction assisted by magnetic anisotropy in a frustrated magnetic molecular device at zero and finite temperature. Phys Chem Chem Phys 2021; 23:5878-5887. [PMID: 33659975 DOI: 10.1039/d0cp05915c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular magnetic compounds, which combine the advantages of nanoscale behaviors with the properties of bulk magnetic materials, are particularly attractive in the fields of high-density information storage and quantum computing. Before molecular electronic devices can be fabricated, a crucial task is the measurement and understanding of the transport behaviors. Herein, we consider a magnetic molecular trimer sandwiched between two metal electrodes, and, with the aid of the sophisticated full density matrix numerical renormalization group (FDM-NRG) technique, we study the effect of magnetic anisotropy on the charge transport properties, illustrated by the local density of states (LDOS, which is proportional to the differential conductance), the Kondo effect, and the temperature and inter-monomer hopping robustness. Three kinds of energy peaks are clarified in the LDOS: the Coulomb, the Kondo and the Ruderman-Kittel-Kasuya-Yosida (RKKY) peaks. The local magnetic moment and entropy go through four different regimes as the temperature decreases. The Kondo temperature TK could be described by a generalized Haldane's formula, revealing in detail the process where the local moment is partially screened by the itinerant electrons. A relationship between the width of the Kondo resonant peak WK and TK is built, ensuring the extraction of TK from WK in an efficient way. As the inter-monomer hopping integral varies, the ground state of the trimer changes from a spin quadruplet to a magnetically frustrated phase, then to an orbital spin singlet through two first order quantum phase transitions. In the first two phases, the Kondo peak in the transmission coefficient reaches its unitary limit, while in the orbital spin singlet, it is totally suppressed. We demonstrate that magnetic anisotropy may also induce the Kondo effect, even without Coulomb repulsion, hence it is replaceable in the many-body behaviours at low temperature.
Collapse
Affiliation(s)
- Nan Nan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China. and School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Wei Li
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Peng-Chao Wang
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Yong-Jin Hu
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Guo-Long Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
56
|
Lu Z, Zheng J, Shi J, Zeng BF, Yang Y, Hong W, Tian ZQ. Application of Micro/Nanofabrication Techniques to On-Chip Molecular Electronics. SMALL METHODS 2021; 5:e2001034. [PMID: 34927836 DOI: 10.1002/smtd.202001034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Molecular electronics is a promising subject to overcome the size limitation of silicon-based electronic devices. In the past decades, various micro/nanofabrication techniques have been developed for constructing molecular junctions, and a number of breakthroughs are made in the characterizations and applications of the single-molecule device. The history and progress are reviewed in this article, laying emphasis on the recent works on the combination of micro/nanofabrication techniques with other techniques such as electrochemical deposition and surface-enhanced Raman spectroscopy (SERS). Some prototypical single-molecule devices such as molecular transistors are presented. Finally, the challenges and prospects in the fabrication of single-molecule devices are discussed.
Collapse
Affiliation(s)
- Zhixing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
57
|
Ramos-Berdullas N, Gil-Guerrero S, Peña-Gallego Á, Mandado M. The effect of spin polarization on the electron transport of molecular wires with diradical character. Phys Chem Chem Phys 2021; 23:4777-4783. [PMID: 33599227 DOI: 10.1039/d0cp06321e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Some of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation. Broken Symmetry Unrestricted Kohn-Sham Density Functional Theory (BS-UKS-DFT) in combination with electron transport analysis based on electron deformation orbitals (EDOs) reflects an exponential decay of the electrical conductance with length. Also, other important effects such as quantum interference are correctly accounted for, leading to a decrease of the conductance as the diradical character increases. As a proof-of-concept, the electrical conductance obtained from BS-UKS-DFT and CASSCF(2,2) wavefunctions were compared in diradical graphene strips in the frame of the pseudo-π approach, obtaining very similar results.
Collapse
Affiliation(s)
- Nicolás Ramos-Berdullas
- Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| | | | | | | |
Collapse
|
58
|
Chen Y, Huang L, Chen H, Chen Z, Zhang H, Xiao Z, Hong W. Towards Responsive
Single‐Molecule
Device. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
59
|
Sowa JK, Marcus RA. On the theory of charge transport and entropic effects in solvated molecular junctions. J Chem Phys 2021; 154:034110. [DOI: 10.1063/5.0034782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jakub K. Sowa
- Department of Materials, University of Oxford, OX1 3PH Oxford, United Kingdom
| | - Rudolph A. Marcus
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
60
|
Weckbecker D, Coto PB, Thoss M. Molecular Transistor Controlled through Proton Transfer. J Phys Chem Lett 2021; 12:413-417. [PMID: 33356318 DOI: 10.1021/acs.jpclett.0c03405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potential of proton transfer reactions as a fundamental mechanism to realize a nanoscale molecular transistor is investigated. Employing density functional theory and the nonequilibrium Green's function formalism, we identify molecule-graphene nanojunctions, which exhibit high- and low-conducting states depending on the specific location of protons in the molecular bridge. In addition, we show that an electrostatic gate field can control the proton transfer process and thus allow specific conductance states to be selected. In this way, the current in the junction can be switched on and off as in a field-effect transistor. The underlying mechanism is analyzed in detail.
Collapse
Affiliation(s)
- D Weckbecker
- Lehrstuhl für theoretische Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany
| | - P B Coto
- Materials Physics Center (CFM), Spanish National Research Council (CSIC), Paseo Manuel de Lardizabal 5, 20018 Donostia/San Sebastián, Gipuzkoa, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia/San Sebastián, Gipuzkoa, Spain
| | - M Thoss
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
61
|
Zang Y, Fung ED, Fu T, Ray S, Garner MH, Borges A, Steigerwald ML, Patil S, Solomon G, Venkataraman L. Voltage-Induced Single-Molecule Junction Planarization. NANO LETTERS 2021; 21:673-679. [PMID: 33337876 DOI: 10.1021/acs.nanolett.0c04260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Probing structural changes of a molecule induced by charge transfer is important for understanding the physicochemical properties of molecules and developing new electronic devices. Here, we interrogate the structural changes of a single diketopyrrolopyrrole (DPP) molecule induced by charge transport at a high bias using scanning tunneling microscope break junction (STM-BJ) techniques. Specifically, we demonstrate that application of a high bias increases the average nonresonant conductance of single Au-DPP-Au junctions. We infer from the increased conductance that resonant charge transport induces planarization of the molecular backbone. We further show that this conformational planarization is assisted by thermally activated junction reorganization. The planarization only occurs under specific electronic conditions, which we rationalize by ab initio calculations. These results emphasize the need for a comprehensive view of single-molecule junctions which includes both the electronic properties and structure of the molecules and the electrodes when designing electrically driven single-molecule motors.
Collapse
Affiliation(s)
- Yaping Zang
- Department of Applied Physics, Columbia University, New York, New York 10027, United States
| | - E-Dean Fung
- Department of Applied Physics, Columbia University, New York, New York 10027, United States
| | - Tianren Fu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Suman Ray
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Marc H Garner
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Anders Borges
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Gemma Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Latha Venkataraman
- Department of Applied Physics, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
62
|
Leary E, Kastlunger G, Limburg B, Rincón-García L, Hurtado-Gallego J, González MT, Bollinger GR, Agrait N, Higgins SJ, Anderson HL, Stadler R, Nichols RJ. Long-lived charged states of single porphyrin-tape junctions under ambient conditions. NANOSCALE HORIZONS 2021; 6:49-58. [PMID: 33107543 DOI: 10.1039/d0nh00415d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to control the charge state of individual molecules wired in two-terminal single-molecule junctions is a key challenge in molecular electronics, particularly in relation to the development of molecular memory and other computational componentry. Here we demonstrate that single porphyrin molecular junctions can be reversibly charged and discharged at elevated biases under ambient conditions due to the presence of a localised molecular eigenstate close to the Fermi edge of the electrodes. In particular, we can observe long-lived charge-states with lifetimes upwards of 1-10 seconds after returning to low bias and large changes in conductance, in excess of 100-fold at low bias. Our theoretical analysis finds charge-state lifetimes within the same time range as the experiments. The ambient operation demonstrates that special conditions such as low temperatures or ultra-high vacuum are not essential to observe hysteresis and stable charged molecular junctions.
Collapse
Affiliation(s)
- Edmund Leary
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Djafri A, Perveen F, Benhalima N, Khelloul N, Rahmani R, Djafri A, Chouaih A, Kanoun MB, Goumri-Said S. Experimental spectral characterization, Hirshfeld surface analysis, DFT/TD-DFT calculations and docking studies of (2Z,5Z)-5-(4-nitrobenzylidene)-3-N(2-methoxyphenyl)-2-N'(2-methoxyphenylimino) thiazolidin-4-one. Heliyon 2020; 6:e05754. [PMID: 33385082 PMCID: PMC7770550 DOI: 10.1016/j.heliyon.2020.e05754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
We reported an experimental and theoretical spectroscopic studies of (2Z,5Z)-5-(4-nitrobenzylidene)-3-N (2-methoxyphenyl)-2-N' (2-methoxyphenylimino) thiazolidin-4-one (C24H19N3O5S) molecule, using FT-IR, NMR spectroscopy, and density functional theory (DFT) via time-dependent schema (TD-DFT) respectively. The molecular inter-contacts were explored using Hirshfeld surfaces (HS) analysis method. Vibrational frequencies, gauge-independent atomic orbital (GIAO)1H and13C NMR chemical shift values and frontier molecular orbitals (FMOs) have been calculated from the optimized structure of the molecule by DFT/B3LYP functional with 6-31G(d, p) basis set. Our theoretical results show a good agreement with the experimental data. The calculated UV-visible spectrum employing TD-DFT shows electronic transitions at 388 nm and 495 nm. To get insight on the charge interaction happening inside the molecule, HOMO and LUMO were scrutinized and their calculated energy gap was found to be 2.96 eV. The molecular docking was analyzed via interplay study ofacetyl cholinesterase, and Butyrylcholinesterase using molecular docking methodology.
Collapse
Affiliation(s)
- Ahmed Djafri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004, Tipaza, Algeria
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid IbnBadis University, BP 227, Mostaganem, 27000, Algeria
| | - Fouzia Perveen
- Research Center for Modeling and Simulations (RCMS), National University of Sciences and Technology, H-12 Campus, Islamabad, Pakistan
| | - Nadia Benhalima
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid IbnBadis University, BP 227, Mostaganem, 27000, Algeria
- Département de physique, Faculté des sciences, Université Dr. Moulay Tahar, BP138, EN-NASR, 20000, Saida, Algeria
| | - Nawel Khelloul
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid IbnBadis University, BP 227, Mostaganem, 27000, Algeria
- Faculty of Sciences and Technology, Mustapha Stambouli University of Mascara, B.P.763, 29000, Mascara, Algeria
| | - Rachida Rahmani
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid IbnBadis University, BP 227, Mostaganem, 27000, Algeria
- Département de Génie des procédés, Centre Universitaire de Relizane, Algeria
| | - Ayada Djafri
- Laboratoire de Synthèse Organique Appliquées, Faculté des Sciences Exactes et Appliquées, Département de Chimie, Université Oran-1, Algeria
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid IbnBadis University, BP 227, Mostaganem, 27000, Algeria
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
64
|
Arjmandi-Tash H, van Deursen PM, Bellunato A, de Sere C, Overchenko Z, Gupta KBS, Schneider GF. Supramolecular Multilayered Templates for Fabricating Nanometer-Precise Spacings: Implications for the Next-Generation of Devices Integrating Nanogap/Nanochannel Components. ACS APPLIED NANO MATERIALS 2020; 3:10586-10590. [PMID: 33283172 PMCID: PMC7706106 DOI: 10.1021/acsanm.0c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Molecular transistors, electromagnetic waveguides, plasmonic devices, and novel generations of nanofluidic channels comprise precisely separated gaps of nanometric and subnanometric spacing. Nonetheless, fabricating a nanogap/nanochannel is a technological challenge, currently tackled by several approaches such as breakdown electromigration and lithography. The aforementioned techniques, though, are limited, respectively, in terms of gap stability and ultimate resolution. Here, nanogaps/nanochannels are templated via the microtomy of metallic thin films embedded in a polymer matrix and precisely separated by a nanometric, sacrificial layer of polyelectrolytes grown via the layer-by-layer (LbL) approach. The versatility of the LbL technique, both in terms of the number of layers and composition of polyelectrolytes, allows to finely tune the spacing across the gap; the LbL template can further be removed by plasma etching. Our findings pave the path toward the realization of molecularly defined functional spacings at the nanometer-scale for the modular implementation of devices integrating nanogap/nanochannel components.
Collapse
|
65
|
Han Y, Nijhuis CA. Functional Redox-Active Molecular Tunnel Junctions. Chem Asian J 2020; 15:3752-3770. [PMID: 33015998 PMCID: PMC7756406 DOI: 10.1002/asia.202000932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Redox-active molecular junctions have attracted considerable attention because redox-active molecules provide accessible energy levels enabling electronic function at the molecular length scales, such as, rectification, conductance switching, or molecular transistors. Unlike charge transfer in wet electrochemical environments, it is still challenging to understand how redox-processes proceed in solid-state molecular junctions which lack counterions and solvent molecules to stabilize the charge on the molecules. In this minireview, we first introduce molecular junctions based on redox-active molecules and discuss their properties from both a chemistry and nanoelectronics point of view, and then discuss briefly the mechanisms of charge transport in solid-state redox-junctions followed by examples where redox-molecules generate new electronic function. We conclude with challenges that need to be addressed and interesting future directions from a chemical engineering and molecular design perspectives.
Collapse
Affiliation(s)
- Yingmei Han
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Christian A. Nijhuis
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of Singapore6 Science Drive 2Singapore117546Singapore
| |
Collapse
|
66
|
Li P, Jia C, Guo X. Molecule-Based Transistors: From Macroscale to Single Molecule. CHEM REC 2020; 21:1284-1299. [PMID: 33140918 DOI: 10.1002/tcr.202000114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
Molecule-based field-effect transistors (FETs) are of great significance as they have a wide range of application prospects, such as logic operations, information storage and sensor monitoring. This account mainly introduces and reviews our recent work in molecular FETs. Specifically, through molecular and device design, we have systematically investigated the construction and performance of FETs from macroscale to nanoscale and even single molecule. In particular, we have proposed the broad concept of molecular FETs, whose functions can be achieved through various external controls, such as light stimulation, and other physical, chemical or biological interactions. In the end, we tend to focus the discussion on the development challenges of single-molecule FETs, and propose prospects for further breakthroughs in this field.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
67
|
Liu J, Segal D. Sharp Negative Differential Resistance from Vibrational Mode Softening in Molecular Junctions. NANO LETTERS 2020; 20:6128-6134. [PMID: 32574500 DOI: 10.1021/acs.nanolett.0c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We unravel the critical role of vibrational mode softening in single-molecule electronic devices at high bias. Our theoretical analysis is carried out with a minimal model for molecular junctions, with mode softening arising due to quadratic electron-vibration couplings, and by developing a mean-field approach. We discover that the negative sign of the quadratic electron-vibration coupling coefficient can realize, at high voltage, a sharp negative differential resistance (NDR) effect with a large peak-to-valley ratio. Calculated current-voltage characteristics, obtained based on physical parameters for a nitro-substituted oligo(phenylene ethynylene) junction, agree very well with the measurements. Our results establish that vibrational mode softening is a crucial effect at high voltage, underlying NDR, a substantial diode effect, and the breakdown of current-carrying molecular junctions.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
68
|
Komoto Y, Ohshiro T, Yoshida T, Tarusawa E, Yagi T, Washio T, Taniguchi M. Time-resolved neurotransmitter detection in mouse brain tissue using an artificial intelligence-nanogap. Sci Rep 2020; 10:11244. [PMID: 32647343 PMCID: PMC7347941 DOI: 10.1038/s41598-020-68236-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
The analysis of neurotransmitters in the brain helps to understand brain functions and diagnose Parkinson’s disease. Pharmacological inhibition experiments, electrophysiological measurement of action potentials, and mass analysers have been applied for this purpose; however, these techniques do not allow direct neurotransmitter detection with good temporal resolution by using nanometre-sized electrodes. Hence, we developed a method for direct observation of a single neurotransmitter molecule with a gap width of ≤ 1 nm and on the millisecond time scale. It consists of measuring the tunnelling current that flows through a single-molecule by using nanogap electrodes and machine learning analysis. Using this method, we identified dopamine, serotonin, and norepinephrine neurotransmitters with high accuracy at the single-molecule level. The analysis of the mouse striatum and cerebral cortex revealed the order of concentration of the three neurotransmitters. Our method will be developed to investigate the neurotransmitter distribution in the brain with good temporal resolution.
Collapse
Affiliation(s)
- Yuki Komoto
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.,Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takahito Ohshiro
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeshi Yoshida
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
69
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
70
|
Hao G, Cheng R, Dowben PA. The emergence of the local moment molecular spin transistor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:234002. [PMID: 32045894 DOI: 10.1088/1361-648x/ab74e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Local moment molecular systems have now been used as the conduction channel in gated spintronics devices, and some of these three terminal devices might even be considered molecular spin transistors. In these systems, the gate voltage can be used to tune the molecular level alignment, while applied magnetic fields have an influence on the spin state, altering the magnetic properties, and providing insights to the magnetic anisotropy. More recently, the use of molecular spin crossover complexes, as the conduction channel, has led to devices that are both nonvolatile and have functionality at higher temperatures. Indeed, some devices have now been demonstrated to work at room temperature. Here, several molecular transistors, including those claiming to use single molecule magnets (SMM), are reviewed.
Collapse
Affiliation(s)
- Guanhua Hao
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, 68588-0299, United States of America
| | | | | |
Collapse
|
71
|
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule-Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. J Am Chem Soc 2020; 142:9708-9717. [PMID: 32362123 DOI: 10.1021/jacs.0c02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel solid-state molecular device structure based on double self-assembled monolayers (D-SAM) incorporated into the suspended nanowire architecture to form a "Au|SAM-1||SAM-2|Au" junction. Using commercially available thiol molecules that are devoid of synthetic difficulty, we constructed a "Au|S-(CH2)6-ferrocene||SAM-2|Au" junction with various lengths and chemical structures of SAM-2 to tune the coupling between the ferrocene conductive molecular orbital and electrode of the junction. Combining low noise and a wide temperature range measurement, we demonstrated systematically modulated conduction depending on the length and chemical nature of SAM-2. Meanwhile, the transport mechanism transition from tunneling to hopping and the intermediate state accompanied by the current fluctuation due to the coexistence of the hopping and tunneling transport channels were observed. Considering the versatility of this solid-state D-SAM in modulating the electrode-molecule interface and electroactive groups, this strategy thus provides a novel facile strategy for tailorable nanoscale charge transport studies and functional molecular devices.
Collapse
Affiliation(s)
- Bin Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xuan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuaishuai Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yaogang Zhang
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaona Xu
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
72
|
El Abbassi M, Perrin ML, Barin GB, Sangtarash S, Overbeck J, Braun O, Lambert CJ, Sun Q, Prechtl T, Narita A, Müllen K, Ruffieux P, Sadeghi H, Fasel R, Calame M. Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS NANO 2020; 14:5754-5762. [PMID: 32223259 PMCID: PMC7254832 DOI: 10.1021/acsnano.0c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 05/29/2023]
Abstract
Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.
Collapse
Affiliation(s)
- Maria El Abbassi
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2628 CJ Delft, The Netherlands
| | - Mickael L. Perrin
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriela Borin Barin
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sara Sangtarash
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jan Overbeck
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Oliver Braun
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Colin J. Lambert
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Qiang Sun
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | | | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Hatef Sadeghi
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Roman Fasel
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Chemistry and Biochemistry, University
of Bern, CH-3012 Bern, Switzerland
| | - Michel Calame
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
73
|
Jia C, Grace IM, Wang P, Almeshal A, Huang Z, Wang Y, Chen P, Wang L, Zhou J, Feng Z, Zhao Z, Huang Y, Lambert CJ, Duan X. Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Gee A, Jaafar AH, Kemp NT. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration. NANOTECHNOLOGY 2020; 31:155203. [PMID: 31860883 DOI: 10.1088/1361-6528/ab6473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by π-stacking.
Collapse
Affiliation(s)
- Alex Gee
- Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, United Kingdom
| | | | | |
Collapse
|
75
|
Yang C, Qin A, Tang BZ, Guo X. Fabrication and functions of graphene-molecule-graphene single-molecule junctions. J Chem Phys 2020; 152:120902. [PMID: 32241145 DOI: 10.1063/1.5144275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.
Collapse
Affiliation(s)
- Caiyao Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
76
|
Sowa JK, Lambert N, Seideman T, Gauger EM. Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions. II. A self-consistent Born approach. J Chem Phys 2020; 152:064103. [PMID: 32061212 DOI: 10.1063/1.5143146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marcus and Landauer-Büttiker approaches to charge transport through molecular junctions describe two contrasting mechanisms of electronic conduction. In previous work, we have shown how these charge transport theories can be unified in the single-level case by incorporating lifetime broadening into the second-order quantum master equation. Here, we extend our previous treatment by incorporating lifetime broadening in the spirit of the self-consistent Born approximation. By comparing both theories to numerically converged hierarchical-equations-of-motion results, we demonstrate that our novel self-consistent approach rectifies shortcomings of our earlier framework, which are present especially in the case of relatively strong electron-vibrational coupling. We also discuss circumstances under which the theory developed here simplifies to the generalized theory developed in our earlier work. Finally, by considering the high-temperature limit of our new self-consistent treatment, we show how lifetime broadening can also be self-consistently incorporated into Marcus theory. Overall, we demonstrate that the self-consistent approach constitutes a more accurate description of molecular conduction while retaining most of the conceptual simplicity of our earlier framework.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Erik M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
77
|
Improving Gating Efficiency of Electron Transport through Redox‐Active Molecular Junctions with Conjugated Chains. ChemElectroChem 2020. [DOI: 10.1002/celc.201902076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
78
|
Sachan P, Mondal PC. Versatile electrochemical approaches towards the fabrication of molecular electronic devices. Analyst 2020; 145:1563-1582. [DOI: 10.1039/c9an01948k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We highlight state-of-the-art electrochemical approaches for diazonium electroreduction on various electrodes that may be suitable for flexible molecular electronic junctions.
Collapse
Affiliation(s)
- Pradeep Sachan
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|
79
|
F. Abdollahi M, Zhao Y. Recent advances in dithiafulvenyl-functionalized organic conjugated materials. NEW J CHEM 2020. [DOI: 10.1039/c9nj06430c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the recent studies of advanced organic π-conjugated materials that contain 1,4-dithiafulvene (DTF) as a redox-active component.
Collapse
Affiliation(s)
| | - Yuming Zhao
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| |
Collapse
|
80
|
Perrin ML, Eelkema R, Thijssen J, Grozema FC, van der Zant HSJ. Single-molecule functionality in electronic components based on orbital resonances. Phys Chem Chem Phys 2020; 22:12849-12866. [DOI: 10.1039/d0cp01448f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gateable single-molecule diode and resonant tunneling diode are realized using molecular orbital engineering in multi-site molecules.
Collapse
Affiliation(s)
- Mickael L. Perrin
- Kavli Institute of Nanoscience
- Delft University of Technology
- 2628 CJ Delft
- The Netherlands
- Swiss Federal Laboratories for Materials Science and Technology
| | - Rienk Eelkema
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | - Jos Thijssen
- Kavli Institute of Nanoscience
- Delft University of Technology
- 2628 CJ Delft
- The Netherlands
| | - Ferdinand C. Grozema
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
| | | |
Collapse
|
81
|
Kalla M, Chebrolu NR, Chatterjee A. Magneto-transport properties of a single molecular transistor in the presence of electron-electron and electron-phonon interactions and quantum dissipation. Sci Rep 2019; 9:16510. [PMID: 31712611 PMCID: PMC6848168 DOI: 10.1038/s41598-019-53008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022] Open
Abstract
A single molecular transistor is considered in the presence of electron-electron interaction, electron-phonon interaction, an external magnetic field and dissipation. The quantum transport properties of the system are investigated using the Anderson-Holstein Hamiltonian together with the Caldeira-Leggett model that takes care of the damping effect. The phonons are first removed from the theory by averaging the Hamiltonian with respect to a coherent phonon state and the resultant electronic Hamiltonian is finally solved with the help of the Green function technique due to Keldysh. The spectral function, spin-polarized current densities, differential conductance and spin polarization current are determined.
Collapse
Affiliation(s)
- Manasa Kalla
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | | | - Ashok Chatterjee
- School of Physics, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
82
|
Sakai S, Hirata Y, Ito M, Shirakashi JI. Fabrication of atomic junctions with experimental parameters optimized using ground-state searches of Ising spin computing. Sci Rep 2019; 9:16211. [PMID: 31700094 PMCID: PMC6838177 DOI: 10.1038/s41598-019-52438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022] Open
Abstract
Feedback-controlled electromigration (FCE) is employed to control metal nanowires with quantized conductance and create nanogaps and atomic junctions. In the FCE method, the experimental parameters are commonly selected based on experience. However, optimization of the parameters by way of tuning is intractable because of the impossibility of attempting all different combinations systematically. Therefore, we propose the use of the Ising spin model to optimize the FCE parameters, because this approach can search for a global optimum in a multidimensional solution space within a short calculation time. The FCE parameters were determined by using the energy convergence properties of the Ising spin model. We tested these parameters in actual FCE experiments, and we demonstrated that the Ising spin model could improve the controllability of the quantized conductance in atomic junctions. This result implies that the proposed method is an effective tool for the optimization of the FCE process in which an intelligent machine can conduct the research instead of humans.
Collapse
Affiliation(s)
- Shotaro Sakai
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo, 184-8588, Japan
| | - Yosuke Hirata
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo, 184-8588, Japan
| | - Mitsuki Ito
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo, 184-8588, Japan
| | - Jun-Ichi Shirakashi
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
83
|
Pohl V, Marsoner Steinkasserer LE, Tremblay JC. Imaging Time-Dependent Electronic Currents through a Graphene-Based Nanojunction. J Phys Chem Lett 2019; 10:5387-5394. [PMID: 31448920 DOI: 10.1021/acs.jpclett.9b01732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To assist the design of efficient molecular junctions, a precise understanding of the charge transport mechanisms through nanoscaled devices is of prime importance. In the present contribution, we present time- and space-resolved electron transport simulations through a nanojunction under time-dependent potential biases. We use the driven Liouville-von Neumann approach to simulate the time evolution of the one-electron density matrix under nonequilibrium conditions, which allows us to capture the ultrafast scattering dynamics, the electronic relaxation process, and the quasi-stationary current limit from the same simulation. Using local projection techniques, we map the coherent electronic current density, unraveling insightful mechanistic details of the transport on time scales ranging from atto- to picoseconds. Memory effects dominate the early time transport process, and they reveal different current patterns on short time scales in comparison to those in the long-time regime. For nanotransistors with high switching rates, the scattering perspective on electron transport should thus be favored.
Collapse
Affiliation(s)
- Vincent Pohl
- Quantum on Demand , c/o Freie Universität Berlin , Altensteinstr. 40 , 14195 Berlin , Germany
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | | | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques , CNRS-Université de Lorraine , UMR 7019, ICPM, 1 Bd Arago , 57070 Metz , France
| |
Collapse
|
84
|
Laucirica G, Marmisollé WA, Toimil-Molares ME, Trautmann C, Azzaroni O. Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30001-30009. [PMID: 31335118 DOI: 10.1021/acsami.9b05961] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The design of an electrochemically addressable nanofluidic diode is proposed, which allows tunable and nanofluidic operations via redox gating under electrochemical control. The fabrication process involves the modification of an asymmetric gold-coated solid-state nanopore with a thin layer of a redox polymer, poly(vinylferrocene) (PVFc). The composite nanochannel acts as a gate electrode by changing the electrochemical state and, consequently, the conversion/switching of ferrocene into ferricenium units upon the application of different voltages. It is shown that the electrochemical input accurately controls the surface charge density of the nanochannel walls with a predictable concomitant effect on the rectification properties. PVFc-based nanofluidic devices are able to discriminate the passage of anionic species through the nanochannel in a qualitative and quantitative manner by simply switching the redox potential of the PVFc layer. Experimental data confirmed that a rapid and reversible modulation of the ionic transport regimes can be easily attained by changing the applied potential. This applied potential plays the role of the gate voltage (Vg) in field-effect transistors (FET), so these nanofluidic channels behave as ionic FETs. Depending on the Vg values, the iontronic behavior can be switched between ohmic and diode-like regimes. We believe that this system illustrates the potential of redox-active polymers integrated into nanofluidic devices as plausible, simple, and versatile platforms to create electrochemically addressable nanofluidic devices for multiple applications.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Technische Universität Darmstadt, Material-Wissenschaft , 64287 Darmstadt , Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| |
Collapse
|
85
|
Limburg B, Thomas JO, Sowa JK, Willick K, Baugh J, Gauger EM, Briggs GAD, Mol JA, Anderson HL. Charge-state assignment of nanoscale single-electron transistors from their current-voltage characteristics. NANOSCALE 2019; 11:14820-14827. [PMID: 31355401 DOI: 10.1039/c9nr03754c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The electronic and magnetic properties of single-molecule transistors depend critically on the molecular charge state. Charge transport in single-molecule transistors is characterized by Coulomb-blocked regions in which the charge state of the molecule is fixed and current is suppressed, separated by high-conductance, sequential-tunneling regions. It is often difficult to assign the charge state of the molecular species in each Coulomb-blocked region due to variability in the work-function of the electrodes. In this work, we provide a simple and fast method to assign the charge state of the molecular species in the Coulomb-blocked regions based on signatures of electron-phonon coupling together with the Pauli-exclusion principle, simply by observing the asymmetry in the current in high-conductance regions of the stability diagram. We demonstrate that charge-state assignments determined in this way are consistent with those obtained from measurements of Zeeman splittings. Our method is applicable at 77 K, in contrast to magnetic-field-dependent measurements, which generally require low temperatures (below 4 K). Due to the ubiquity of electron-phonon coupling in molecular junctions, we expect this method to be widely applicable to single-electron transistors based on single molecules and graphene quantum dots. The correct assignment of charge states allows researchers to better understand the fundamental charge-transport properties of single-molecule transistors.
Collapse
Affiliation(s)
- Bart Limburg
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Huang JR, Huang H, Tao CP, Zheng JF, Yuan Y, Hong ZW, Shao Y, Niu ZJ, Chen JZ, Zhou XS. Controlling Contact Configuration of Carboxylic Acid-Based Molecular Junctions Through Side Group. NANOSCALE RESEARCH LETTERS 2019; 14:253. [PMID: 31350621 PMCID: PMC6660542 DOI: 10.1186/s11671-019-3087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
In this paper, the contact configuration of single molecular junction is controlled through side group, which is explored by electrochemical jump-to-contact STM break junction. The conductance values of 2-methoxy-1,3-benzenedicarboxylic acid (2-M-1,3-BDC) is around 10-3.65 G0, which is different from that of 5-methoxy-1,3-benzenedicarboxylic acid (5-M-1,3-BDC) with 10-3.20 G0. Interestingly, the conductance value of 2-M-1,3-BDC is the same as that of 1,3-benzenedicarboxaldehyde (1,3-BDCA), while single molecular junctions of 5-M-1,3-BDC and 1,3-benzenedicarboxylic acid (1,3-BDC) give out similar conductance value. Since 1,3-BDCA binds to the Cu electrode through one oxygen atom, the dominated contact configuration for 1,3-BDC is through two oxygen atoms. The different conductance values between 2-M-1,3-BDC and 5-M-1,3-BDC can be attributed to the different contact configurations caused by the position of the side group. The current work provides a feasible way to control the contact configuration between the anchoring group and the electrode, which may be useful in designing future molecular electronics.
Collapse
Affiliation(s)
- Jun-Ren Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hong Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Cai-Ping Tao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ying Yuan
- Department of Physics, Shanghai University, Shanghai, 200444, China
| | - Ze-Wen Hong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhen-Jiang Niu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Zhe Chen
- Department of Physics, Shanghai University, Shanghai, 200444, China.
- Zhejiang Tianyan Technology Co., Ltd, Hangzhou, 311215, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
87
|
Endohedral Fullerene Fe@C 28 Adsorbed on Au(111) Surface as a High-Efficiency Spin Filter: A Theoretical Study. NANOMATERIALS 2019; 9:nano9081068. [PMID: 31349620 PMCID: PMC6722963 DOI: 10.3390/nano9081068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
We present a theoretical study on the adsorption and spin transport properties of magnetic Fe@C28 using Ab initio calculations based on spin density functional theory and non-equilibrium Green’s function techniques. Fe@C28 tends to adsorb on the bridge sites in the manner of C–C bonds, and the spin-resolved transmission spectra of Fe@C28 molecular junctions exhibit robust transport spin polarization (TSP). Under small bias voltage, the transport properties of Fe@C28 are mainly determined by the spin-down channel and exhibit a large spin polarization. When compressing the right electrode, the TSP is decreased, but high spin filter efficiency (SFE) is still maintained. These theoretical results indicate that Fe@C28 with a large magnetic moment has potential applications in molecular spintronics.
Collapse
|
88
|
Sun H, Liu X, Su Y, Deng B, Peng H, Decurtins S, Sanvito S, Liu SX, Hou S, Liao J. Dirac-cone induced gating enhancement in single-molecule field-effect transistors. NANOSCALE 2019; 11:13117-13125. [PMID: 31268079 DOI: 10.1039/c9nr01551e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using graphene as electrodes provides an opportunity for fabricating stable single-molecule field-effect transistors (FETs) operating at room temperature. However, the role of the unique graphene band structure in charge transport of single-molecule devices is still not clear. Here we report the Dirac-cone induced electrostatic gating effects in single-molecule FETs with graphene electrodes and a solid-state local bottom gate. With the highest occupied molecular orbital (HOMO) as the dominating conduction channel and the graphene leads remaining intrinsic at zero gate voltage, electrostatic gating on the HOMO and the density of states of graphene at the negative gate polarity reinforces each other, resulting in an enhanced conductance modulation. In contrast, gating effects on the HOMO and the graphene states at the positive gate polarity are opposite. Depending on the gating efficiencies, the conductance can decrease, increase or remain almost unchanged when a more positive gate voltage is applied. Our observations can be well understood by a modified single-level model taking into account the linear dispersion of graphene near the Dirac point. Single-molecule FETs with Dirac-cone enhanced gating have shown high performances, with the modulation of a wide range of current over one order of magnitude. Our studies highlight the advantages of using graphene as an electrode material for molecular devices and pave the way for single-molecule FETs toward circuitry applications.
Collapse
Affiliation(s)
- Hantao Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China. and Centre for Nanoscale Science and Technology, Peking University, Beijing 100871, China
| | - Xunshan Liu
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Yanjie Su
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China. and Centre for Nanoscale Science and Technology, Peking University, Beijing 100871, China
| | - Bing Deng
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Silvio Decurtins
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - Shi-Xia Liu
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China. and Centre for Nanoscale Science and Technology, Peking University, Beijing 100871, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
89
|
Ridley M, Gull E, Cohen G. Lead geometry and transport statistics in molecular junctions. J Chem Phys 2019; 150:244107. [DOI: 10.1063/1.5096244] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Ridley
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Guy Cohen
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
90
|
Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9493-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
91
|
Xiong Y, Luo S, Huang H, Ma Y, Zhang X. Exchange-dependent spin polarized transport and phase transition in a triple monomer molecule. Phys Chem Chem Phys 2019; 21:11158-11167. [PMID: 31095151 DOI: 10.1039/c9cp01350d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular junctions contribute significantly to the fundamental understanding of the quantum information technologies in molecular spintronics. In this paper, with the aid of the state of the art numerical renormalization group method, we find a triple monomer molecule structure with strong electron-electron interactions could be a potential candidate for a multifunctional spin polarizer when an external magnetic field along the z axis is applied. It is demonstrated that the polarizing scenarios depend closely on the inter-orbital exchange couplings, and results in several kinds of spin polarizers, e.g., the unidirectional, the bidirectional, the dual, and the ternary spin polarizers. We show in detail the related phase diagram, and conclude the Zeeman effect and the charge switching for the bonding, anti-bonding and non-bonding orbitals are responsible for the spin polarizing transport. We stress even when the energy levels are chosen beyond the Kondo regime, the structure still shows a promising platform for molecular spintronics components.
Collapse
Affiliation(s)
- Yongchen Xiong
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Shijun Luo
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Haiming Huang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Yanan Ma
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Xiong Zhang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| |
Collapse
|
92
|
Bou Comas A, Chudnovsky EM, Tejada J. Manipulating quantum spins by spin-polarized current: an approach based upon [Formula: see text]-symmetric quantum mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:195801. [PMID: 30754032 DOI: 10.1088/1361-648x/ab0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose a quantum processor based upon single-molecule magnets and spin transfer torque described by [Formula: see text]-symmetric quantum mechanics. In recent years [Formula: see text]-symmetric Hamiltonians have been used to obtain stability thresholds of various systems out of equilibrium. One such problem is the magnetization reversal due to the spin transfer torque generated by a spin-polarized current. So far the studies of this problem have mostly focused on a classical limit of a large spin. In this work we are discussing spin tunneling and quantum dynamics of a small spin induced by a spin polarized current within a [Formula: see text]-symmetric theory. This description can be used for manipulating spin qubits by electric currents.
Collapse
Affiliation(s)
- Aleix Bou Comas
- Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
93
|
Tian G, Sun D, Zhang Y, Yu X. Franck–Condon Blockade and Aggregation‐Modulated Conductance in Molecular Devices Using Aggregation‐Induced Emission‐Active Molecules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Dexian Sun
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Yaogang Zhang
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
94
|
Tian G, Sun D, Zhang Y, Yu X. Franck–Condon Blockade and Aggregation‐Modulated Conductance in Molecular Devices Using Aggregation‐Induced Emission‐Active Molecules. Angew Chem Int Ed Engl 2019; 58:5951-5955. [DOI: 10.1002/anie.201900731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Dexian Sun
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
| | - Yaogang Zhang
- Key Laboratory for Microstructural Material Physics of Hebei ProvinceSchool of ScienceYanshan University Qinhuangdao 066004 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of Physics and Department of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
95
|
Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat Commun 2019; 10:1450. [PMID: 30926785 PMCID: PMC6440973 DOI: 10.1038/s41467-019-09120-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/24/2019] [Indexed: 11/14/2022] Open
Abstract
By taking advantage of large changes in geometric and electronic structure during the reversible trans–cis isomerisation, azobenzene derivatives have been widely studied for potential applications in information processing and digital storage devices. Here we report an unusual discovery of unambiguous conductance switching upon light and electric field-induced isomerisation of azobenzene in a robust single-molecule electronic device for the first time. Both experimental and theoretical data consistently demonstrate that the azobenzene sidegroup serves as a viable chemical gate controlled by electric field, which efficiently modulates the energy difference of trans and cis forms as well as the energy barrier of isomerisation. In conjunction with photoinduced switching at low biases, these results afford a chemically-gateable, fully-reversible, two-mode, single-molecule transistor, offering a fresh perspective for creating future multifunctional single-molecule optoelectronic devices in a practical way. It remains a challenge to fully control molecular electronics. Here, Meng et al. show a reversible two-mode single-molecule switch, where the conductance through the molecular backbone is controlled by an in situ chemical gating via bias-dependent trans–cis isomerisation on an azobenzene sidegroup.
Collapse
|
96
|
Xiong YC, Luo SJ, Zhou WH, Li W, Zhang CK. Bidirectional spin filter in a triple orbital molecule junction by tuning the magnetic field along a single direction. J Chem Phys 2019; 150:064110. [DOI: 10.1063/1.5081020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Shi-Jun Luo
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Wang-Huai Zhou
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Wei Li
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Chuan-Kun Zhang
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| |
Collapse
|
97
|
Perfetti M, Rinck J, Cucinotta G, Anson CE, Gong X, Ungur L, Chibotaru L, Boulon ME, Powell AK, Sessoli R. Single Crystal Investigations Unravel the Magnetic Anisotropy of the "Square-In Square" Cr 4Dy 4 SMM Coordination Cluster. Front Chem 2019; 7:6. [PMID: 30733942 PMCID: PMC6353784 DOI: 10.3389/fchem.2019.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/07/2019] [Indexed: 01/15/2023] Open
Abstract
In the search for new single molecule magnets (SMM), i.e., molecular systems that can retain their magnetization without the need to apply an external magnetic field, a successful strategy is to associate 3d and 4f ions to form molecular coordination clusters. In order to efficiently design such systems, it is necessary to chemically project both the magnetic building blocks and the resultant interaction before the synthesis. Lanthanide ions can provide the required easy axis magnetic anisotropy that hampers magnetization reversal. In the rare examples of 3d/4f SMMs containing CrIII ions, the latter turn out to act as quasi-isotropic anchors which can also interact via 3d-4f coupling to neighbouring Ln centres. This has been demonstrated in cases where the intramolecular exchange interactions mediated by CrIII ions effectively reduce the efficiency of tunnelling without applied magnetic field. However, describing such high nuclearity systems remains challenging, from both experimental and theoretical perspectives, because the overall behaviour of the molecular cluster is heavily affected by the orientation of the individual anisotropy axes. These are in general non-collinear to each other. In this article, we combine single crystal SQUID and torque magnetometry studies of the octanuclear [Cr4Dy4(μ3-OH)4(μ-N3)4(mdea)4(piv)8]·3CH2Cl2 single molecule magnet (piv=pivalate and mdea=N-methyldiethanol amine). These experiments allowed us to probe the magnetic anisotropy of this complex which displays slow magnetization dynamics due to the peculiar arrangement of the easy-axis anisotropy on the Dy sites. New ab initio calculations considering the entire cluster are in agreement with our experimental results.
Collapse
Affiliation(s)
- Mauro Perfetti
- Laboratory of Molecular Magnetism, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Julia Rinck
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Giuseppe Cucinotta
- Laboratory of Molecular Magnetism, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | | | - Xuejun Gong
- Department of Chemistry, Katholische Universität Leuven, Leuven, Belgium
| | - Liviu Ungur
- Department of Chemistry, Katholische Universität Leuven, Leuven, Belgium
| | - Liviu Chibotaru
- Department of Chemistry, Katholische Universität Leuven, Leuven, Belgium
| | - Marie-Emmanuelle Boulon
- Laboratory of Molecular Magnetism, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Annie K Powell
- Institut für Anorganische Chemie, KIT, Karlsruhe, Germany.,Institut für Nanotechnologie, KIT, Eggenstein-Leopoldshafen, Germany
| | - Roberta Sessoli
- Laboratory of Molecular Magnetism, Università Degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
98
|
Liu J, Zhao X, Zheng J, Huang X, Tang Y, Wang F, Li R, Pi J, Huang C, Wang L, Yang Y, Shi J, Mao BW, Tian ZQ, Bryce MR, Hong W. Transition from Tunneling Leakage Current to Molecular Tunneling in Single-Molecule Junctions. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
99
|
Cornia A, Mannini M, Sessoli R, Gatteschi D. Propeller-Shaped Fe4
and Fe3
M Molecular Nanomagnets: A Journey from Crystals to Addressable Single Molecules. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801266] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Cornia
- Department of Chemical and Geological Sciences and INSTM Research Unit; University of Modena and Reggio Emilia; 41125 Modena Italy
| | - Matteo Mannini
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| | - Roberta Sessoli
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
- Research Area Firenze; Istituto di Chimica dei Composti Organometallici - ICCOM-CNR; 50019 Sesto Fiorentino (FI) Italy
| | - Dante Gatteschi
- Department of Chemistry “Ugo Schiff” and INSTM Research Unit; University of Florence; 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
100
|
Wan H, Chen X, Zhou G. Spin-dependent transport properties of a graphene electrode-single quintuple bond [PhCrCrPh] molecule junction. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1541198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Haiqing Wan
- Department of Primary education, Yuzhang Normal University, Nanchang, People's Republic of China
| | - Xiongwen Chen
- Department of Physics and Electronic Information Science, University Huaihua, Huaihua, People's Republic of China
| | - Guanghui Zhou
- Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|